decorative picture of space events
Aeronautics Home PageVirtual Visits (Video Conferencing, Virtual Tours, Webcasts, plus more.)Math and Science ResourcesTeachers ResourcesInternet Access Research ArchiveLink to Learning Technologies Project (LTP) Homepage

       Math & Science Home | Proficiency Tests | Mathematical Thinking in Physics | Aeronauts 2000



Fermi's Piano Tuner Problem

How Old is Old?

If the Terrestrial Poles were to Melt...

Sunlight Exerts Pressure

Falling Eastward

What if an Asteroid Hit the Earth

Using a Jeep to Estimate the Energy in Gasoline

How do Police Radars really work?

How "Fast" is the Speed of Light?

How Long is a Light Year?

How Big is a Trillion?

"Seeing" the Earth, Moon, and Sun to Scale

Of Stars and Drops of Water

If I Were to Build a Model of the Cosmos...

A Number Trick

Designing a High Altitude Balloon

Pressure in the Vicinity of a Lunar Astronaut Space Suit due to Outgassing of Coolant Water

Calendar Calculations

Telling Time by the Stars - Sidereal Time

Fields, an Heuristic Approach

The Irrationality of

The Irrationality of

The Number (i)i

Estimating the Temperature of a Flat Plate in Low Earth Orbit

Proving that (p)1/n is Irrational when p is a Prime and n>1

The Transcendentality of

Ideal Gases under Constant Volume, Constant Pressure, Constant Temperature and Adiabatic Conditions

Maxwell's Equations: The Vector and Scalar Potentials

A Possible Scalar Term Describing Energy Density in the Gravitational Field

A Proposed Relativistic, Thermodynamic Four-Vector

Motivational Argument for the Expression-eix=cosx+isinx

Another Motivational Argument for the Expression-eix=cosx+isinx
Calculating the Energy from Sunlight over a 12 hour period
Calculating the Energy from Sunlight over actual full day
Perfect Numbers-A Case Study
Gravitation Inside a Uniform Hollow Sphere
Further note on Gravitation Inside a Uniform Hollow Sphere
Pythagorean Triples
Black Holes and Point Set Topology
Additional Notes on Black Holes and Point Set Topology
Field Equations and Equations of Motion (General Relativity)
The observer in modern physics
A Note on the Centrifugal and Coriolis Accelerations as Pseudo Accelerations - PDF File
On Expansion of the Universe - PDF File

Sunlight Exerts Pressure

Problem: Estimate the pressure exerted by sunlight on objects at 1 AU from the sun. Discuss the result.

Solution: A dimensional analysis of the solar constant (in units of W/m2) leads rather directly to an intuitive expression for pressure exerted on objects by sunlight.

W/m2 = j/(m2 sec) = (nt m)/(m2 sec) = (nt/m2)(m/sec)

The last term on the right appears to be made up of a pressure and a velocity which, in this case, must be taken to be the velocity of light. Thus, if sigma = solar constant, then sigma/c must be the corresponding pressure3. At 1 AU, sigma = 1.36 x 103 W/m2. The corresponding pressure must be

p = 4.53 x 10-6 nt/m2

(about 6.56 x 10-10 psi).

Now, with this value in hand, let us consider the forces on a 1 mu diameter particle with a density of 1 gm/cm3, such as might be found in the tail of a comet. The projected area, A, of the 1 mu particle is 7.85 x 10-13 m2, and its mass, m, is 5.24 x 10-13 gm = 5.24 x 10-16 kg. The force exerted by sunlight on this particle is

f = pA = 3.56 x 10-18 nt

and its acceleration away from the sun, due to the pressure of sunlight, is

a = 6.79 x 10-3 m/sec2.

The acceleration due to the sun's gravity at 1 AU is

gsun = 5.92 x 10-3 m/sec2

so that the pressure of sunlight overwhelms the solar gravity by a factor4 of

6.79/5.92 = 1.15.

We see here why a comet's tail points away from the sun!

In fact, the ratio of the two accelerations is independent of the distance from the sun for any given particle. The solar constant at a distance l from the sun is


where sigmaSB is the Stefan-Boltzmann constant (= 5.67 x 10-8 W/(m2K)4), Ts is the sun's surface temperature, and Rs is the solar radius. The corresponding pressure of sunlight at the distance l is


Now, let a be the acceleration due to light pressure at distance l, and gs be the solar gravitation at the same distance. For a particle of cross sectional area A and mass m, the acceleration, a, is

a = (AsigmaSBTs4/mc)(Rs/l)2.

If gso is the solar surface gravity, then

gs = gso(Rs/l)2,

and a/gs = AsigmaSBTs4/mcgso.

This last expression is the ratio of the accelerations sought. N.B., The ratio is independent of distance.

As a check on our previous calculation, we use the values:

A = 7.85 x 10-13 m2
sigmaSB = 5.67 x 10-8 W/(m2K4)
Ts = 5800 °K
m = 5.24 x 10-16 kg
c = 3 x 108 m/sec
gso = 2.74 x 102 m/sec2

With these values, we find a/gs = 1.17, in agreement with our previous result.

Having done the calculation for a 1 mu diameter particle, let us now repeat it for the Earth. For Earth, r = 6.37 x 103 km and m = 5.98 x 1024 kg, and the ratio5 a/gs comes out to

1.63 x 10-14

The perturbation of the Earth due to the pressure of sunlight is too small to detect by any ordinary means.

4 This value is correct for photons that are absorbed. For photons that are reflected, this value must be multiplied by 2.

5 See footnote 4.

Please send suggestions/corrections to:
Web Related:
Technology Related:
Responsible NASA Official: Theresa.M.Scott (Acting)