NASA Logo - Web Link to NASA.gov

+ Text Only Site
+ Non-Flash Version
+ Contact Glenn

Go
ABOUT NASA NEWS AND EVENTS MULTIMEDIA MISSIONS MyNASA WORK FOR NASA
In the process of reaching thermodynamic equilibrium, heat is
 transferred from the warmer object to the cooler object. At equilibrium,
 heat transfer is zero.

Thermodynamics is a branch of physics that deals with the energy and work of a system. Thermodynamics deals only with the large scale response of a system that we can observe and measure in experiments. In aerodynamics, we are most interested in the thermodynamics of propulsion systems and high speed flows.

The Zeroth Law of Thermodynamics introduces the concept of thermodynamic equilibrium, in which two objects have the same temperature. If we bring two objects that are initially at different temperatures into physical contact, they eventually achieve thermal equilibrium. During the process of reaching thermal equilibrium, heat is transferred between the objects. The amount of heat transferred delta Q is proportional to the temperature difference delta T between the objects and the heat capacity c of the object.

delta Q = c * delta T

The heat capacity is a constant that tells how much heat is added per unit temperature rise. The value of the constant is different for different materials. Heat is always transferred from the object at the higher temperature to the object with the lower temperature.

For a gas, the heat transfer is related to a change in temperature. The temperature, pressure, and volume of the gas determine the state of the gas. Heating a gas changes the state of the gas. But the state of a gas can be changed in a wide variety of ways. On another slide, we show how work done on a gas also changes the state of the gas. The amount of work that a gas can do depends on both the initial and final states and on the process used to make the change. In the same way, the amount of heat transferred in changing the state of a gas also depends on the initial and final states and the exact process used to change the state. Different processes result in different amounts of heat transfer and work. The effects of both heat flow and work are combined in the First Law of Thermodynamics.

There are some thermodynamic processes in which there is no heat transfer. Engineers call this type of a process an adiabatic process and there are simple equations which relate the pressure and temperature of a gas for an adiabatic process.


Activities:
Button to Display Grade 9-12 Activity
Guided Tours
  • Button to Display Previous Page Thermodynamics: Button to Display Next Page
  • Button to Display Previous Page Combustion: Button to Display Next Page
  • Button to Display Previous Page Burner: Button to Display Next Page


Navigation ..

Button to Display Propulsion Index Button to Display Hi Speed Aero Index Button to Display Hypersonic Aero Index
Beginner's Guide Home Page

 

     First Gov Image


+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Budgets, Strategic Plans and Accountability Reports
+ Freedom of Information Act
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

 

NASA Logo   
Editor: Tom Benson
NASA Official: Tom Benson
Last Updated: Jun 12 2014

+ Contact Glenn