
36th Aerospace SciencesMeeting& ExhibitJanuary 12 - 15, 1998 / Reno, NV
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics1801 Alexander Bell Drive, Suite 500, Reston, VA 22091

AIAA 98-0935

WIND: The Production Flow Solver of the

NPARC Alliance

R. H Bush
The Boeing Company
St. Louis, Missouri
G. D. Power
Sverdrup Technology, Inc., AEDC Group
Arnold Engineering Development Center
Arnold Air Force Base, Tennessee
and
C. E. Towne
NASA Lewis Research Center
Cleveland, Ohio

WIND: The Production Flow Solver of the NPARC Alliance*

R. H. Bush** G. D. Power† C. E. Towne†

The Boeing Company Sverdrup Technology, Inc., AEDC Group NASA Lewis Research Center

St. Louis, Mo 6t3166-0516 Arnold Engineering Development Center Cleveland, OH 44135

Arnold Air Force Base, TN 37389-9013

* The research reported herein was performed by the Arnold Engineering Development Center (AEDC), Air Force Materiel

Command. Work and analysis for this research were performed by personnel of Sverdrup Technology, Inc., AEDC Group, technical

services contractor for AEDC. Further reproduction is authorized to satisfy needs of the U. S. Government.

** Associate Fellow, AIAA.

† Senior Member, AIAA.

1
American Institute of Aeronautics and Astronautics

This paper is declared a work of the U. S. government and

not subject to copyright protection in the United States.

Abstract

The NPARC Alliance is dedicated to providing

an applications-oriented CFD tool for government,

industry, and academic research and develop-

ment. To meet this challenge, the WIND code has

been developed, based on combining the capabili-

ties of three existing CFD solvers used and devel-

oped in the government and industry sectors.

WIND is a structured, multi-zone, compressible

flow solver with flexible chemistry and turbulence

models. Zonal interfaces may be abutting or over-

lapped, allowing the flexibility to treat complex sys-

tems moving relative to one another. WIND is part

of a user-friendly, robust flow simulation system

supported, developed, and validated by NPARC

Alliance members and partners. This paper

describes the approach taken in managing this

joint software development project, an outline of

the flow solver capabilities, a brief overview of the

solution procedure, and an example simulation.

Background

The NPARC Alliance

The Arnold Engineering Development Center

(AEDC) and the NASA Lewis Research Center

(LeRC) have formed an alliance aimed at develop-

ing, validating, and supporting a computational sys-

tem for aerospace flow simulation. The NPARC

(National Project for Applications-oriented

Research in CFD) Alliance is supported by and

responsive to an association made up of users from

government, industry, and academic institutions.

The NPARC Alliance began with an inlet CFD

peer review held at NASA LeRC in early 1992 in

which it was recommended that redundant CFD

efforts be consolidated. At the same time, manage-

ment and engineers at AEDC and NASA LeRC

realized that there were complementary develop-

ment efforts at each Center focused on the PARC

CFD code.1 The result was the creation of the

NPARC Alliance.2 The NPARC Alliance draws on

the unique talents and qualifications of its partners

while at the same time soliciting the experience and

insights of government, industrial, and academic

users to ensure that code development proceeds in

a cost-effective, customer-responsive manner.

The NPARC code3 was a result of combining

the capabilities of the NASA LeRC version of the

PARC code and the AEDC version and formally

putting this software under version control. The

NPARC Alliance provided the framework for jointly

supporting, developing, and validating the NPARC

code and related software. To serve the customers

of AEDC and NASA LeRC a vision was developed:

The Computational Tool of Choice for

Aerospace Flow Simulation.

In order to achieve the vision and support the

mission, the Alliance was structured to take

advantage of each agency's strengths and abilities

(Fig. 1).

The Executive Steering Committee consists of

one manager from each Alliance partner (AEDC

and LeRC). The Technical Liaisons lead the tech-

nical efforts at the two Centers supported by the

Technical Direction Committee. This Committee is

made up of one technical representative from each

Center in the three functional areas of the alliance:

Support, Development, and Validation.

2
American Institute of Aeronautics and Astronautics

The NPARC Association is a self-governing

group consisting of government, industry, and aca-

demic users. Users of NPARC Alliance software

are eligible to be an Association member. A Steer-

ing Committee, drawn from the NPARC Associa-

tion, is chartered by the Alliance to formalize users'

inputs and provide feedback to the Alliance regard-

ing current and future code developments. The cur-

rent Association Steering Committee is co-chaired

by representatives from the Boeing Company. The

NPARC Association plays a key role in providing

user community feedback to the Alliance to ensure

that NPARC software remains useable, current,

and relevant.

A primary method for internal communication is

the Annual Plans and Policy Document. This docu-

ment outlines the current Vision and Mission State-

ments as well as the current organizational struc-

ture. The real substance of the document is the

schedules for each of the three areas: develop-

ment, validation, and support. These schedules

are negotiated each year and define the expecta-

tions from each of the Alliance partners for the

upcoming two years.

Further information on the NPARC Alliance is

also available through the World Wide Web at:

http://info.arnold.af.mil/nparc, or by e-mailing a

request for information to nparc-support@

info.arnold.af.mil.

Joint Development – WIND

Prior to the merger of the

McDonnell Douglas Corporation

(MDC) and the Boeing Company,

MDC in St. Louis offered to the

NPARC Alliance the CFD technol-

ogy in their primary flow solver

NASTD4 and associated soft-

ware. In exchange, the software

would be maintained and sup-

ported by the Alliance and MDC

would benefit from leveraging

future development resources. At

nearly the same time, a modifica-

tion in the operating contract at

AEDC resulted in the merger of

two separate CFD groups, propulsion CFD, co-

developers of the NPARC code; and aeromechan-

ics CFD, developers of the NXAIR code.

At the annual planning meeting of the NPARC

Alliance, attended by government, industry, and

academic representatives, the Alliance decided to

take advantage of the capability and resources that

had become available. A design committee, con-

sisting of representatives of each organization,

was formed to develop an approach to merging the

capabilities of these three CFD tools. The commit-

tee decided to begin with one of the codes as a

baseline and merge the capabilities of the other

two codes. The NASTD code was chosen as the

baseline code based on an estimation of resource

requirements.

A list of capability requirements was developed

based on the current and near-term foreseeable

capabilities of each of the codes. The design team

developed a plan to attain 90 percent capability

merger within one year and 100% within two years,

starting with about 70- to 80-percent capability

within NASTD. Each organization agreed to

expend its own development resources to attain

this goal.

A joint development effort began with responsi-

bilities and resources shared by the three principal

participants, AEDC, NASA LeRC, and MDC (now

Fig. 1. NPARC Alliance organization.

AEDC LeRC

Technical
Liaisons

Technical
Direction

Committee

Executive
Direction

Committee

Mr Jere Matty
Manager

Waldo Acosta
Manager

Capt. Brian Collins
Technical Lead

Nick Georgiadis
Technical Lead

Bonnie Heikkinen
Support Lead

Dr. John Slater
Support Lead

Dr Greg Power
Development Lead

Dr Charlie Towne
Development Lead

Ken Tatum
Validation Lead

Julie Dudek
Validation Lead

NPARC Association

Dr Gerald Paynter
(Boeing - Seattle)

Dr Ray Cosner
(Boeing

3
American Institute of Aeronautics and Astronautics

Boeing). This effort was bolstered by the selection

of the NPARC Alliance software suite as a project

in the Common HPC Software Support Initiative

(CHSSI) of the High Performance Computing Mod-

ernization Program (HPCMP). As part of the CHSSI

program, the Air Force Research Laboratory

(AFRL) is contributing to the development effort. In

the following section, the program management

and the software management of this joint develop-

ment project are described in more detail.

Development Environment

Program Management

The design team identified the major develop-

ment efforts required to complete the capability

merger with NASTD as the baseline. The responsi-

bilities for accomplishing the development of the

new WIND code are shared equally by the three

principal organizations. The primary tasks and the

associated responsible organization are:

• Program Management (AEDC)

• Software Management (Boeing)

• Documentation and Validation (NASA LeRC)

• Store Separation Integration (AEDC)

• Zonal Interface (Boeing)

• Turbulence Models (NASA LeRC)

• Framework (AEDC)

• Algorithm (Boeing)

• I/O Systems (NASA LeRC)

• Parallel Scalability (AFRL)

Each of the responsible organizations provides

feedback to the program manager, who maintains

a central database of progress and problems. Each

of the organizations has a development lead who

keeps in contact with the task managers responsi-

ble for each of the tasks above. The development

leads from each organization have a face-to-face

meeting quarterly and video teleconferences

monthly to work out difficulties and assess the sta-

tus of the project. The program manager provides

monthly feedback to participants and management

at each organization.

The key elements in a joint development

project, particularly with organizations and individu-

als located at dispersed geographic locations, are

planning, version control, standards, and communi-

cation. Of these, communication is arguably the

most important. The Internet is used extensively to

transmit information, including bug reports, sugges-

tions, data sets, and documentation. A majordomo

email system was established early in the program

to facilitate global information exchange, and a

WWW site was established for hyperlinked docu-

mentation that could be updated almost instantly.

A set of standards documents was developed

as one of the first tasks. A document describing

programming guidelines provides a set of required

programming practices, as well as suggested prac-

tices for less critical items, such as formatting. A

documentation standards document provides the

developers guidelines on what information is

required to document new features and a descrip-

tion of all documentation provided with NPARC

Alliance software. Finally, the testing standards

provide those doing validation and functional test-

ing of Alliance software guidance on procedure,

documentation, and archiving.

Software Management

The WIND development and release system

was designed to provide support for multi-site,

multi-platform software distribution and develop-

ment from a central location. Files are provided to

users and developers through four different

“release sets” – application, tools, development,

and build releases. WIND users may download the

latest releases from a protected FTP site, and will

soon be able to access the software from a dedi-

cated site on the World Wide Web.

The application release includes run scripts and

executables for specified platforms, providing only

those files necessary to run WIND. The tools

release provides auxiliary software supporting grid

generation, boundary condition definition, and

post-processing. The development release defines

a structure in which developers may modify, com-

pile, and link their own version of WIND prior to

incorporating their changes into the primary ver-

sion of the code. Finally, the build release is simply

4
American Institute of Aeronautics and Astronautics

a collection of source code for WIND and all its

related libraries, designed to provide a starting

point for porting the code to unsupported platforms.

Conflicts may arise when developers at differ-

ent sites make simultaneous changes to the pri-

mary source code. This problem is mitigated

through the use of the Revision Control System

(RCS), a GNU utility that provides locking and his-

tory tracking of text files. A number of special

scripts incorporate RCS functions to provide cus-

tom revision control for WIND. Source code must

be “locked” before changes may be made, which

prevents multiple users from making simultaneous

updates, or at least notifies them that others are

working on the routines to be changed. A History

file maintains a log of all changes to the code, and

each RCS-controlled routine maintains a history of

changes through all versions, allowing developers

to easily retrieve a specified version number and

build previous versions of WIND.

Self-Documenting Database

The Boeing Common File Format (CFF) is a

third-generation self-documenting file format

designed to be compact, quickly accessible, and

machine portable. The internal format uses an N-

tree hierarchy consisting of nodes. Each node then

has pointers to other nodes or variables, which are

identified by user-supplied character names. Since

the file format contains character tags, it is also

self-documenting.

Common File versions 1 and 2 use a FORTRAN

binary direct access file to minimize the file size and

to allow quick, direct access to nodes or variables.

The current version, version 3, uses the ADF core

developed by the Complex Grid Navier-Stokes

(CGNS) project which was sponsored by NASA.

The file is accessed through the CFF library, which

contains all required functionality. Using this file for-

mat, the node and variable names were defined for

CFD as well as which variables were contained in

the grid and solution files. For more information see

the Common File Programmers Guide accessible

through the NPARC Web site.

The Common File is currently used throughout

the CFD process from grid generation to flow

solver to post processing. It allows better integra-

tion of tools within the flow simulation system and

avoids unnecessary file conversions. Since CFF is

self-documenting, smarter codes have been devel-

oped that can automatically build from existing

data stored in the file, like the Common file post-

processor, CFPOST. A wide variety of utilities have

been developed for the common file in support of

CFD, like CFSPLIT, which allows the user to break

up zones into smaller ones modifying, the bound-

ary conditions and zone connectivity data so that

the split grid is ready to run.

Parallel Environment

The WIND code can run in parallel on a network

of workstations or a large multiprocessor machine

like the Silicon Graphics ORIGIN-2000 or the HP

Exemplar. The parallel model is a master-worker

implementation with PVM being used for communi-

cation and spawning of worker processes. When

running in parallel, each zone is assigned to a CPU

based on an algorithm in which the largest zone

waiting to run is spawned to the first available pro-

cessor. This algorithm accounts for differences in

CPU speed and zone sizes.

There are two parallel modes available; the

default spawns one process per zone, and the other

spawns one process per CPU and assigns multiple

zones for that process to run. The first mode is the

most efficient, but requires enough memory to hold

all of a worker’s assigned zones in that system’s

core memory plus swap space (currently 1GB

memory is required for 5 million grid points). The

second mode minimizes the memory but adds the

overhead of storing zones in a local scratch file as

the CPU cycles through its assigned zones.

WIND normally only passes boundary data

each cycle; the flow data are passed back to the

master to save at user-specified checkpoint inter-

vals. In order to make the code somewhat fault tol-

erant, if a worker dies, the master has the ability to

restart the job by reassigning the process to

another CPU and telling the other processes to go

back to the last checkpoint. Returning to the last

checkpoint ensures that the solutions in all zones

are in equivalent states of evolution, minimizing the

chances that the overall solution would diverge.

5
American Institute of Aeronautics and Astronautics

To run in parallel, the user creates a multi-pro-

cessor control file (MPC) containing a list of hosts

on which to run and parallel directives like check-

point interval and parallel run mode. The user may

specify the checkpoint interval by clock time or by

number of cycles. The WIND run script and associ-

ated scripts set up the entire PVM virtual machine

environment and run the job transparent to the

user. The scripts check the remote machine to see

if it is overloaded before adding it to the virtual

machine so that the job will not be held up waiting

for the overloaded machine to complete its tasks.

The load limit can be set by a keyword in the MPC

file on a machine-by-machine basis.

Documentation

Documentation for WIND is generally available

in both PostScript (generated using LaTeX 2e and

dvips, and intended for printing) and HTML form

(intended for interactive use). Much of the WIND

documentation is based on documentation origi-

nally developed at McDonnell Douglas Aerospace

Company (now Boeing) for the NASTD code. The

WIND documentation is available on the World

Wide Web, through the NPARC Web site.

There are two levels of WIND documentation -

one aimed at users and one at developers. The

user-level documentation is what a typical user will

probably refer to most often. It includes information

that a user, from beginner to expert, will need to

successfully apply the program to real-world prob-

lems. The developer-level documentation contains

detailed reference information that a developer can

refer to when modifying or extending the program.

User-Level Documentation − The principal

user-level documentation is the WIND User' s

Guide. It describes the operation and use of the

WIND code, including a basic tutorial; the physical

and numerical models that are used; the boundary

conditions; convergence monitoring; diagnostic

messages that may be printed; the files that are

read and/or written; execution scripts and parallel

operation; a complete list of input keywords and

test options; and where to go for additional help.

Separate user' sguides are also available for

GMAN and CFPOST. GMAN is an interactive

menu-driven pre-processor that is used to specify

boundary condition types and zonal connectivity in

multi-zone grids. CFPOST is a post-processor that

may be used to examine the contents of the Com-

mon Flow (.cfl) file created by WIND. It includes

options to list and plot results, generate reports,

and produce files for use by other post-processors.

User-level documentation is also available for

several smaller utilities distributed with the WIND

code. A separate "Guide for Translating Between

NPARC and WIND Boundary Conditions" is avail-

able to help current NPARC users in transitioning

to the new WIND code.

Developer-Level Documentation − The princi-

pal developer-level documentation for WIND is the

WIND Programmer' sReference. A preliminary and

incomplete version of this documentation is cur-

rently available, with the complete version sched-

uled for release with Version 2 of the WIND code in

January 1999. The current version includes infor-

mation about the program structures in the form of

both a high-level conceptual calling tree and a

detailed subprogram calling tree; lists of all the

FORTRAN parameters and common variables,

with definitions for some of the more important

ones; and a list of all the subprograms, including a

one-line summary of the subprogram' spurpose,

the argument list, the name of the file the subpro-

gram is in, a list of the subprograms that it calls and

that call it, and a list of the common blocks that it

includes. It does not yet include detailed descrip-

tions of the work done in all the subprograms.

A Common File Programmer' s Guide that

describes the common file structure and the library

routines used to access and store information in

common files is also available.

Code Capabilities

The three CFD simulation systems chosen to

contribute to the NPARC Alliance system are very

similar, but have evolved in different environments

leading to unique and complementary capabilities.

The original NPARC code was used extensively for

internal flows such as inlets, nozzles, and test facil-

ities, with an emphasis on usability and robust-

ness. The NASTD code was developed in an air-

6
American Institute of Aeronautics and Astronautics

craft manufacturer design environment with more

emphasis on the entire system, rather than just the

flow solver. The NXAIR code has been a primary

workhorse for moving body simulations, particu-

larly store separation, with requirements for time

accuracy and fast turn-around.

The original design team developed a compre-

hensive list of required capabilities by focusing on

the goal of 100-percent capability merger. Inde-

pendent of the simulation capabilities, general

requirements were established including standards

documents, program and software management,

and documentation, as discussed above.

Flow Simulation System

While the flow solver itself is the major compo-

nent of a flow simulation system, the NPARC Alli-

ance acknowledges the necessity to provide a

complete system for its members and other users.

The past strategy has been to provide a descrip-

tion of the flow solver’s input and output capabili-

ties and require that the user provide preprocess-

ing, e.g. grid generation, and postprocessing, e.g.

visualization, consistent with these capabilities.

To allow more flexibility and provide a more

complete system, several requirements have been

established. A self-documenting database (Com-

mon File) is the primary interface to all pre- and

postprocessing tools. These tools are consistent

with the flow solver models, allowing printing and

viewing of primitive and derived variables, includ-

ing loads, flow rates, and turbulence information.

The flexibility and user accessibility to the Common

File will continue to be improved in later versions.

A preprocessor for Grid MANagement (GMAN)

is provided which includes a graphical user inter-

face (GUI). GMAN has some grid generation capa-

bility, but the major use is for interactive setting of

boundary conditions, hole cutting, and block inter-

face connectivity. For backward compatibility to

NPARC 3.0, a stand-alone program is provided to

translate between NPARC files (restart and input)

and the grid and solution Common Files.

The Common File POSTprocessing (CFPOST)

package allows the user to manipulate, integrate,

print, and plot results stored in the Common File

database. While plotting capability is rudimentary,

CFPOST can generate PLOT3D files containing

user-specified variables in user-specified units, in

addition to the standard conservation variables.

The RESPLT program, in conjunction with

CFPOST, provides the capability to plot conver-

gence history, including residuals and integrated

data.

The WIND Flow Simulator

The basic requirement for the NPARC Alliance

flow solver is that it be applications-oriented, that

is, it must be easy to use, flexible, and robust, with

the capability to modify and add capability as appli-

cation requirements warrant. The classes of appli-

cations currently being addressed by Alliance

members and partners drive the overall code

requirements. The types of applications which are

analyzed include air-breathing engine inlets and

nozzles, liquid and solid-propellant rocket propul-

sion systems, full aircraft systems, store separa-

tion, missile control systems, test cell and wind tun-

nel aerodynamics, and hypersonic vehicles.

The code’s general capabilities include a single

source code to treat two-dimensional, axisymmet-

ric, variable- width two-dimensional and three-

dimensional simulations. Efficient steady-state and

time-accurate simulations are possible for all of

these geometric approximations, through

advanced algorithms, such as the global Newton

approach and coarse-grain parallel processing.

Input/Output − In addition to the GUI prepro-

cessor, the user interface is easy to use and intui-

tive through an English keyword parser. Flow-field

conditions are currently input in English units, but

plans are to allow user-specified units in the future.

For tracking the solution, convergence monitoring

includes not only the residuals, but also integrated

data such as loads and flow rates. Most other out-

put is accomplished through the CFPOST package.

Grid Zones − WIND uses a grid block or zonal

approach with structured grids within each zone.

Each zone is solved independently of all other

zones, except for information exchange at block

boundaries. The block boundaries can be either

7
American Institute of Aeronautics and Astronautics

abutting, with point matching not required, or over-

lapping. Chimera-type overlapped zones can also

be treated with hole-cutting to preclude solution

within solid volumes. Zonal interfaces can also

communicate within a single zone through rotation-

ally symmetric interpolation.

Zonal boundaries can also represent modeled

physical systems such as screens or actuator

disks. Information is propagated to the boundary

interface through the standard characteristic

approach, then manipulated to represent the effect

of the physical system on the flow-field quantities.

Numerical Schemes − To allow time-accurate

simulation of moving bodies resulting in rotation,

translation, or deformation of the grids, the

unsteady grid metrics are calculated and included

in the equations of motion. Time-accurate simula-

tions are possible for a range of time scales. For

high- frequency response, an explicit Runge-Kutta

solver is available. For large time scales, a Global

Newton algorithm has proven to provide time accu-

racy for large CFL numbers.5

The global Newton algorithm is an approach

which stabilizes the solution and improves time

accuracy by placing the entire unsteady transport

equations on the right-hand side of the matrix

solver and iterating within a time step over all of the

zones. Thus, the interface boundaries are brought

up to the new time level, along with the interior flow

field, resulting in an essentially implicit treatment of

the boundaries.

In addition to fast, time-accurate simulations,

the global Newton algorithm has been shown to

improve steady-state convergence.6 Other meth-

ods are also available to improve steady-state con-

vergence, including grid sequencing and local time

stepping. The interaction of the global Newton

algorithm with convergence acceleration tech-

niques and all of the solver options has not been

fully explored. The current recommendation is to

use the point Jacobi matrix inversion method with

the global Newton for constant time step and with-

out any other acceleration technique.

Equations and Discretization − WIND

includes the flexibility to solve various approxima-

tions of the full Navier-Stokes equations, including

parabolized Navier-Stokes (PNS), Euler, and thin-

layer Navier-Stokes (TLNS). The multi-species

transport equations may also be solved. The addi-

tional species continuity equations are solved, fully

coupled with the Navier-Stokes equations. Several

turbulence model equations can be solved in an

uncoupled mode. In general, the modular structure

of the code is such that adding an additional or dif-

ferent set of equations to solve is fairly straightfor-

ward.

The equations in WIND are written in delta form

using a node-centered finite-volume approach.

Specification of the discretization of the equations

of motion on the right-hand side is modular and

flexible. The user may specify central difference,

Coakley7 upwind, standard Roe8 upwind, or a

physical Roe upwind for stretched grids.9 Some of

these options allow the user to adjust the spatial

accuracy, through fifth order. Artificial viscosity can

be imposed for any discretization scheme, if

desired.

Boundary Conditions − Boundary condition

types are specified using GMAN and are stored in

the grid Common File. Flow conditions associated

with a particular boundary condition, e.g., free-

stream inflow/outflow, are specified in the input

data file. All boundary conditions can be imposed

explicitly, and surface boundary conditions can be

imposed implicitly. As mentioned above, the global

Newton algorithm provides a method for pseudo-

implicit imposition of all boundary conditions

through an iterative update. Boundary conditions

may be imposed on any full or partial grid plane

within a zone.

At free boundaries, i.e., inflow or outflow, char-

acteristic information is imposed consistent with

the Roe discretization scheme. Inflow conditions

may be imposed uniformly or may vary across the

boundary. For downstream, internal flow bound-

aries, the static pressure, mass-averaged Mach

number, or mass flow rate may be imposed.

At solid boundaries, the standard slip or no-slip

boundary conditions may be imposed. For no-slip

boundaries, the user may specify adiabatic, con-

stant temperature or a temperature variation.

8
American Institute of Aeronautics and Astronautics

Specialized boundary conditions may also be

imposed to simulate the effects of a screen, an

actuator disk, a hole with bleed or blowing, and a

compressor face.

Physical Models − Turbulence models are

solved uncoupled from the flow equations to allow

maximum modularity. Several models are avail-

able. An algebraic model combines the Baldwin-

Lomax10 model near a solid surface and the P. D.

Thomas11 model for free shear layers. Two one-

equation turbulence models are available: Baldwin-

Barth12 and Spalart-Allmaras.13 Finally, the user

may select one of two, two-equation turbulence

models: a k-ε model or the SST model.14,15 The

SST model is a hybrid model which blends the

solution of the k-ω model near a solid surface and

the k-ε model elsewhere.

In addition to perfect gas simulations, WIND

can predict real-gas effects using either finite-rate

chemistry or a frozen chemistry approximation.

Several standard chemistry databases are pro-

vided, or the user may supply a database of spe-

cies properties and reaction rates. The species

mass fraction transport equations are solved cou-

pled with the flow equations.

Solution Process

The solution process using any conventional

time-marching Navier-Stokes code is basically the

same, and may be divided into the following steps:

• Create a grid file

• Set boundary conditions

• Set initial conditions

• Set program control parameters

• Run the code

• Monitor convergence

• Examine the results

The mechanics of doing each of these steps

may vary from code to code, however. The follow-

ing sections briefly describe how these steps are

typically accomplished when running the WIND

code. Additional details may be found in the WIND

User' s Guide.

Create a Grid File

WIND uses externally generated, structured

computational grids. The grids for all the zones

must therefore be created before running the

WIND code, using any convenient grid generation

code. WIND expects the grids to be stored in a

Common Grid (.cgd) file which is in Common File

format described earlier. Since most grid genera-

tion codes do not produce .cgd files directly, a sep-

arate utility called cfcnvt is included with WIND that

may be used to convert a variety of file formats,

including PLOT3D files, to Common Files. A typical

procedure is thus to first store the grid file as a

PLOT3D xyz file, which is an available option in

most general-purpose grid generation codes, and

convert it to a .cgd file using cfcnvt.

Another utility included with WIND, called

GMAN, may be used to examine the .cgd file,

assessing grid quality and listing information about

the points and zones in the grid. GMAN may also

be used to generate the flow-field (i.e., interior) grid

itself, given the grids on the zonal boundaries. The

GMAN User' sGuide contains detailed descriptions

of these and others capabilities.

Set Boundary Conditions

With most CFD codes, boundary conditions are

completely specified in an input data file. With

WIND, however, setting boundary conditions may

be thought of as a two-step process. The first step

in setting boundary conditions is to label each

boundary of each zone with the type of boundary

condition to use, such as "viscous wall," "confined

outflow," or "coupled." This is done using GMAN,

and the information is stored in the Common Grid

file. Boundary condition types may be specified for

all or part of a boundary, allowing multiple bound-

ary condition types on a single boundary.

Zonal interface boundaries do not have to be

explicitly labeled by the user. GMAN can automati-

cally examine the grid to find them and determine

the zones involved, compute the geometric inter-

polation factors, and store the information in the

.cgd file. GMAN is also used to cut holes and gen-

erate interpolation coefficients for overlapping (chi-

mera) boundaries. The process is currently not

completely automated for chimera boundaries.

9
American Institute of Aeronautics and Astronautics

The second step in setting boundary conditions

is to define any values needed for a particular

boundary condition, such as an exit pressure or a

bleed rate. This information is specified in the Input

Data (.dat) file.

The Input Data file is a user-created ASCII file

containing information about the flow problem and

how the WIND code is to be run. With many CFD

codes, including NPARC, this information is speci-

fied using FORTRAN namelist and/or formatted

input. With WIND, the input is specified using

descriptive keywords. In addition to boundary con-

dition information, the .dat file specifies the proce-

dure for defining initial conditions and sets various

control parameters, as discussed in the following

two sections.

Set Initial Conditions

The usual procedure with WIND is to start a new

problem by initializing the flow conditions at each

grid point to the values specified by the user in the

Input Data file via the FREESTREAM keyword.

Other options allow different values to be used in

different zones, a boundary layer to be added along

a specified surface in a zone, and reinitialization of

the flow in specified zones after a restart.

Set Program Control Parameters

Several keywords may be specified in the Input

Data file to control the physical and numerical

models to be used when running the code. Some

of the options available are:

• Dimensionality (3D, 2D, axisymmetric, quasi-

3D)

• Flow equations (Euler, Navier-Stokes, thin-

layer Navier-Stokes, parabolized Navier-

Stokes)

• Turbulence model (algebraic, one-equation,

two-equation)

• Gas model and chemistry (perfect gas, frozen

chemistry, equilibrium air, finite-rate

chemistry)

• Implicit operator (explicit, scalar implicit, block

implicit, explicit or implicit boundary condi-

tions)

• Explicit operator (central, Coakley upwind,

Roe upwind; Physical; 1st to 5th order)

• Damping schemes (2nd/4th order, boundary

damping, TVD)

• Time-stepping (iterations and cycles, CFL#,

Runge-Kutta)

• Convergence acceleration (grid sequencing,

local CFL#, ramped CFL#)

• Integrated convergence parameters (forces,

moments, mass flow)

Run the Code

WIND is invoked using a Unix script which links

appropriate files and either starts WIND interac-

tively or sets up a batch job. WIND can also be run

in parallel mode, simultaneously using multiple

systems connected via a network as though they

were a single computer. These systems are typi-

cally workstation-class machines and need not be

all from the same vendor.

In parallel mode WIND uses a master-worker

approach. The user specifies the names of the par-

ticipating worker systems via a multi-processing

control (.mpc) file. (Note that the master may also

be a worker.) The user must, of course, have

accounts on the master and worker systems, and

remsh/rsh access to the workers must be allowed

via an /etc/hosts.equiv or .rhosts file. The PVM

software needed for parallel operation, and the

WIND code itself, is copied from the master to tem-

porary directories on the workers. Thus, the worker

systems need not have any of the required soft-

ware installed.

There are a couple of very convenient features

built into the script used to run WIND. The first

allows a WIND run to be stopped at (or more

exactly, shortly after) a pre-determined time

through the use of an NDSTOP file. This is useful

when an overnight run must be stopped before

morning, when the workstations being used will be

needed for interactive work. The second allows the

user to break a long run into "sub-runs" by writing a

script called wind_post containing tasks to perform

between each run. This is useful, for example,

when the complete solution is to be saved at vari-

10
American Institute of Aeronautics and Astronautics

ous time intervals in an unsteady problem. This

can also now be done via the spawn command,

thus avoiding losing one’s place in a queue. Details

on the use of these features are in the WIND

User' s Guide.

Monitor Convergence

Monitoring and properly assessing conver-

gence levels during a WIND run are critical to

obtaining meaningful, useful results. WIND users

may track convergence by following residuals and/

or integrated forces, moments, and mass flow. For

engineering applications, the recommended con-

vergence monitoring method is the tracking of inte-

grated quantities of interest. For example, if a wing/

body geometry is being modeled to determine

drag, the integrated drag should be monitored, and

some reasonable bounds on drag oscillations

should be used as the convergence criterion.

The solution residuals are included in the List

Output (.lis) file. For each iteration and zone, WIND

prints the zone number, cycle number, location of

the maximum residual, equation number for which

the maximum residual occurred, the value of the

maximum residual, and the L2-norm of all the

residuals for all the equations over all the points in

the zone. The integrated parameters that are cho-

sen in the Input Data file will also be listed in the .lis

file. The integration may be done over a number of

specified three-dimensional regions and/or two-

dimensional areas of a computational surface.

A time history tracking capability is also built into

WIND, in which computed values at specified grid

points in specified zones may be periodically writ-

ten to a separate Time History (.cth) file. Currently,

the only values that may be tracked with this option

are Mach number, static pressure, static tempera-

ture, and the three Cartesian velocity components.

Utilities are included with the WIND code that

allow plotting of the residuals and/or integrated

quantities in the .lis file, and the values stored in

the .cth file.

Examine the Results

All flow-field results computed by WIND, includ-

ing the mean flow variables, turbulence model vari-

ables, and chemistry variables, are written into a

Common File called a Common Flow (.cfl) file. The

CFPOST utility included with the WIND distribution

is a post-processing tool for examining the con-

tents of the .cfl file. With CFPOST, a wide variety of

variables and integrated values may be computed.

Listings may be sent to the screen or to a file, and

PLOT3D files may be created for other plotting

packages and post-processors. CFPOST can also

be used to create x-y, contour, and vector plots

directly, with PostScript output. Commands are

available to precisely specify the information of

interest, the domain of interest, and the units in

which the results are to be presented. Detailed

information may be found in the CFPOST User' s

Guide.

Summary

The steps in the generalized solution process

listed earlier may be restated specifically for the

WIND code as follows:

• Create a grid file using any convenient grid

generation software, saving the file in

PLOT3D xyz format.

• Convert the PLOT3D xyz file to a Common

Grid (.cgd) file using cfcnvt.

• Store the boundary condition types and zonal

connectivity data in the .cgd file using GMAN.

• Prepare the Input Data (.dat) file, defining

boundary condition values, initial conditions,

program control parameters, and integrated

parameters for monitoring convergence.

• For parallel execution, prepare the multi-pro-

cessing control (.mpc) file.

• Run the WIND code using the run script sup-

plied with the code.

• Monitor convergence by examining the resid-

uals and integrated values in the List Output

(.lis) file, and the values in the Time History

(.cth) file if applicable.

• Examine the computed results in the Com-

mon Flow (.cfl) file using CFPOST, creating

PLOT3D files for other post-processing pack-

ages if desired.

11
American Institute of Aeronautics and Astronautics

Example Cases

The three codes on which WIND is based have

been in use for up to 10 years and have been

applied to a wide variety of complex configurations

and flow-fields. Towne and Jones16 recently pub-

lished validation examples using NPARC, and

numerous references can be found on the NPARC

Technical Report Server at:

http://info.arnold.af.mil/nparc/NPARC_TRS/

NPARC_TRS.html.

Recent application of the NXAIR code to

unsteady and moving body simulations by Nichols

and Tramel6 indicate that good agreement with

data can be obtained for time-accurate store sepa-

ration with reasonable turnaround time. NASTD

results published by Mani, et al.15 validate and

compare the turbulence models in NASTD for a

wide range of flow-fields. In addition, Barber, et

al.17 have recently compared the computational

results of five codes, including NPARC and

NASTD, for the prediction of three-dimensional,

supersonic mixing layers.

An extensive validation effort is currently under-

way for the WIND code. Initial comparison of the

WIND code with NPARC and NXAIR are presented

here for transonic turbulent flow in a two-dimen-

sional converging-diverging duct, using the WIND,

NPARC, and NXAIR codes. The geometry is

shown in Fig. 2. The throat height hthr = 0.14435 ft.

This is one of the example cases in the NPARC

validation archive, accessible via the WWW at:

http://info.arnold.af.mil/nparc/

Archive_information.html.

Extensive experimental data are available for

this geometry, at a variety of flow conditions.18-22

For this example case, flow enters the duct at

about M = 0.46, accelerates to just under M = 1.3

slightly downstream of the throat, shocks down to

about M = 0.78, then decelerates and leaves the

duct at about M = 0.51. The total pressure and tem-

perature at the inflow are 19.58 psi and 525.6o R,

respectively, and the backpressure is 16.055 psi.

An 81 × 51 body-fitted computational mesh was

generated algebraically, and is shown in Fig. 3,

with every other grid line removed for clarity. The

same mesh was used with all three codes, with y+<

4 for the first point off of the wall.

Adiabatic no-slip boundary conditions were

used on both the upper and lower walls. The inlet

boundary conditions corresponded to uniform flow

at M = 0.46. A constant static pressure was speci-

fied at the exit boundary. For the first part of the

calculation (2,000 iterations for the WIND and

NPARC codes), the exit pressure was set low

enough to establish supersonic flow throughout the

diverging portion of the duct. The exit pressure was

then raised to the value used in the experiment.

For NXAIR, the flow was intialized to inflow condi-

tions, then run with the specified backpressure for

150 time steps with 3 global Newton iterations per

step and 5 iterations of the Gauss-Seidel matrix

solver per Newton.

The NPARC calculation used the Baldwin-

Lomax turbulence model,10 and the WIND and

NXAIR calculations used the Spalart-Allmaras tur-

bulence model.13 For the most part, each of the

three codes was run using default values for the

various input parameters. No attempt was made to

use the same numerical schemes, smoothing

methods, etc., for the three calculations. The

results of these calculations should therefore not

be used to draw definitive conclusions about the

relative performance of the three codes.

The computed Mach number contours from the

three codes are shown in Figs. 4a-c. The WIND

and NXAIR results show a slightly more well-

defined normal shock than the NPARC results, pri-

marily due to the Roe-like algorithms used in both

Fig. 2. Geometric configuration for converging-

diverging duct.

Fig. 3. Computational mesh for converging-

diverging duct.

hthr
1.4 h thr 1.5 hthr

4.04 hthr 8.65 hthr
x

12
American Institute of Aeronautics and Astronautics

WIND and NXAIR, as opposed to the central differ-

ence algorithm in NPARC. The shock position and

boundary-layer growth, which is critical in deter-

mining shock postion, are nearly identical in all

three simulations.

The computed static pressure distribution along

the top and bottom walls is shown in Figs. 5a-b,

along with the experimental data of Hsieh, Ward-

law, Bogar, and Coakley.23 All three codes give

essentially the same results upstream and down-

stream of the shock. The WIND and NXAIR results

agree a little better with the experimental data in

the diverging part of the duct.

The computed u-velocity profiles at four loca-

tions are compared with the experimental data in

Figs. 6a - d. The data were taken at x/hthr = 1.73,

2.88, 4.61, and 6.34. The computed results are

shown at i = 37, 52, 67, and 73, corresponding to x/

hthr = 1.73, 2.90, 4.58, and 6.20. These are the grid

indices closest to the experimental data locations.

Overall, all the results are similar, with the WIND

and NXAIR results perhaps in slightly better agree-

ment with the experimental data, at least in the core

region.

Conclusion

A joint project, with partners in government,

industry, and academia, has been undertaken

under the auspices of the NPARC Alliance to com-

bine the capabilities of three existing application-

oriented CFD solution systems: NPARC (NASA

LeRC and AEDC), NASTD (Boeing), and NXAIR

(AEDC). This software development project has

presented many challenges in the area of program

management, software management, and commu-

nication. The result is a suite of codes centered on

the WIND flow solver. This system is user-friendly

and flexible, with a GUI interface for boundary con-

dition setting. The WIND code solves the com-

pressible, Navier-Stokes equations with or without

real-gas effects on structured, blocked grid zones

with general zonal interfaces. An example demon-

strating some of the current capabilities of this sys-

tem was presented. WIND code results indicate

good agreement with both NPARC and NXAIR

results. Several capabilities will be added within

the next year to achieve a complete merger of

code capabilities, resulting in significant resource

leveraging for future CFD development.

Acknowledgments

The authors would like to acknowledge the

leadership and vision of management at AEDC,

Fig. 4. Computed Mach contours for converging-

diverging duct.

a. WIND

b. NPARC

c. NXAIR

a. Top wall b. Bottom wall

Fig. 5. Static pressure distribution for converging-diverging duct.

–5.0 –2.5 0 2.5 5.0 7.5 10.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distance from Throat, x/h thr

S
ta

ti
c
 P

re
s
s
u

re
,
p

/p
t

WIND

NPARC

NXAIR

Experiment

–5.0 –2.5 0 2.5 5.0 7.5 10.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distance from Throat, x/h thr

S
ta

ti
c
 P

re
s
s
u

re
,
p

/p
t

WIND

NPARC

NXAIR

Experiment

13
American Institute of Aeronautics and Astronautics

NASA LeRC, and the Boeing Company, especially

Jere Matty, Dr. Joe Shaw, and Dr. Ray Cosner. We

would also like to acknowledge the considerable

technical contribution from the many individuals

who have been involved in this project and the

NPARC Alliance. Finally, we would like to thank

the HPCMP CHSSI program for ongoing support of

this effort relative to scalable parallel processing.

References

1. Cooper, G. K. and Sirbaugh, J. R., “The

PARC Distinction: A Practical Flow Simulator,”

AIAA Paper 90-2002, 1990.

2. Matty, J. J and Shin, J. “The NPARC Alli-

ance: A Progress Report.” AIAA Paper 97-3353,

1997.

3. Power, G. D., Cooper, G. K., and Sirbaugh,

J. R., “NPARC 2.2 – Features and Capabilities,”

AIAA Paper 95-2609, 1995.

4. Bush, R. H., “A Three Dimensional Zonal

Navier-Stokes Code for Subsonic Through Hyper-

sonic Propulsion Flowfields,” AIAA Paper 88-2830,

1988.

–200 0 200 400 600 800 1000 1200
–0.2

0.2

0.6

1.0

1.4

1.8

Velocity, µ, ft/sec

H
e
ig

h
t,

 y
/h
th
r

WIND

NPARC

NXAIR

Experiment

a. x/hthr = 1.73 b. x/hthr = 2.88

c. x/hthr = 4.61 d. x/hthr = 6.34

Fig. 6. u-velocity profiles for converging-diverging duct.

–200 0 200 400 600 800 1000 1200
–0.2

0.2

0.6

1.0

1.4

1.8

Velocity, µ, ft/sec

H
e
ig

h
t,

 y
/h
th
r

WIND

NPARC

NXAIR

Experiment

–200 0 200 400 600 800 1000 1200
–0.2

0.2

0.6

1.0

1.4

1.8

Velocity, µ, ft/sec

H
e
ig

h
t,

 y
/h
th
r

WIND

NPARC

NXAIR

Experiment

–200 0 200 400 600 800 1000 1200
–0.2

0.2

0.6

1.0

1.4

1.8

Velocity, µ, ft/sec

H
e
ig

h
t,

 y
/h
th
r

WIND

NPARC

NXAIR

Experiment

14
American Institute of Aeronautics and Astronautics

5. Tramel, R. W. and Nichols, R. H., “ AHighly-

Efficient Numerical Method for Overset-Mesh Mov-

ing-Body Problems,” AIAA Paper 97-2040, 1997.

6. Nichols, R. H. and Tramel, R. W., “ Applica-

tion of a Highly Efficient Numerical Method for

Overset-Mesh Moving Body Problems,” AIAA

Paper 97-2255, 1997.

7. Coakley, T. J., “ ImplicitUpwind Methods for

the Compressible Navier-Stokes Equations,”

NASA TM-84364, 1983.

8. Roe, P. L., “ ApproximateRiemann Solvers,

Parameter Vectors, and Difference Schemes,”

Journal of Computational Physics, Vol. 43, pp.

357-372.

9. Cain, A. B. and Bush, R. H., “ Numerical

Wave Propagation Analysis for Stretched Grids,”

AIAA Paper 94-0172, 1994.

10. Baldwin, B. S., and Lomax, H., "Thin Layer

Approximation and Algebraic Model for Separated

Turbulent Flows," AIAA Paper 78-257, 1978.

11. Thomas, P. D., “ NumericalMethod for Pre-

dicting Flow Characteristics and Performance of

Nonaxisymmetric Nozzles-Theory,” Langley

Research Center, NASA CR 3147, 1979.

12. Baldwin, B. S. and Barth, T. J., “ A One-

Equation Turbulence Transport Model for High

Reynolds Number Wall-Bounded Flows,” NASA

TM-102847, 1990.

13. Spalart, P. R., and Allmaras, S. R., "A One-

Equation Turbulence Model for Aerodynamic

Flows," AIAA Paper 92-0439, 1992.

14. Menter, F. R., “ ZonalTwo Equation κ-w

Turbulence Models for Aerodynamic Flows,” AIAA

Paper 93-2906, 1993.

15. Mani, M., Ladd, J. A., Cain, A. B. and Bush,

R. H. “ AnAssessment of One-and Two-Equation

Turbulence Models for Internal and External

Flows.” AIAA Paper 97-2010, 1997.

16. Towne, C. E. and Jones, R. R., III., “ Results

and Current Status of the NPARC Alliance Valida-

tion Effort,” AIAA Paper 96-0387, 1996.

17. Barber, T. J., Chiappetta, L. M., DeBonis, J.

R., Georgiadis, N. J., and Yoder, D. A., "An

Assessment of Parameters Influencing the Predic-

tion of Shear Layer Mixing," AIAA Paper 97-2639,

1997.

18. Chen, C. P., Sajben, M., and Kroutil, J. C.,

"Shock Wave Oscillations in a Transonic Diffuser

Flow," AIAA Journal, Vol. 17, No. 10, pp. 1076-

1083.

19. Bogar, T. J., Sajben, M., and Kroutil, J. C.,

"Characteristic Frequencies of Transonic Diffuser

Flow Oscillations," AIAA Journal, Vol. 21, No. 9,

pp. 1232-1240.

20. Salmon, J. T., Bogar, T. J., and Sajben, M.,

"Laser Doppler Velocimeter Measurements in

Unsteady, Separated Transonic Diffuser Flows,"

AIAA Journal, Vol. 21, No. 12, pp. 1690-1697.

21. Sajben, M., Bogar, T. J., and Kroutil, J. C.,

"Forced Oscillation Experiments in Supercritical

Diffuser Flows," AIAA Journal, Vol. 22, No. 4, pp.

465-474.

22. Bogar, T. J., "Structure of Self-Excited

Oscillations in Transonic Diffuser Flows," AIAA

Journal, Vol. 24, No. 1, pp. 54-61.

23. Hsieh, T., Wardlaw A. B. Jr., Bogar, T. J.,

and Coakley, T. J., "Numerical Investigation of

Unsteady Inlet Flowfields," AIAA Journal, Vol. 25,

No. 1, pp. 75-81.

