Computer drawing of an airfoil. Lift equals the lift coefficient
 times the density times the area times half the velocity squared.


Lift depends on the density of the air, the square of the velocity, the air's viscosity and compressibility, the surface area over which the air flows, the shape of the body, and the body's inclination to the flow. In general, the dependence on body shape, inclination, air viscosity, and compressibility is very complex.

One way to deal with complex dependencies is to characterize the dependence by a single variable. For lift, this variable is called the lift coefficient, designated "Cl." This allows us to collect all the effects, simple and complex, into a single equation. The lift equation states that lift L is equal to the lift coefficient Cl times the density r times half of the velocity V squared times the wing area A.

L = Cl * A * .5 * r * V^2

For given air conditions, shape, and inclination of the object, we have to determine a value for Cl to determine the lift. For some simple flow conditions and geometries and low inclinations, aerodynamicists can determine the value of Cl mathematically. But, in general, this parameter is determined experimentally.

In the equation given above, the density is designated by the letter "r." We do not use "d" for density, since "d" is often used to specify distance. In many textbooks on aerodynamics, the density is given by the Greek symbol "rho" (Greek for "r"). The combination of terms "density times the square of the velocity divided by two" is called the dynamic pressure and appears in Bernoulli's pressure equation.

You can investigate the various factors that affect lift by using the FoilSim II Java Applet. (Have fun!) Use the browser "Back" button to return to this page. If you want your own copy of FoilSim to play with, you can download it at no charge.

Button to Display Slide

Guided Tours


Beginner's Guide to Aerodynamics
Beginner's Guide to Propulsion
Beginner's Guide to Model Rockets
Beginner's Guide to Kites
Beginner's Guide to Aeronautics

Button to Display Aerodynamics Index Button to Display Propulsion Index Button to Display Model Rocket Index Button to Display Kite Index

Back to top

Go to...

Beginner's Guide Home Page

byTom Benson
Please send suggestions/corrections to: