NASACONTRACTOR REPORT


## CASE FILE <br> COPY

# ANALYSIS AND TESTING OF <br> TWO-DIMENSIONAL SLOT NOZZLE EJECTORS WITH VARIABLE AREA MIXING SECTIONS 

by Gerald B. Gilbert and Pbilip G. Hill

Prepared by
DYNATECH R/D COMPANY
Cambridge, Mass.
for Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1973
:

| 1. Report No. NASA CR-2251 | 2. Government Accesslon No. | 3. Recipient's Catalog No. |
| :---: | :---: | :---: |
| 4. Title and Subtitle <br> "Analysis and Testing of Two-Dimensional Slot Nozzle Ejectors with Variable Area Mixing Sections" |  | 5. Report Date May 1973 |
|  |  | 6. Performing Organization Code |
| 7. Author(s) Gerald B. Gilbert and Philip G. Hill |  | 8. Performing Organization Report No. |
| 9. Performing Organization Name and Address Dynatech R/D Company Cambridge, Massachusetts |  | 10. Work Unit No. |
|  |  | 11. Contract or Grant No. <br> NAS 2-6660 |
| 12. Sponsoring Agency Name and Address <br> National Aeronautics \& Space Administration Washington, D.C. |  | 13. Type of Report and Period Covered Contractor Report : |
|  |  | 14. Sponsoring Agency Code |
| 15. Supplementary Notes |  |  |
| 16. Abstract <br> Finite difference computer techniques have been used to calculate the detailed performance of air to air two dimensional ejectors with symmetric variable area mixing sections and co-axial converging primary nozzles. The analysis of the primary nozzle assumed correct expansion of the flow and is suitable for subsonic and slightly supersonic velocity levels. The variation of the mixing section channel walls is assumed to be gradual so that the static pressure can be assumed uniform on planes perpendicular to the axis. An $x-\psi^{2}$ coordinate system is used in the solution of the momentum and energy equations to remove a singularity condition at the wall. <br> A test program was run to provide two-dimensional ejector test data for verification of the computer analysis. A primary converging nozzle with a discharge geometry of $0.125^{\prime \prime} \times 8.0^{\prime \prime}$ was supplied with 600 SCFM of air at about 35 psia and $180^{\circ} \mathrm{F}$. This nozzle was combined with two mixing section geometries with throat sizes of $1.25^{\prime \prime} \times 8.0^{\prime \prime}$ and $1.875^{\prime \prime} \times 8.0^{\prime \prime}$ and was tested at a total of 11 operating points. <br> The comparisons of wall static pressures, centerline velocity, centerline temperature, and velocity profiles between experimental and analytical results at the same flow rate were generally very good. |  |  |
| 17. Key Words (Suggested by Author(s)) <br> Ejector <br> Computer Program <br> Finite Difference <br> Experimental | 18. Distribution | SSIFIED - UNLIMITED |
| 19. Security Classif. (of this report) Unclassified | 20. Security Classif. (of this page) Unclassified | 21. No. of Pages  <br> 129 22. Price <br> $\$ 3.00$ |

*For sale by the National Technical Information Service, Springfield, Virginia 22151

Page
iv
vi
SUMMARY ..... 1
INTRODUCTION ..... 3
NOMENCLATURE ..... 5
ANALYSIS OF TWO-DIMENSIONAL JET MIXING ..... 9
3. 1 Introduction ..... 9
3.2 Basic Conservation Equations ..... 10
3.3 Dimensionless Groups ..... 12
3.4 Evaluation of the Eddy Viscosity ..... 14
3.5 Boundary Conditions ..... 15
3.6 Finite Difference Procedure ..... 16
TEST PROGRAM ..... 19
4.1 Experimental Apparatus ..... 19
4.1.1 Two-Dimensional Ejector ..... 19
4.1.2 Facilities for Ejector Tests ..... 20
4. 2 Instrumentation and Data Reduction ..... 21
4.2.1 Instrumentation ..... 21
4.2.2 Data Reduction Procedures ..... 22
4.2.3 Experimental Uncertainty ..... 23
4.3 Test Results ..... 25
COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS ..... 26
5.1 Test Conditions and Mass Flows ..... 26
5.2 Mixing Section Wall Static Pressure Variation ..... 27
5.3 Centerline Velocity and Temperature Variations ..... 29
5.4 Velocity Profiles and Temperature Profiles ..... 29
5.5 Sensitivity of Computer Analysis ..... 30
5.5.1 Eddy Viscosity ..... 31
5.5.2 Flow Rate ..... 32
6 CONCLUSIONS ..... 33
APPENDIX A - Basic Equations of Motion ..... 34
APPENDIX B - Finite Difference Equations ..... 39
APPENDIX C - Solution Procedure ..... 47
APPENDIX D - Computer Program ..... 55
REFERENCES ..... 91
TABLES ..... 92
FIGURES ..... 98

## LIST OF FIGURES

Figure Title ..... Page
1 Assembly Sketch of Two Dimensional Ejector Test Rig ..... 98
2 . Picture of Primary Nozzle ..... 99
3 Picture of Nozzle Positioned in the Mixing Section ..... 100
4 Picture of Mixing Section Discharge ..... 101
5 Extended Inlet on Ejector Test Rig ..... 102
6 Schematic of Experimental Layout ..... 103
7
Picture of Right Side of Ejector Rig ..... 104
8
Picture of Left Side of Ejector Rig ..... 105
9
Mixing Section Static Pressures ..... 106
10 Mixing Section Traverse Locations ..... 107
Comparison of Experimental and Analytical Mass Flow Rates ..... 108
for Runs 1, 2, 3, and 5
Comparison of Experimental and Analytical Mass Flow Rates ..... 109
for Runs 6, 7, 9, and 10
Wall Static Pressure Distributions for Mixing Section with ..... 110
1.25" Throat
Wall Static Pressure Distributions for Mixing Section with ..... 111
1.875" Throat15Maximum Velocities for 1.25" Throat Mixing Section112
Maximum Velocities for 1.875" Throat Mixing Section ..... 113
Velocity Profiles for Run 1 for 1.25 " Throat Mixing Section ..... 114
Velocity Profiles for Run 2 for 1.25" Throat Mixing Section ..... 115
19a, 19b Velocity Profiles for Run 3 for 1.25" Throat Mixing Section ..... 116-117
20 Velocity Profiles for Run 5 for 1.25" Throat Mixing Section ..... 118
21 Velocity Profiles for Run 6 for 1.875" Throat Mixing Section ..... 119
22 Velocity Profiles for Run 7 for $1.875^{\prime \prime}$ Throat Mixing Section ..... 120
23a, 23b Velocity Profiles for Run 9 for 1.875" Throat Mixing Section ..... 121-122
24
Velocity Profiles for Run 10 for $1.875^{\prime \prime}$ Throat Mixing Section ..... 123
Temperature Profiles for Run 3 for $1.25^{\prime \prime}$ Throat Mixing Section ..... 124
Temperature Profiles for Run 9 for 1.875" Throat Mixing Section ..... 125

## LIST OF FIGURES (continued)

Figure Title Page
27 Wall Static Pressure Sensitivity to Mass Flow and Eddy Viscosity ..... 126 for Run 3 and Run 6
28
Centerline Velocity and Temperature Sensitivity to Eddy Viscosity ..... 127for Run 3 and Run 6
29 Velocity Profile Sensitivity to Eddy Viscosity for Run 3 and Run 6 ..... 128at $x=7.0^{\prime \prime}$
30 Mixing Section Throat Static Pressure As A Function of Throat ..... 129 Mach Number
B-1 Definition of Grid Lines for Finite Difference Solution ..... 39
B-2 Diagrams of Explicit and Implicit Solutions ..... 40
B-3 Implicit Finite Difference Term Definition ..... 41
D-1 Computer Program Flow Chart ..... 56
D-2 Computer Program Listing ..... 69

## LIST OF TABLES

Table Page
1
Mixing Section Dimensions for 1.875" Throat Size ..... 92
2 Variation of Individual Integrated Traverse Mass Flows ..... 93 for Each Test Run
3
Location of Test Data for Each Test Run ..... 94
4 Summary of Experimental Test Conditions and Flow Rates ..... 95
5 Comparison of Experimental and Analytical Flow Rates ..... 96
6
Tabulation of Static Pressures for Runs 4, 8 and 11 ..... 97
C-1 Matrix Form of Equation C-1 Designated as Equation C-8 ..... 50
C-2 Matrix Form of Equation C-8 with Simplified Terms Designated ..... 51 as Equation C-13
D-1 Input Data Example for Runs 3 and 6 ..... 65

# ANALYSIS AND TESTING OF TWO-DIMENSIONAL SLOT NOZZLE EJECTORS WITH VARIABLE AREA MIXING SECTIONS 

By

Gerald B. Gilbert, Philip G. Hill

## SUMMARY

Finite difference computer techniques have been used to calculate the detailed performance of air to air two dimensional ejectors with symmetric variable area mixing sections and co-axial converging primary nozzles. The successful completion of this program completes a step in the development of a computer program to analyze the ejector of the augmentor wing lift augmentation system for STOL aircraft.

The finite difference computer program analyzes two dimensional mixing in converging-diverging jets. The analysis of the primary nozzle assumes correct expansion of the flow and is suitable for subsonic and slightly supersonic velocity levels. The variation of the mixing section channel walls is assumed to be gradual so that the static pressure can be assumed uniform on planes perpendicular to the axis. An $x-\psi^{2}$ coordinate system is used in the solution of the momentum and energy equations to remove a singularity condition at the wall. Different assumptions for eddy viscosity are made for each distinctly different region of the flow based on information available in the literature.

A test program was run to provide two-dimensional ejector test data for verification of the computer analysis. Geometry and primary air operating conditions similar to a typical augmentor wing ejector were selected for the tests. A primary converging nozzle with a discharge geometry of $0.125^{\prime \prime} \times 8.0^{\prime \prime}$ was supplied with 600 SCFM of air at about 35 psia and $180^{\circ} \mathrm{F}$. This nozzle was combined with two mixing section geometries with throat sizes of $1.25^{\prime \prime} \times 8.0^{\prime \prime}$ and $1.875^{\prime \prime} \times 8.0^{\prime \prime}$ and was tested at a total of 11 operating points. Secondary flow was varied by adding three steps of increased restriction to the ejector discharge. For each test mass flow rate, wall static pressures and several velocity traverses were recorded for comparison with analytical results.

The comparisons of wall static pressures, centerline velocity, centerline temperature, and velocity profiles between experimental and analytical results at the same flow rate were generally very good. The computer program presented in this report accurately predicts the performance of the simple two-dimensional ejectors and thereby successfully completes the objectives of this program.

## Section 1

## INTRODUCTION

### 1.1 Background

The augmentor wing concept under investigation by NASA for STOL aircraft lift augmentation is powered by an air to air ejector. The wing boundary layer is drawn into the deflected double flap augmentor channel at the trailing edge of the wing and is pressurized by a high velocity slot jet which is oriented at an angle to the augmentor channel. To predict the performance and to optimize the design of the complete augmentor wing, an analytical method is needed to predict the performance of the air ejector which powers the augmentor flap section.

Under contract NAS2-5845 a computer analysis was developed for single nozzle axisymmetric ejectors with variable area mixing sections using integral techniques ${ }^{(1)}$. The ejectors of primary interest in that program and earlier programs were high entrainment devices using small amounts of supersonic primary flow to pump large amounts of low pressure secondary flow. Good agreement was achieved between analytical and experimental results.

The integral analytical techniques used to analyze the axisymmetric ejector configurations are also valid for the analysis of two dimensional ejectors. However, the augmentor wing configuration may include asymmetric geometries, inlet flow distortions, wall slots, and primary nozzles that are at large angles to the axis of the augmentor mixing section. The integral techniques are not easily adaptable to these more complex flows. Finite difference techniques can be used to analyze these more complex flow geometries at the expense of increased computer time.

### 1.2 Objectives of Program

The specific objectives of this investigation are the following:
(1) to develop a finite difference computer program for the analysis of two-dimensional, air ejectors with symmetric variable area mixing sections and with co-axial converging primary nozzles.
(2) to obtain test results with two-dimensional ejector configurations so that the analytical methods can be checked.

By modifying the present analysis additional complicating features of the actual augmentor wing ejector may be incorporated into the computer program until the complete augmentor wing ejector can be successfully analyzed.

## Section 2

## NOMENCLATURE

| ${ }^{\text {A }}$ N | Nozzle discharge area |
| :---: | :---: |
| $A_{n-1}$ | Coefficient appearing in the finite difference equations 26 and 36 |
| $B_{n-1}$ | Coefficient appearing in the finite difference equations 26 and 36 |
| $\bar{C}_{p}$ | Time average specific heat at constant pressure |
| $\mathrm{C}_{\text {po }}$ | Specific heat at constant pressure evaluated at a reference temperature $\mathrm{T}_{\mathrm{o}}$ |
| $\mathrm{C}_{\mathrm{p}}^{*}$ | Dimensionles's constant pressure specific heat, $\frac{\mathrm{C}_{\text {po }}}{}$ $(\gamma-1) \mathrm{M}_{\mathrm{ir}}{ }^{2}$ |
| $\mathrm{C}_{\mathrm{L}}$ | Eckert number, $\frac{\overline{T_{w r}}}{\mathrm{~T}_{\mathrm{o}}}-1$ |
| $\mathrm{C}_{\mathrm{N}}$ | Nozzle discharge coefficient |
| $\mathrm{C}_{\mathrm{n}-1}$ | Coefficient appearing in the finite difference equations 26 and 36 |
| $\mathrm{D}_{\mathrm{n}-1}$ | Coefficient appearing in the finite difference equations 26 and 36 |
| E | Dimensionless eddy viscosity, $\frac{\epsilon}{\nu_{o}}$ |
| $\overline{\mathrm{k}}$ | Time average thermal conductivity |
| $\mathrm{k}_{\mathrm{o}}$ | Thermal conductivity evaluated at $\mathrm{T}_{\mathrm{o}}$ |
| k* | Dimensionless thermal conductivity, $\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{o}}}$ |
| $\mathrm{g}_{0}$ | Dimensional Constant, $32.2 \mathrm{lbm}-\mathrm{ft} / \mathrm{lbf}-\mathrm{sec}^{2}$ |
| $\ell_{\mathrm{m}}$ | Prandtl mixing length $\quad \ell \quad \mathbf{u}$ |
| $L_{m}$ | Dimensionless mixing length, $\frac{\mathrm{m}_{0} \mathrm{o}}{\nu_{\mathrm{o}}}$ |
| m | Node points along a streamline |
| n | Streamline designation |
| $\mathrm{M}_{\text {ir }}$ $\mathbf{p}_{\text {b }}$ | Dimensionless Mach number, $\frac{u_{0}}{\left(\gamma \mathrm{RT}_{\mathrm{o}}\right)^{1 / 2}}$ <br> Barometric pressure |


| $\mathrm{p}_{\mathrm{N}}$ | Nozzle pressure |
| :---: | :---: |
| $\overline{\mathrm{p}}$ | Time average static pressure |
| $\mathrm{P}_{\mathrm{rt}}$ | Turbulent Prandtl number, $\frac{\epsilon}{\epsilon_{H}}$ |
| $\mathrm{P}_{\text {ro }}$ | Prandtl number, $\frac{u_{o} C_{p o}}{k_{o}}$ |
| P | Dimensionless pressure, $\frac{\overline{\mathrm{p}}}{\mathrm{l} / 2 \rho_{\mathrm{o}} \mathrm{u}_{\mathrm{o}}{ }^{2}}$ |
| q | Heat Transfer |
| ${ }^{\text {q }}$ T | Turbulent heat transfer, $\overline{(\rho \mathrm{v})}{ }^{\prime} \mathrm{T}$ ' |
| R | Gas constant |
| $\mathrm{T}_{\mathrm{a}}$ | Atmospheric temperature |
| $\overline{\mathrm{T}}$ | Time average temperature |
| T' | Instantaneous fluctuating temperature |
| $\mathrm{T}_{\mathrm{j}}$ | Jet temperature at the nozzle exit plane |
| To | Flow reference temperature |
| $\mathrm{T}_{\mathrm{N}}$ | Nozzle temperature |
| $\mathrm{T}_{\mathrm{wr}}$ | Wall reference temperature |
| $\overline{\mathbf{u}}$ | Time averaged velocity in x -direction |
| $\mathbf{u}^{\prime}$ | Instantaneous fluctuating x component of velocity |
| $u_{0}$ | Jet centerline velocity at the nozzle exit plane |
| $\mathrm{u}_{2, \mathrm{n}}$ | Unknown velocity at the $\mathrm{n}^{\text {th }}$ grid point |
| u | Dimensionless velocity in x-direction, $\frac{\mathrm{u}}{\mathrm{u}_{\mathrm{o}}}$ |
| u* | Friction velocity, $\frac{\left(\tau_{w}\right)^{1 / 2}}{\rho}$ |
| v | Time averaged flow velocity in y -direction |


| $\mathrm{v}^{\prime}$ | Instantaneous fluctuating y -component of velocity |
| :---: | :---: |
| $\mathrm{W}_{\mathrm{m}}$ | Mixing section total flow rate |
| $\mathrm{w}_{\mathrm{n}}$ | Nozzle flow rate |
| $\mathrm{W}_{\mathrm{s}}$ | Secondary flow rate |
| x | Space co-ordinate in the axial direction $u_{0} x$ |
| X | Dimensionless space co-ordinate in the axial direction, $\frac{\nu_{0}}{\nu_{0}}$ |
| $\Delta \mathrm{X}$ | Step size in x -direction |
| y | Space co-ordinate perpendicular to axial direction |
| Y | Dimensionless space co-ordinate perpendicular to axial direction, $\frac{\nu_{0}}{\nu_{0}}$ |
| $\mathrm{y}_{\mathrm{w}}$ | Duct half width or duct radius |
| $\mathrm{y}^{+}$ | Dimensionless wall co-ordinate $\frac{\mathrm{y} \mathrm{u}^{*}}{\nu}$ |
| $\alpha$ | Constant, unity for axisymmetric flow and zero for twodimensional flow |
| $\gamma$ | Ratio of specific heat, $\frac{\overline{\mathrm{C}}_{p}}{\overline{\mathrm{C}}_{\mathrm{p}}}$ |
| $\psi$ | Transformed co-ordinate defined by equation 8 |
| $\psi_{s}$ | Regular stream coordinate |
| $\psi^{*}$ | Dimensionless $\psi$ co-ordinate $\psi^{*} \stackrel{2}{=} \frac{\psi^{2}}{\nu_{0} \rho_{0}}$ for two-dimensional flow |
| $\bar{\rho}$ | Time averaged fluid density |
| $\rho_{0}$ | Fluid density evaluated at a reference temperature $\mathrm{T}_{\mathrm{o}}$ |
| $\rho^{*}$ | Dimensionless fluid density |
| $\bar{\mu}$ | Time averaged absolute viscosity |
| $\mu_{0}$ | Absolute viscosity evaluated at a reference temperature $\mathrm{T}_{0}$ |
| $\mu^{*}$ | Dimensionless absolute viscosity, $\frac{\bar{\mu}}{\mu_{0}}$ |
| $\tau$ | Mean average shear stress |

Turbulent shear stress, $\overline{(\rho v)^{\prime} u^{\prime}}$
Local wall shear stress
Eddy viscosity
Eddy conductivity
Dimensionless temperature $\frac{\mathrm{T}-\mathrm{T}_{\mathrm{o}}}{\mathrm{T}_{\mathrm{wr}}-\mathrm{T}_{\mathrm{o}}}$
Kinematic viscosity at local temperature
Reference kinematic viscosity evaluated at a reference temperature $T_{o}$
Local wall boundary layer thickness or jet half width
Dimensionless boundary layer thickness, $\frac{u_{0} \delta}{v_{0}}$
Mixing length constant
Mean value of dissipation

## ANALYSIS OF TWO-DIMENSİONAL JET MIXING

### 3.1 Introduction

This section is concerned with the essential physical features of a computation model for plane two-dimensional jet mixing in converging-diverging jets. A finitedifference computer program has been developed for treating the mixing of two parallel and compressible air streams, allowing for at least one of them to be supersonic. In all cases, the nozzle expansion is assumed "correct", i. e. nozzle exit plane pressure is matched to the ambient pressure at that station. Thus, expansion waves and shocks at the nozzle exit plane are assumed to be absent. Even though the correct expansion assumption may not be realized in a practical case, the downstream flow field will not likely be sensitive to small degrees of over - or under-expansion. The flows considered include compound flows of supersonic and subsonic streams; however, no provision is made for compound choking which may occur with an appropriate transverse distribution of Mach number. Such a condition is amenable to analytical treatment under simplified circumstances, but has not been encountered in experimental tests carried out so far.

This development is restricted to symmetric jet mixing in which the high speed jet is located on the axis of the channel and no provision is made for blowing or suction along the channel walls. The variation in channel geometry along the axis is assumed gradual, so that wall curvature is neglected and, on all planes normal to the axis, the pressure is assumed uniform.

In most calculations performed with this method to date, the velocity distribution at the nozzle exit plane was assumed to be rectangular, i.e., the wall boundary layer has been assumed to have zero thickness at that point; the initial thickness of the jet-secondary stream shear layer has also been assumed to be zero. This requirement is not necessary, however, and in general any initial distribution of velocity in the initial plane is permissible, under the assumption that pressure distribution across the plane is uniform.

Although previous work ${ }^{(1)}$ has amply demonstrated that integral methods are capable of predicting symmetric jet mixing of compressible flow in jets, the finite difference method has been chosen for this problem. The finite difference method has
advantages relative to the integral method of much greater flexibility in allowable flow inlet conditions, and wall boundary conditions, e.g., the use of wall jets or wall suction. Further the finite difference method offers the considerable advantage of mathematical precision in determining the overall consequences of any particular physical hypothesis regarding the shear stress distribution. With the integral method, the mathematical approximation due to the formation of integrals may contribute uncertainty in flow prediction in addition to the uncertainty introduced by a lack of precise physical knowledge. Thus, in developing a model to handle a certain class of flows, it is advantageous to have a method which is relatively precise mathematically, so that the effects of physical uncertainties may be assessed relatively clearly. The finite difference method is however, quite costly in its requirement for computer time. Further, as experience has shown, considerable care is required in adjusting the computation grid such that spacings are appropriately small in the region of the wall, and in any part of the flow where velocity gradients are quite large.

### 3.2 Basic Conservation Equations

In stream-wise coordinates, the momentum and energy equations ${ }^{(2)}$ for the plane two-dimensional flow are:

$$
\begin{align*}
& \bar{u} \frac{\partial \bar{u}}{\partial \mathrm{x}}=-\frac{1}{\bar{\rho}} \frac{\mathrm{~d} \overline{\mathrm{p}}}{\mathrm{~d} x}+\overline{\mathrm{u}} \frac{\partial \tau}{\partial \psi_{\mathrm{s}}}  \tag{1}\\
& \overline{\mathrm{u}} \partial\left(\overline{\mathrm{C}}_{\mathrm{p}} \overline{\mathrm{~T}}\right)  \tag{2}\\
& \partial \mathrm{x} \tag{3}
\end{align*}=\frac{\bar{u}}{\overline{\bar{\rho}}} \frac{\mathrm{~d} \overline{\mathrm{p}}}{\mathrm{dx}}+\overline{\mathrm{u}}^{\frac{\partial q}{\partial \psi_{\mathrm{S}}}}+\frac{\Phi}{\overline{\bar{\beta}}} .
$$

in which $\bar{u}$ is the velocity component in the $x$ or principal flow direction, $\bar{p}$ is the static pressure, $\bar{\rho}$ the density and $\overline{\mathrm{T}}$ is the temperature of the fluid. Using the eddy viscosity assumption, the mean average shear stress and heat transfer are defined by:

$$
\begin{equation*}
\tau=\bar{\mu} \frac{\partial \bar{u}}{\partial \mathbf{y}}-\overline{(\rho v)^{\prime} u^{\prime}}=(\bar{\mu}+\bar{\rho} \epsilon) \frac{\partial \bar{u}}{\partial \mathbf{y}} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
q=\bar{k} \frac{\partial \bar{T}}{\partial y}-\bar{C}_{p} \overline{(\rho v)^{\prime} T^{\prime}}=\left(\bar{k}+\frac{\bar{\rho}_{p} \epsilon}{P_{r t}}\right) \frac{\partial \bar{T}}{\partial y} \tag{5}
\end{equation*}
$$

in which $\epsilon$ is the kinematic eddy viscosity.
In developing the finite difference solution to this problem, the stream-wise coordinate system was attractive, not only in terms of the simplicity of the governing equations but also for possible development as a design procedure, in which the flow field pressure distribution could be specified and the required wall geometry determined, non-interatively, once the solution is obtained in stream coordinates. However, the difficulty with the stream wise coordinate is that it introduces a singularity in the governing equations in the vicinity of the wall. Given the definition of the stream function,

$$
\begin{equation*}
\frac{\partial \psi_{\mathbf{s}}}{\partial \mathrm{y}}=\bar{\rho} \overline{\mathbf{u}} \tag{6}
\end{equation*}
$$

it can be seen that the gradient

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial \psi_{S}}=\frac{1}{\bar{\rho} \bar{u}} \frac{\partial \bar{u}}{\partial y} \tag{7}
\end{equation*}
$$

becomes undefined at the wall where the value of $\bar{u}$ approaches zero. The singularity can be removed as Denny ${ }^{(3)}$ has shown by using the transformation

$$
\begin{equation*}
\frac{\partial \psi^{2}}{\partial y}=\bar{\rho} \bar{u}, \frac{\partial \psi}{\partial y}=\frac{\bar{\rho} \bar{u}}{2 \psi}, \text { and } \frac{\partial \bar{u}}{\partial \mathrm{y}}=\frac{\bar{\rho} \bar{u}}{2 \psi} \frac{\partial \bar{u}}{\partial \psi} \tag{8}
\end{equation*}
$$

instead of conventional stream function definition in which case the limiting value of the gradient $\frac{\partial \bar{u}}{\partial \psi} \quad$ is finite and higher derivatives also exist. With this transformation then, the equations of motion may be written.

$$
\begin{equation*}
\overline{\mathrm{u}} \frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{x}}=-\frac{1}{\bar{\rho}} \frac{\mathrm{~d} \overline{\mathrm{p}}}{\mathrm{~d} \mathrm{x}}+\frac{\overline{\mathrm{u}}}{2} \frac{\partial}{\partial \psi}\left[(\bar{\mu}+\bar{\rho} \epsilon) \frac{\bar{\rho} \overline{\mathrm{u}}}{2 \psi} \frac{\partial \overline{\mathrm{u}}}{\partial \psi}\right] \tag{9}
\end{equation*}
$$

$$
\begin{align*}
\overline{\mathrm{u}} \frac{\partial\left(\bar{C}_{p} \bar{T}\right)}{\partial \mathrm{x}}=\frac{\overline{\mathrm{u}}}{\bar{\rho}} \frac{\mathrm{~d} \overline{\mathrm{p}}}{\mathrm{~d} \mathrm{x}} & +\frac{\overline{\mathrm{u}}}{2 \psi} \frac{\partial}{\partial \psi}\left[\left(\overline{\mathrm{k}}+\frac{\bar{\rho}_{\mathrm{C}} \epsilon}{\mathbf{P}_{\mathrm{pt}}}\right) \frac{\bar{\rho} \overrightarrow{\mathrm{u}}}{2 \dot{\psi}} \frac{\partial \bar{T}}{\partial \psi}\right] \\
& +\left(\frac{\bar{\mu}+\bar{\rho} \epsilon}{\bar{\rho}}\right)\left(\frac{\bar{\rho} \overline{\mathrm{u}}}{2 \psi} \frac{\partial \bar{u}^{\psi}}{\partial \psi}\right)^{2} \tag{10}
\end{align*}
$$

where $\psi$ is now the transformed quantity according to Denney ${ }^{(3)}$. The transformation of these equations is shown in Appendix A.

### 3.3 Dimensionless Groups

Before solution of the finite-difference method, these equations are made dimensionless by the following steps.

The velocity $\bar{u}$ is normalized by dividing by the jet centerline velocity $u_{0}$. Also a reference Mach number is defined by:

$$
\begin{equation*}
\mathrm{M}_{\mathrm{ir}}=\frac{\mathrm{u}_{\mathrm{o}}}{\sqrt{\gamma \mathrm{RT}_{\mathrm{o}}}} \tag{11}
\end{equation*}
$$

in which $\mathrm{T}_{\mathrm{o}}$ is a reference temperature and $\gamma$ is the specific heat ratio. A dimensionless temperature parameter is defined by:

$$
\begin{equation*}
\theta=\frac{\overline{\mathrm{T}}-\mathrm{T}_{\mathrm{o}}}{\mathrm{~T}_{\mathrm{wr}}-\mathrm{T}_{\mathrm{o}}} \tag{12}
\end{equation*}
$$

in which $T_{w r}$ is a second arbitrary reference temperature.
The fluid properties variables are made dimensionless by defining:

$$
\begin{array}{ll}
\mathrm{k}^{*}=\frac{\overline{\mathrm{k}}}{\mathrm{k}_{\mathrm{o}}} & \mathrm{P}_{\mathrm{ro}}=\frac{\mu_{\mathrm{o}} \mathrm{C}_{\mathrm{po}}}{\mathrm{k}_{\mathrm{o}}}  \tag{13}\\
\mathrm{C}_{\mathrm{p}}^{*}=\frac{\bar{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{po}}} & \mathrm{E}=\frac{\epsilon}{\nu_{\mathrm{o}}} \\
\mu^{*}=-\frac{\bar{\mu}}{\mu_{\mathrm{o}}} & \rho^{*}=\frac{\bar{\rho}}{\rho_{\mathrm{o}}}
\end{array}
$$

in which $\mathrm{k}_{\mathrm{o}}, \mathrm{C}_{\mathrm{po}}, \mu_{\mathrm{o}}$, and $\rho_{\mathrm{o}}$ are fluid properties at reference values of pressure and temperature and $\mu_{0}=\rho_{0} \nu_{0}$.

In the program the reference values of temperature are

$$
\begin{aligned}
\mathrm{T}_{\mathrm{o}} & =520^{\circ} \mathrm{R} \\
\mathrm{~T}_{\mathrm{wr}} & =560^{\circ} \mathrm{R}
\end{aligned}
$$

and the reference fluid properties are evaluated at $520^{\circ} \mathrm{R}$ and $2 l l 5 \mathrm{psf}$.
The coordinate variables are transformed to:

$$
\begin{align*}
& X=\frac{u_{0} x}{\nu_{0}}  \tag{14}\\
& \psi^{*}=\frac{\psi}{\sqrt{\rho_{0} \nu_{0}}} \tag{15}
\end{align*}
$$

Then in dimensionless form the equations of motion become:

$$
\begin{align*}
& u \frac{\partial u}{\partial X}=-\frac{1}{2 \rho^{*}} \frac{d P}{d X}+\frac{u}{2 \psi^{*}} \frac{\partial}{\partial \psi^{*}}\left[\left(\mu^{*}+E \rho^{*}\right) \frac{\rho^{*} u}{2 \psi^{*}} \frac{\partial u}{\partial \psi^{*}}\right](16)  \tag{16}\\
& u \frac{\partial\left(C_{p}^{*} \theta\right)}{\partial \mathrm{X}}=\frac{\mathrm{C}_{\mathrm{L}} \mathrm{u}}{2 \rho^{*}} \frac{\mathrm{dP}}{\mathrm{dX}}+\frac{\mathrm{u}}{2 \psi^{*}} \frac{\partial}{\partial \psi^{*}}\left[\left(\frac{\mathrm{k}^{*}}{\mathrm{P}_{\mathrm{ro}}}+\frac{\mathrm{E} \rho^{*} \mathrm{C}_{\mathrm{p}}^{*}}{\mathrm{P}_{\mathrm{rt}}}\right) \frac{\rho^{*} \mathrm{u}}{2 \psi^{*}} \frac{\partial \theta}{\partial \psi^{*}}\right] \\
& +\mathrm{C}_{\mathrm{L}}\left(\frac{\mu^{*}+\mathrm{E} \rho^{*}}{\rho^{*}}\right)\left(\frac{\rho^{*} \mathrm{u}}{2 \psi^{*}} \frac{\partial \mathrm{u}}{\partial \psi^{*}}\right)^{2} \tag{17}
\end{align*}
$$

in which

$$
\begin{equation*}
\mathrm{C}_{\mathrm{L}}=\frac{(\gamma-1) \mathrm{M}_{\mathrm{ir}}^{2}}{\frac{\mathrm{~T}_{\mathrm{wr}}}{\mathrm{~T}_{\mathrm{o}}}-1}=\frac{\mathrm{u}_{\mathrm{o}}^{2}}{\mathrm{C}_{\mathrm{po}}\left(\mathrm{~T}_{\mathrm{wr}}-\mathrm{T}_{\mathrm{o}}\right)} \tag{18}
\end{equation*}
$$

The turbulent Prandtl number $P_{r t}$ is taken to be 0.9 . Neglecting the dependance of the specific heat on temperature, $C_{p}^{*}=1.0$. The derivative of the dimensionless equations of motion is shown in Appendix A.

### 3.4 Evaluation of the Eddy Viscosity

In general, the eddy viscosity is evaluated by

$$
\begin{equation*}
\epsilon=\ell_{\mathrm{m}}^{2} \frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{y}} \tag{19}
\end{equation*}
$$

in which $\ell_{m}$ is the mixing length. In two-dimensional jet mixing, values of mixing length are not well known especially for the region in which the shear zone extends from wall to wall. In various zones of the flow, the mixing lengths have been evaluated as follows:

In the shear layer adjacent to the potential core zone of the primary jet the mixing length is evaluated from

$$
\begin{equation*}
\ell_{\mathrm{m}}=0.08 \delta \tag{20}
\end{equation*}
$$

in which $\delta$ is the shear layer width (including the zone between $1 \%$ and $99 \%$ of the total velocity difference between primary and secondary streams).

For the "fully-rounded" portion of the jet flowing coaxially with a secondary potential stream, the mixing length has been calculated from

$$
\begin{equation*}
\ell_{\mathrm{m}}=0.108 \delta \tag{21}
\end{equation*}
$$

in which $\delta$ is the half-width of the jet, evaluated from centerline to the point at which the difference between local and secondary velocity is only $1 \%$ of the difference between centerline and secondary velocity.

In the wall boundary layer, the mixing length has been evaluated from the lesser of:

$$
\begin{equation*}
\ell_{\mathrm{m}}=0.098 \quad \text { (outer part) } \tag{22}
\end{equation*}
$$

or, using the Van Driest approximation,

$$
\begin{equation*}
\ell_{\mathrm{m}}=0.41\left[1-\mathrm{e}^{-(\mathrm{y}+/ 26)}\right] \text { y } \quad \text { (inner part) } \tag{23}
\end{equation*}
$$

in which

$$
\begin{equation*}
\mathrm{y}^{+}=\sqrt{\frac{\tau}{\rho} \mathrm{w}} \frac{\mathrm{y}}{\nu} \tag{24}
\end{equation*}
$$

For the region downstream of the point where the jet spreads to intersect the edge of the boundary layer the mixing length is evaluated, as a first approximation only, from

$$
\ell_{\mathrm{m}}=\mathrm{y}_{\mathrm{w}}\left[\begin{array}{lll}
0.14-0.08 & \left(\frac{\mathrm{y}}{\mathrm{y}_{\mathrm{w}}}\right)^{2}-0.06 & \left(\frac{\mathrm{y}}{\mathrm{y}_{\mathrm{w}}}\right)^{4} \tag{25}
\end{array}\right]
$$

which is due to Nikuradse and is cited by Schlichting ${ }^{(4)}$ for fully developed flow in round tubes. Near the wall $\left(y=y_{w}\right)$ the mixing length is evaluated by the Van Driest approximation cited earlier, provided the local mixing length so calculated is less than that given by the Nikuradse formula.

### 3.5 Boundary Conditions

With prescribed wall geometry the boundary conditions at the outer wall are:

$$
\begin{aligned}
\mathrm{y} & =\mathrm{y}_{\mathrm{w}}(\mathrm{x}) \\
\psi^{*} & =\text { const. } \\
\frac{\partial \theta}{\partial \psi^{*}} & =0 \\
\mathrm{u} & =0
\end{aligned}
$$

Along the channel axis of symmetry the boundary conditions are:

$$
\begin{aligned}
& \mathrm{y}=0 \\
& \psi^{*}=0 \\
& \frac{\partial \theta}{\partial \psi^{*}}=0 \\
& \frac{\partial \mathrm{u}}{\partial \psi^{*}}=0
\end{aligned}
$$

### 3.6 Finite Difference Procedure

By the finite-difference technique, the derivatives in the differential equations of motion are replaced by differences either along a streamline between two neighboring points $X$ and $X+\Delta X$ or normal to it between two neighboring points $\psi^{*}$ and $\psi^{*}+\Delta \psi^{*}$.

If one takes the velocity field at plane X as completely known then the velocity field at $X+\Delta X$ may be solved, using the implicit method, from the finite-difference form of the momentum equation which is of the form

$$
\begin{equation*}
A_{n-1} u_{2, n}+B_{n-1} u_{2, n+1}+C_{n-1} u_{2, n-1}=D_{n-1} \tag{26}
\end{equation*}
$$

in which $\mathrm{u}_{2, \mathrm{n}}$ is the unknown velocity at the $\mathrm{n}^{\text {th }}$ grid point on plane $\mathrm{X}+\Delta \mathrm{X}$ and $A_{n-1}, B_{n-1}, C_{n-1}, D_{n-1}$ are coefficients containing the mean pressure gradient between $X$ and $X+\Delta X$ and the velocity and shear stress distributions at plane $X$.

As shown in the derivation in reference ${ }^{(5)}$ and Appendix B, the coefficients in the finite difference form of the momentum equation are evaluated from:

$$
\begin{align*}
& A_{n-1}=Y 8+Y 9+\frac{u_{1, n}}{\Delta X}  \tag{27}\\
& B_{n-1}=-Y 8  \tag{28}\\
& C_{n-1}=-Y 9  \tag{29}\\
& D_{n-1}=-\frac{1}{4 \rho_{1, n}^{*}}\left(\left.\frac{d P}{d X}\right|_{m=2}+\left.\frac{d P}{d X}\right|_{m=1}\right)+\frac{u_{1, n}}{\Delta X} \tag{30}
\end{align*}
$$

in which,

$$
\begin{align*}
& \mathrm{Y} 8=\frac{u_{1, \mathrm{n}}}{2 \psi_{\mathrm{n}}^{*}}\left(\frac{\mathrm{~S}_{\mathrm{n}+\mathrm{I}}+\mathrm{S}_{\mathrm{n}}}{\Delta \psi_{1} \mathrm{~S} 1}\right)  \tag{31}\\
& \mathrm{Y} 9=\frac{u_{1, \mathrm{n}}}{2 \psi_{\mathrm{n}}^{*}}\left(\frac{\mathrm{~S}_{\mathrm{n}}+\mathrm{S}_{\mathrm{n}-1}}{\Delta \psi_{2} \mathrm{~S} 1}\right) \tag{32}
\end{align*}
$$

$$
\begin{align*}
S l & =\Delta \psi_{1}+\Delta \psi_{2}  \tag{33}\\
\Delta \psi_{2} & =\psi_{\mathrm{n}}^{*}-\psi_{\mathrm{n}-1}^{*}, \Delta \psi_{1}=\psi_{\mathrm{n}+1}^{*}-\psi_{\mathrm{n}}^{*}  \tag{34}\\
S & =\left(\frac{\mu^{*}+E \rho^{*}}{2 \psi^{*}}\right) \rho^{*} \mathrm{u} \tag{35}
\end{align*}
$$

In a similar way ${ }^{(5)}$, the energy equation can be written in the finite difference form:

$$
\begin{equation*}
A_{n-1} \theta_{2, n}+B_{n-1} \theta_{2, n+1}+C_{n-1} \theta_{2, n-1}=D_{n-1} \tag{36}
\end{equation*}
$$

where,

$$
\begin{align*}
& A_{n-1}=Y 8^{\prime}+Y 9^{\prime}+\frac{u_{1, n}}{\Delta X}  \tag{37}\\
& B_{n-1}=-Y 8^{1}  \tag{38}\\
& C_{n-1}=-Y 9^{\prime}  \tag{39}\\
& D_{n-1}=\frac{u_{1, n^{\theta} 1, n}}{\Delta X}+\frac{C_{L^{u}}{ }^{u_{1, n}}}{4 \rho^{*} 1, n}\left[\left.\frac{d P}{d X}\right|_{m=1}+\left.\frac{d P}{d X}\right|_{m=2}\right] \\
& +\frac{\mathrm{C}_{\mathrm{L}} \mathrm{~S}_{1, n^{\mathrm{u}}} \mathrm{l}_{, \mathrm{n}}}{2 \psi^{*}}\left[\mathrm{R}_{2}\left(\mathrm{u}_{2, \mathrm{n}+1}-\mathrm{u}_{2, n}\right)+\mathrm{R}_{1}\left(\mathrm{u}_{2, \mathrm{n}^{-u_{2, n-1}}}\right]^{2}\right.  \tag{40}\\
& Y 8^{\prime}=\frac{u_{1, n}}{2 \psi_{n}^{*}}\left[\frac{Q_{n+1}+Q_{n}}{\Delta \psi_{1} S I}\right]  \tag{41}\\
& Y 9^{\prime}=\frac{u_{1, n}}{2 \psi_{n}^{*}}\left[\frac{Q_{n}+Q_{n-1}}{\Delta \psi_{2} S l}\right]  \tag{42}\\
& \mathrm{Q}=\left[\frac{\mathrm{k} *}{\mathrm{P}_{\mathrm{ro}}}+-\frac{\mathrm{E} \rho^{*}}{\mathrm{P}_{\mathrm{rt}}}\right] \frac{\rho^{*} \mathrm{u}}{2 \psi^{*}} \tag{43}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{R}_{1}=\frac{\Delta \psi_{1}}{\Delta 1_{2}\left(\Delta \psi_{2}+\Delta \psi_{1}\right)} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R} 2=\frac{\Delta \psi_{2}}{\Delta \psi_{1}\left(\Delta \psi_{2}+\Delta \psi_{1}\right)} \tag{45}
\end{equation*}
$$

The relationship between the $x-\psi$ coordinates, and the physical plane in finite difference form, for any $n$, becomes,

$$
\begin{equation*}
Y_{\mathrm{n}}=\left[Y_{\mathrm{n}-1}+\frac{\left(\psi_{\mathrm{n}}^{* 2}-\psi_{\mathrm{n}-1}^{* 2}\right) 2}{\left(\rho^{* u}\right)_{\mathrm{n}}+(\rho * \mathrm{u})_{\mathrm{n}-1}}\right] \tag{46}
\end{equation*}
$$

Finally the property relation becomes:

$$
\begin{equation*}
\mathrm{E}_{2, \mathrm{n}}=\frac{\mathrm{u}_{1, \mathrm{n}} \rho_{1, \mathrm{n}}^{*} \mathrm{~L}_{\mathrm{m}}^{2}}{2 \psi^{*}}\left[\frac{u_{1, \mathrm{n}+1}-\mathrm{u}_{1, \mathrm{n}-1}}{\psi_{\mathrm{n}+1}-\psi_{\mathrm{n}-1}}\right] \tag{47}
\end{equation*}
$$

For a set of $\mathrm{N} \psi$-lines and known boundary conditions, Equations (26) and (36) each provide a set of $\mathrm{N}-2$ conditions to solve for the unknown velocities and temperatures. Each set of equations can be solved simultaneously if the pressure gradient is known or assumed. For calculation of flow between fixed channel walls, the pressure gradient is assumed and the velocities determined; then the location of the outer boundary is calculated from successive use of equation (46) across all N grid lines. If the calculated value of the outer boundary location does not agree satisfactorily with the actual wall geometry, a new value of the pressure gradient is chosen.

Since each set of equations can be represented by a tridiagonal matrix of coefficients, the Thomas Algorithm ${ }^{(5)}$ is employed for speedy solution as shown in Appendix $C$ which describes the solution procedure.

The structure of the computer program is given in Appendix D.

## Section 4

## TEST PROGRAM

A two-dimensional experimental rig was designed, fabricated, and installed in our laboratory. The purpose of the experimental work was to obtain test data for verification and adjustment of the computer analysis. The experimental program is described in this section.

### 4.1 Experimental Apparatus

### 4.1.1 Two-Dimensional Ejector

The two-dimensional ejector consisted of a slot type primary nozzle and a two-dimensional mixing section. The arrangement of the ejector system is shown on Figure 1.

A picture of the primary nozzle is shown on Figure 2. The discharge slot is $0.1215^{\prime \prime} \pm .0005^{\prime \prime}$ by $8.00^{\prime \prime}$ with rounded corners. The side walls are quarter inch carbon steel and four internal supports are included to prevent widening of the discharge slot when the nozzle is pressurized. Dial indicator measurements show that the slot opened up by about 0.0008 inches in the center of the nozzle, about .0004" at the quarter width location and zero near the ends of the slot. This is equivalent to an increase in nozzle slot area of $0.33 \%$ when pressurized. Stagnation pressure measurements were made with a kiel probe from side to side in the nozzle discharge and were found to be uniform across the $8^{\prime \prime}$ width of the slot. The primary nozzle is positioned in the mixing section (see Figure 1 and Figure 3) so that the primary flow is discharged along the centerline of the straight symmetrical mixing section.

The mixing section as shown on Figure 1 consists of a rectangular variable area channel formed by two identically contoured aluminum plates and two flat side plates. The pictures in Figures 3 and 4 show two views of the mixing section. The two contoured plates can be positioned in two symmetrical locations about the centerline to form the two channels tested (throat heights of $1.25^{\prime \prime}$ and $1.875^{\prime \prime}$ ). The width of the mixing section is $8.00^{\prime \prime}$ for the full length. The variation of channel height with distance from the nozzle discharge is given on Table 1 for the 1.875 throat mixing
section. The geometry for the $1.25^{\prime \prime}$ throat height is obtained by subtracting $0.312^{\prime \prime}$ from each y value. Three plexiglass windows are installed along each side of the mixing section so the tufts of wool mounted inside can be observed for indications of flow separations and unsteadiness.

The screened mixing section inlet is shown on Figure 5 . Initial tests without the extended inlet showed that highly swirling corner vortices were formed in the four corners of the bellmouth and extended into the test section. The extended inlet eliminated the corner vortices and improved the stability of the ejector flow and static pressures. The extended inlet shown on Figure 5 was used for all ejector tests.

### 4.1.2 Facilities for Ejector Tests

The schematic of the ejector test facilities on Figure 6 shows the three required subsystems needed for operation, control and measurement of the ejector:

- Primary Flow System
- Mixed Flow System
- Boundary Layer Suction System

The primary air flow is supplied by a 900 SCFM oil free screw compressor at 100 psig and an equilibrium operating temperature between $180^{\circ} \mathrm{F}$ and $240^{\circ} \mathrm{F}$. The primary air flow rate and pressure are controlled by a manual pressure regulator and bleed valve. The mass flow is measured by a standard 3 inch Danial orifice system. The air flow is delivered to the primary nozzle through a flexible hose.

The mixed flow system consists of a plenum chamber, an $8^{\prime \prime}$ orifice system and a throttle valve. Four different operating flow rates are achieved by the following equipment combinations.

1. Maximum Flow Rate - Mixed flow discharges directly into laboratory from mixing section.
2. First Reduced Flow Rate - The plenum is connected to the mixing section discharge.
3. Second Reduced Flow Rate - The orifice is connected to the plenum.
4. Lowest Flow Rate - The throttle valve is partially closed.

Orifice flow rates are obtained only for the two lowest flow rate conditions. Figure 7 and 8 show most of the experimental ejector installation. The large rectangular box connected to the mixing section by the large black flexible hose is the main plenum. The $8^{\prime \prime}$ orifice is not visible in the picture.

The suction system removes the boundary layer flow from each of the four corners of the mixing section to prevent wall boundary layer separation in the ejector. The pictures in Figures 7 and 8 show three $3 / 4$ inch tubes connected to each corner of the mixing section. These 12 tubes collect the boundary layer flow from the corner suction slots which are 0.060 inches wide and are machined into the sides of the contoured plates (See figures 9 and 10). The four tubes at one X location are connected to a single large tube under the mounting table. The three large tubes are each connected to a large tank plenum through a separate throttle valve. A Roots blower draws the air through the suction system and through a three inch orifice system. The suction system is capable of removing about $1 \%$ to $2 \%$ of the mixing section flow rate. During the operation of the ejector rig, the boundary layer suction system was necessary to prevent flow separation in the mixing section diffuser. The presence of separation was easily observed from the violently flopping tufts, the large fluctuation in wall static pressures and audible pulsations. The operation of the suction system drastically reduced these symptoms.

The ejector system was operated by starting the primary air flow at low pressure and flow rate. The suction was turned on and then the primary pressure was increased to the desired test conditions. The large mixing section (1.875" throat height) was operated at 21 psig without separation in the mixing section. The small mixing section (l. $25^{\prime \prime}$ throat height) could not be operated over 20 psig without separation for the high flow condition. The tests with the small mixing were therefore run at 17 psig.

### 4.2 Instrumentation and Data Reduction

### 4.2.1 Instrumentation

The following instrumentation was included on the test rig.

## Primary Flow System

Flow Rate - Standard 3" orifice system
Nozzle Pressure - Pressure gage accurate to $\pm .25 \mathrm{psig}$
Nozzle Temperature - Thermocouple with digital readout

## Mixed Flow System

Flow Rate - $\quad 8^{\prime \prime}$ orifice system for two lowest flow rate conditions
Static Pressures - Wall static pressures down the center of the mixing section and some at other locations (see Figures 9 and 10). Manometers were used for measurement.
Traverse Data - Stagnation pressure and temperature profiles were measured at up to 9 axial locations using a kiel temperature probe, a pressure transducer and direct digital readout, and a temperature direct digital readout (see Figure 8).

Suction Flow System
Flow Rate - $\quad 3^{\prime \prime}$ orifice system
Suction Pressure- a mercury manometer

### 4.2.2 Data Reduction Procedures

Three types of data reduction calculations were needed in this program:

- Standard orifice calculations
- velocity profile calculations
- integration of velocity profiles to calculate flow rate

The orifice calculations were carried out using standard orifice equations and ASME orifice coefficients. The velocity profiles were calculated from the well known compressible flow relationships between Mach number and the ratio of stagnation pressure to static pressure that can be found in most fluid mechanics text books. The local velocity is calculated from the Mach number and the local speed of sound which
is dependent on the local static temperature. The static temperature is calculated from the measured stagnation temperature profiles and the compressible flow relation between temperature ratio and Mach number.

To calculate an integrated mass flow rate for each traverse location a time sharing data reduction computer program was written to integrate the product of local velocity and local density over a two-dimensional section of unit width. The program also calculated the "mass-momentum" stagnation pressure at each traverse section using the equations presented on page 52 and 53 of reference 6 . The mass-momentum method determines the flow conditions for a uniform velocity profile which has the same integrated values of mass flow rate, momentum, and energy as the non-uniform velocity profile actually present.

### 4.2.3 Experimental Uncertainty

## Orifice Calculations

The techniques presented in reference 7 were applied to the primary flow orifice calculations and the mixed flow orifice calculations. The following uncertainty results were obtained:

Orifice<br>Primary<br>Mixed

| Nozzle Pressure | Uncertainty |
| :--- | :---: |
| $\quad$ psig | $\pm 0.8 \%$ |
| 17.0 and 21 | $\pm 1.3 \%$ |

## Static Pressures

Uncertainty in the wall static pressures mainly occurs because of unsteadiness in the manometer liquid columns caused by unsteadiness in the flow. The lowest flow rate condition which had the most system resistance downstream of the mixing section had a wall static pressure unsteadiness of about $\pm 3 / 8$ inches of water. The amount of unsteadiness increased as the flow rate was increased by removing system resistance. For the unrestricted maximum flow rate condition the wall static pressure unsteadiness was $\pm 2.0$ inches of water. These values are also a measure of the uncertainty.

The mass flow rate calculated by integrating the results of the stagnation pressure and temperature traverses is influenced by many items and is therefore very difficult to estimate. The following items all contribute to the uncertainty in integrated mass flow rate:

1. unsteady wall static pressures
2. unsteady traverse stagnation pressures
3. instrument accuracy of the pressure transducer and digital readout
4. inaccuracies due to the effect of steep velocity gradients on sensed pressure
5. inaccuracies due to probe effect near the mixing section walls
6. inaccuracy in probe position
7. assumptions and inaccuracies associated with the data reduction computer program
8. data recording errors or computer data input errors
9. errors caused by loose connections in the pneumatic sensing tube between the probe and the transducer
10. Non-two-dimensional flow distribution across the width of the 8 inch mixing section.

All of these effects could combine to give both a $\pm$ uncertainty band and a fixed error shift.

One measure of the uncertainty due to these effects is obtained from the limits of individual integrated mass flows for each test run. These values are listed on Table 2 for all of the test runs with traverse data. The results presented on Table 2 show an average variation of $+3.6 \%$ and $-2.8 \%$ or a total spread of $6.4 \%$. These values only include the effect of variable uncertainty and exclude the uncertainty due to probe errors in steep gradients and near walls and integration assumptions. Both of the excluded errors probably cause the intergrated mass flows to be too large because the probe tends to measure too high near the wall and the integration program neglects wall boundary layers.

From the above discussion it is concluded that the average integrated mass flow rates may have a fixed error of $+1 \%$ to $2 \%$ and an uncertainty of about $\pm 3 \%$ to $\pm 4 \%$.

### 4.3 Test Results

A total of eleven ejector tests were carried out on two mixing section configurations (1.25" and $1.875^{\prime \prime}$ throat height). The data presented in this report falls into the following categories:

Test Conditions and Mass Flows
Static Pressures
Centerline Velocities and Temperatures
Velocity Profiles
Temperature Profiles
Eddy viscosity Sensitivity
Flow Rate Sensitivity
Table 3 shows which figures and tables show the data for each test run. Most of the figures and tables present both test data and comparative analytical results. The comparisons will be discussed in section 5.0.

## Section 5

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

### 5.1 Test Conditions and Mass Flows

Table 4 presents a tabulation of the measured nozzle conditions, the integrated mass flow rate from the measured pressure and temperature profiles, and the integrated "mass momentum" stagnation pressure.

The nozzle mass flow rate was calculated from standard orifice readings which were shown in section 4.2 .3 to have an uncertainty of about $\pm 0.8 \%$. Using the orifice flow rate, the nozzle pressure, the nozzle temperature, and the nozzle discharge area, a nozzle discharge coefficient ( $\mathrm{C}_{\mathrm{N}}$ ) was calculated for each test run. These values all fall within a range of +0.007 and -0.0085 around an average of 0.973 which is consistent with the calculated uncertainty. If there were no error in the nozzle calculations all of the $C_{N}$ values would be identical. From these results it is safe to assume that the listed nozzle flow rates are accurate to at least $\pm 1 \%$.

The tabulated mixing section flow rates were calculated as described in section 4.2 . 2 by integrating the measured pressure and temperature profiles. As described in section 4.2.3, these results probably have a fixed error of between $+1 \%$ and $+2 \%$ and an uncertainty of between $\pm 3 \%$ and $\pm 4 \%$. Table 5 presents a comparison between three separate mass flow determinations:

- integrated from traverse data
- measured by orifice
- computer mass flow giving the best wall static pressure comparison

Only 4 of the tests could be measured with the large orifice, but all of these four tests agree with the computer mass flow within $\pm 0.9 \%$ as shown on table 5. Section 4.2.3 shows that the expected uncertainty in orifice mass flow is about $\pm 1.3 \%$ making it much more accurate than the integrated traverse values. The wall static pressures are in fact a function of the average mass flow represented by the orifice value rather than a local velocity profile down the center of the two-dimensional mixing section. This is
true because the mixing section flow patterns can not support a side-to-side pressure gradient along the 8 inch width of the mixing section which was verified by test measurements. Therefore it is concluded that the measured orifice mass flows and the computer mass flow for best match of wall static pressures are the correct mass flow values. The integrated mass flows are in error and in some cases inconsistent. Table 5 shows that the integrated mass flow values spread over a range of $-2.9 \%$ to $+6.4 \%$ around the computer determined value. Figures 11 and 12 show all of the mass flow values on Table 5 plotted versus the mixing section throat static pressure. Figure 11 for Runs 1-5 shows the good agreement between computer analytical mass flows and orifice mass flows and shows the wide scatter of integrated traverse mass flows. Figure 12 for Runs 6-10 again shows good agreement between analytical and orifice values and this time shows a consistent trend of integrated traverse mass flows which are now offset by about $+3.2 \%$ on a line parallel to the other more accurate mass flow values.

The "mass-momentum" stagnation pressure listed on table 4 suffers from the same inaccuracies as the integrated mass flow rate discussed above. The plotting of mass-momentum stagnation pressure versus mass flow will therefore show some discrepancies.

### 5.2 Mixing Section Wall Static Pressure Variation

The wall static pressure distributions are shown on Figures 13 and 14 and Table 6 as specified on Table 3. Runs 4, 8, and 11 on Table 6 were extra tests for which no analytical solutions were obtained. Test Run 11 was a repeat of test Run 9 and gives results that are essentially the same.

Figures 13 and 14 show there is a good comparison between experimental wall static pressures (shown as data points) and the analytical static pressures (solid lines) at essentially the same mass flow (see discussion in section 5.1). The analytical results have assumed that the mixing length constant in equation 20 is 0.08 and in equation 21 is 0.108 . These values influence the mixing process through the eddy viscosity. The influence on wall pressures is relatively minor as will be discussed in section 5.5 where these values are varied over a reasonable range. The comparison between test and analytical values is generally excellent. Both the data and analytical
results show changes in shape at points where the geometry changes. The two areas where some disagreement occurs is in the entrance region and in the last half of the diffuser.

The difference in the bellmouth section occurs because the analytical program calculates a centerline static pressure and assumes the static pressure constant at each x distance from the nozzle discharge whereas the experimental data are wall static pressures and can be influenced by curving streamlines. At $x=0$ the bellmouth walls still have a significant curvature which causes flow streamline curvature in this region. The result is a reduced wall static pressure and an elevated centerline static pressure. Between 1 and 2 inches downstream of the nozzle discharge the wall curvature is reduced to very small values and the data and analytical results agree very closely.

The second area where minor differences occur is in the last half of the diffuser for the higher flow rate test runs. The reason for this difference could be an underestimation of the pressure losses due to wall friction, mixing, and diffusion. Substantiation of this can be seen by comparing the slope of the pressure data to the analytical results in the constant area throat section between 8 and 11 inches. For the low flow rate Runs 2, 6 and 7 where the slopes are essentially equal, the test and analytical diffuser wall pressures are almost identical. For the other runs the test data slope between 8 and 11 inches is always more negative than the analytical results. For frictionless uniform flow in a short constant area duct, the static pressures would be equal all along the duct. For frictionless non-uniform flow in a short constant area duct the static pressure can increase as mixing takes place. For non-uniform flow in a constant area duct with friction, the static pressure will tend to decrease along the duct and the slope will become less positive or more negative as flow rate (and therefore losses) increases. From these observations, it would appear that the flow dependent losses for the analytical solution may be underestimated in the constant area and diffusing sections. This may be the cause of the difference between the test and analytical wall static pressures in the diffuser section.

### 5.3 Centerline Velocity and Temperature Variations

Figures 15 and 16 present the variation of maximum velocity and maximum temperature as a function of distance from the nozzle discharge. The temperature comparison is generally good for all test runs. The velocity comparison is also good. However the experimental maximum velocities tend to be higher than the analytical values in the first 4 inches downstream of the nozzle discharge. In the throat section and diffuser, the experimental values tend to be lower than the analytical values. In general the comparisons are very good. Differences may occur due to the eddy viscosity and mixing length distributions assumed (see section 3.4) or due to measurement inaccuracies.

### 5.4 Velocity Profiles and Temperature Profiles

A total of 45 sets of traverse measurements were taken during the experimental test program. Table 3 shows the figure numbers that present the comparison of the test data and analytical results for each test run. These results are presented on Figures 17 through 26.

In general the comparison of profile shape and velocity magnitude is very good between the analytical and experimental profiles. The comparisons for Runs 6 through 10 (Figures 21-24) match very closely. The only differences that are noticeable are that the experimental velocity profiles within 5.0 inches of the nozzle discharge are off center by about $0.025^{\prime \prime}$ and slightly higher in maximum velocity than the correspoinding analytical velocities. The nonsymmetry has disappeared for all traverses at distances greater than 5 inches. The good match of velocity profiles for Runs 6 through 10 goes along with the good comparison of static pressures and the consistent trend in integrated traverse mass flow rate discussed previously.

The comparison of experimental and analytical velocity and temperatures is not as good for Runs 1 through 5 as it was for Runs 6 through 10. The comparisons are also not as consistent from run to run which also coincides with some of the static pressure and mass flow differences noted previously for these runs. The following observations apply only to Runs 1 through 5.

1. The experimental jet is off center by about $0.057^{\prime \prime}$ but the non-symmetry has disappeared for profiles at distances of greater than $5.0^{\prime \prime}$.
2. For x of $3.0^{\prime \prime}$ or less the peak experimental velocities are greater than the analytical values for Run 3 and Run 2 and are slightly less for Runs 1 and 5.
3. The spread width of the velocity profiles compares very well at distances from the nozzle of 7.0 inches or less. For distances between 7 inches and 16 inches, the experimental profiles tend to spread faster and have a flatter profile.
4. The experimental temperature profiles in Figure 25 are spread significantly more than the analytical values at $x=3.0^{\prime \prime}$ and $x=10.5^{\prime \prime}$, the only two profiles plotted.
5. The comparisons for Run 1 are better than for the other runs for the $1.25^{\prime \prime}$ throat mixing section.

Both sets of data (for the $1.25^{\prime \prime}$ and $1.875^{\prime \prime}$ throat height) were calculated using the same eddy viscosity assumptions for mixing ( 0.08 for eq. 20, 0.108 for eq. 21). The test Runs 6 through 10 have lower average throat Mach numbers (. 39 to . 52), slightly higher primary nozzle velocities, higher wall static pressures, and larger mixing section dimensions. The eddy viscosity assumptions may be more suitable for these operating conditions than for those of test Runs 1 through 5. In any event, the agreement between experimental and analytical results is better for the Runs 6 through 10.

### 5.5 Sensitivity of Computer Analysis

The sensitivity of the computer analysis to changes in eddy viscosity and flow rate were investigated to obtain a measure of the amount of performance change that can result from small changes in assumed values.

### 5.5.1 Eddy Viscosity

The results for the eddy viscosity changes are shown on Figures 27, 28, and 29. The eddy viscosity is directly proportional to the square of the mixing length according to equation 19. The changes in mixing length were confined to the mixing region prior to the point where the jet mixing reaches the developing wall boundary layer. In this region the mixing length is defined by equations 20 and 21 as a constant times a mixing zone dimension (see section 3.4 )

Equation 20 is used to calculate the mixing length in the region close to the nozzle discharge where the primary jet still has a flat potential core (probably confined to the first $0.5^{\prime \prime}$ to $1.0^{\prime \prime}$ of mixing). Most of the calculations have been carried out using a constant of 0.08 in equation 20. For the results presented in this section the comparative runs were made with the constant equal to 0.094 which gives about a $38 \%$ increase in eddy viscosity in this small region.

Equation 21 is used to calculate the mixing length in the region where the primary jet is "fully rounded" but has not intersected with the wall boundary layer. This region extends for about 4 " to 6 " into the mixing section for the 1.25 " throat configuration and extends for about $6^{\prime \prime}$ to $8^{\prime \prime}$ for the $1.875^{\prime \prime}$ throat configuration. Most of the calculations have been carried out using a constant of 0.108 in equation 21. For the results presented in this section, the comparative runs were made with a constant equal to 0.120 which gives about a $23 \%$ increase in eddy viscosity.

The velocity and temperature results shown on Figures 28 and 29 for Runs 3 and 6 show that the amount of mixing increases with eddy viscosity. This results in reduced centerline velocities, increased velocities near the walls and increased wall static pressures (see Figure 27). All of the changes are small.

The effect of mixing length changes in the rest of the mixing section as defined by equation 25 was not investigated but it is expected that the results would be similar. Section 3.4 points out that equation 25 was obtained by Nikuradse for fully developed flow in round tubes and should be considered to give only approximate results. Changes in this equation could provide a better match of static pressures for some of the high flow test runs as discussed in Section 5.2.

### 5.5.2 Flow Rate

Figure 27 shows the effect on wall static pressures of a $2.2 \%$ change in total mass flow for Runs 3 and 6. The wall pressure decrease as flow rate is increased is about double for Run 3 as compared to Run 6 . The reason for this is that the average Mach number for Run 3 ( $1.25^{\prime \prime}$ throat) is larger than for Run 6 ( $1.875^{\prime \prime}$ throat) even though the Run 6 mass flow is larger. Figure 30 shows the influence of throat Mach number on throat static pressure level. The local slope of this line indicates the rate of change of throat pressure with Mach number. Run 6 happens to be the lowest Mach number test run and Run 3 has one of the largest Mach numbers. A 'comparison of the local slopes for Run 3 and Run 6 on Figure 30 gives results consistent with Figure 27.

## Section 6

## CONCLUSIONS

(1) The finite difference computer analysis developed to analyze two-dimensional co-axial slot ejectors with variable area mixing sections predicts the performance of the experimental configurations tested under this program very closely.
(2) The analytical and experimental results compared are at essentially the same flow rate within the accuracy of our measurements. The correct mixing section mass flow rates for each test are best represented by the orifice measured values and the computer analytical mass flow for best comparison of measured wall static pressures. These two values agree within $\pm 0.9 \%$. The integrated traverse mass flows are less accurate and range between $-2.9 \%$ and $6.4 \%$ of the other values.
(3) The experimental and analytical wall static pressure distributions agree within 1 or 2 inches of water over most of the mixing section for most of the test runs.
(4) The experimental and analytical velocity profiles compare very well in both velocity level and amount of jet spread due to mixing.

## Appendix A

## BASIC EGUATIONS OF MOTION

The momentum and energy equations as shown in equations 1 and 2 in the main text can be transformed to the $x-\psi{ }^{2}$ coordinates according to Denny ${ }^{(3)}$ by the following steps.

## Momentum Equation:

The stream function transformation is defined by:

$$
\begin{equation*}
\frac{\partial \psi^{2}}{\partial y}=\bar{\rho} \bar{u} \quad \frac{\partial \psi}{\partial y}=\frac{\bar{\rho} \bar{u}}{2} \tag{A-1}
\end{equation*}
$$

then:

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial y}=\frac{\partial \psi}{\partial y} \frac{\partial \bar{u}}{\partial \psi}=\frac{\bar{\rho} \bar{u}}{2 \psi} \quad \frac{\partial \bar{u}}{\partial \psi} \tag{A-2}
\end{equation*}
$$

The third term of the momentum equation becomes:

$$
\begin{align*}
& \left.\overline{\mathbf{u}} \frac{\partial \tau}{\partial \psi_{\mathbf{s}}}=\frac{\overline{\mathbf{u}}}{2 \psi} \frac{\partial \tau}{\partial \psi}=\frac{\overline{\mathrm{u}}}{2 \psi} \frac{\partial}{\partial \psi} \quad[\bar{\mu}+\bar{\rho} \epsilon) \frac{\partial \overline{\mathrm{u}}}{\partial \mathrm{y}}\right]  \tag{A-3}\\
& \frac{\overline{\mathbf{u}} \partial \tau}{\partial \psi_{\mathbf{s}}}=\frac{\overline{\mathrm{u}}}{2 \psi} \frac{\partial}{\partial \psi}\left[(\bar{\mu}+\bar{\rho} \epsilon) \frac{\bar{\rho} \overline{\mathrm{u}}}{2 \psi} \frac{\partial \overline{\mathrm{u}}}{\partial \psi}\right] \tag{A-4}
\end{align*}
$$

The substitution of equation A-4 into equation 1 of the main text results in equation 9 of the main text.

## Energy Equation

The third term of the energy equation (equation 2) is transformed as follows:

$$
\begin{align*}
& \overline{\mathrm{u}} \frac{\partial \mathrm{q}}{\partial \psi_{\mathbf{s}}}=\frac{\overline{\mathbf{u}}}{2 \psi} \frac{\partial q}{\partial \psi}=\frac{\overline{\mathrm{u}}}{2 \psi} \frac{\partial}{\partial \psi}\left[\left(\overline{\mathrm{k}}+\frac{\bar{\rho}^{\mathrm{C}_{\mathrm{p}} \epsilon}}{\mathrm{P}_{\mathrm{rt}}}\right) \frac{\partial \overline{\mathrm{T}}}{\partial \mathrm{y}}\right]  \tag{A-5}\\
& \frac{\partial \overline{\mathrm{T}}}{\partial \mathrm{y}}=\frac{\partial \psi}{\partial \mathrm{y}} \frac{\partial \overline{\mathrm{~T}}}{\partial \psi}=\frac{\bar{\rho} \overline{\mathrm{u}}}{2 \psi} \frac{\partial \overline{\mathrm{~T}}}{\partial \psi} \tag{A-6}
\end{align*}
$$

The substitution of equation A-6 into A-5 completes the transformation of the third term of the energy equation as shown in equation $A-7$.

$$
\begin{equation*}
\bar{u} \frac{\partial q}{\partial \psi_{s}}=\frac{\bar{u}}{2 \psi} \frac{\partial}{\partial \psi}\left[\left(\overline{\mathrm{k}}+\frac{\bar{\rho}_{\mathbf{C}_{p} \epsilon}}{\mathbf{P}_{\mathrm{rt}}}\right) \frac{\bar{\rho} \overline{\mathrm{u}}}{2 \psi} \frac{\partial \overline{\mathrm{~T}}}{\partial \psi}\right] \tag{A-7}
\end{equation*}
$$

The fourth term of the energy equation (equation 2 and 3 ) is transformed by substituting equation $\mathrm{A}-2$ into equation 3 as follows:

$$
\begin{equation*}
\frac{\Phi}{\bar{\rho}}=\left(\frac{\bar{\mu}+\bar{\rho} \epsilon}{\bar{\rho}}\right)\left(\frac{\bar{\rho} \overline{\mathbf{u}}}{2 \psi} \frac{\partial \overline{\mathbf{u}}}{\partial \psi}\right)^{2} \tag{A-8}
\end{equation*}
$$

The substitution of equations(A-7) and (A-8) into equation 2 of the main text results in equation 10 of the main text.

## Dimensionless Momentum Equation

The equations 11 through 15 of the main text define the dimensionless groups used to non-dimensionalize both the momentum and energy equations.

The first term of the momentum equation (equation 9) is non-dimensionalized as follows:

$$
\begin{equation*}
\bar{u} \frac{\partial \bar{u}}{\partial x}=\left(\frac{u_{0}^{3}}{\nu_{0}}\right) u \frac{\partial u}{\partial X} \tag{A-9}
\end{equation*}
$$

The second term of the momentum equation is non-dimensionalized as follows:

$$
\begin{align*}
& -\frac{1}{\bar{\rho}} \frac{d \bar{p}}{d x}=-\frac{1}{\rho_{0}}\left(\frac{\rho_{0} u_{o}^{2}}{2} \frac{u_{0}}{\nu_{0}}\right) \frac{1}{\rho^{*}} \frac{d P}{d \bar{X}}  \tag{A-10}\\
& -\frac{1}{\bar{\rho}} \frac{d \bar{p}}{d x}=-\left(\frac{u_{0}^{3}}{\nu_{o}}\right) \frac{1}{2 \rho^{*}} \frac{d P}{d \bar{X}} \tag{A-11}
\end{align*}
$$

The third term of the momentum equation is non-dimensionalized as follows:

$$
\begin{align*}
\frac{\bar{u}}{2 \psi} \frac{\partial}{\partial \psi} & {\left[(\bar{\mu}+\bar{\rho} \epsilon) \frac{\bar{\rho} \bar{u}}{2 \psi} \frac{\partial \bar{u}}{\partial \psi}\right] } \\
& =\frac{u_{o}^{u}}{2 \rho_{o} \nu_{o} \psi^{*}} \frac{\partial}{\partial \psi^{*}}\left[\left(\mu_{o} \mu^{*}+\rho_{o} \rho^{*} E \nu_{o}\right) \frac{\rho_{0} \rho^{*} u_{o} u u_{o}}{2 \rho_{o} \nu_{o} \psi^{*}} \frac{\partial u}{\partial \psi^{*}}\right] \\
& =\left(\frac{u_{o}^{3}}{\nu_{o}}\right) \frac{\mathbf{u}}{2 \psi^{*}} \frac{\partial}{\partial \psi^{*}}\left[\left(\mu^{*}+\rho^{*} \text { E) } \frac{\rho^{*} u}{2 \psi^{*}} \frac{\partial \mathbf{u}}{\partial \psi^{*}}\right]\right. \tag{A-12}
\end{align*}
$$

The non-dimensionalized form of the momentum equation (equation 16) is obtained by substituting equations A-9, A-11, and A-12 into equation 9 of the main text and eliminating the factor ( $u_{0}^{3} / \nu_{o}$ ) from each term.

## Dimensionless Energy Equation

The first term of the energy equation (equation 10) is non-dimensionalized as follows:

$$
\begin{align*}
\bar{u} \frac{\partial\left(\bar{C}_{p} \bar{T}\right)}{\partial \mathrm{x}} & =\frac{u_{o}^{2} \mathrm{u} \mathrm{C}_{\mathrm{po}}\left(\mathrm{~T}_{\mathrm{wr}}-\mathrm{T}_{\mathrm{o}}\right)}{\nu_{o}} \frac{\partial\left(\mathrm{C}_{\mathrm{p}}^{*} \theta\right)}{\partial \mathrm{X}} \\
& =\left[\frac{\mathrm{u}_{\mathrm{o}}^{2} \mathrm{C}_{\mathrm{po}}\left(\mathrm{~T}_{\mathrm{wr}}-\mathrm{T}_{\mathrm{o}}\right)}{\nu_{\mathrm{o}}}\right] \mathrm{u} \frac{\partial\left(\mathrm{C}_{\mathrm{p}}^{*} \theta\right)}{\partial \mathrm{X}} \tag{A-13}
\end{align*}
$$

The second term of the energy equation is non-dimensionalized as follows:

$$
\begin{align*}
\frac{\bar{u}}{\bar{\rho}} \frac{d \bar{p}}{d x} & =\frac{u_{o}^{u}}{\rho_{0} \rho^{*}} \frac{\rho_{o} u_{o}^{2} u_{o}}{2 \nu_{o}} \frac{d P}{d X} \\
& =\left(\frac{u_{o}^{4}}{\nu_{o}}\right) \frac{u^{4}}{2 \rho^{*}} \frac{d P}{d X} \tag{A-14}
\end{align*}
$$

The third term of the energy equation is non-dimensionalized as follows:

$$
\begin{align*}
& \frac{\overline{\mathrm{u}}}{2 \psi} \frac{\partial}{\partial \psi}\left[\left(\overline{\mathrm{k}}+\frac{\bar{\rho} \overline{\mathrm{C}}_{\mathrm{p}} \epsilon}{\mathbf{P}_{\mathrm{rt}}}\right)-\frac{\bar{\rho} \overline{\mathrm{u}}}{2 \psi} \frac{\partial \overline{\mathrm{~T}}}{\partial \psi}\right] \\
&= \frac{\mathrm{u}_{\mathrm{o}} \mathrm{u}}{2 \rho_{\mathrm{o}} \nu_{o} \psi^{*}} \frac{\partial}{\partial \psi^{*}}\left[\left(\mathrm{k}_{\mathrm{o}} \mathrm{k}^{*}+\frac{\rho_{\mathrm{o}} \rho^{*} \mathrm{C}_{\mathrm{po}} \mathrm{C}_{\mathrm{p}}^{*} \mathrm{E} \nu_{\mathrm{o}}}{\mathrm{P}_{\mathrm{rt}}}\right) \frac{\rho_{\mathrm{o}} \rho^{*} \mathrm{u}_{\mathrm{o}} \mathrm{u}}{2 \rho_{\mathrm{o}} \nu_{o} \psi^{*}}\right. \\
&\left.\left(\mathrm{T}_{\mathrm{wr}}-\mathrm{T}_{\mathrm{o}}\right) \frac{\partial \theta}{\partial \psi^{*}}\right] \\
&=\left(\frac{\mathrm{u}_{\mathrm{o}}^{2} \mathrm{C}_{\mathrm{po}}\left(\mathrm{~T}_{\mathrm{wr}}-\mathrm{T}_{\mathrm{o}}\right)}{\nu_{\mathrm{o}}}\right) \frac{\mathrm{u}}{2 \psi^{*}} \frac{\partial}{\partial \psi^{*}}\left[\left(\frac{\mathrm{k}^{*}}{\mathrm{P}_{\mathrm{ro}}}+\frac{\rho^{*} \mathrm{C}_{\mathrm{p}}^{*} \mathrm{E}}{\mathrm{P}_{\mathrm{rt}}}\right) \frac{\rho^{*} \mathrm{u}}{2 \psi^{*}} \frac{\partial \theta}{\partial \psi^{*}}\right] \tag{A-15}
\end{align*}
$$

The fourth term of the energy equation is non-dimensionalized as follows:

$$
\begin{align*}
& \left(\frac{\bar{\mu}+\bar{\rho} \epsilon}{\bar{\rho}}\right)\left(\frac{\bar{\rho} \overline{\mathrm{u}}}{2 \psi} \frac{\partial \bar{u}}{\partial \psi}\right)^{2} \\
& =\left(\frac{\mu_{0} \mu^{*}+\rho_{0} \rho^{*} \mathrm{E} \nu_{0}}{\rho_{\mathrm{o}} \rho^{*}}\right)\left(\frac{\rho_{\mathrm{o}} \rho^{*} u_{\mathrm{o}} \mathrm{u} \mathrm{u}_{\mathrm{o}}}{2 \rho_{\mathrm{o}} \nu_{\mathrm{o}} \psi^{*}} \frac{\partial \mathrm{u}}{\partial \psi^{*}}\right)^{2} \\
& =\left(\frac{u_{0}^{4}}{\nu_{\mathrm{o}}}\right)\left(\frac{\mu^{*}+\mathrm{E} \rho^{*}}{\rho^{*}}\right)\left(\frac{\rho^{*} \mathrm{u}}{2 \psi^{*}} \frac{\partial u}{\partial \psi^{*}}\right)^{2} \tag{A-16}
\end{align*}
$$

Each of the four terms of the energy equation is then divided by the quantity:

$$
\begin{equation*}
\frac{\mathrm{u}_{\mathrm{o}}^{2} \mathrm{C}_{\mathrm{po}}\left(\mathrm{~T}_{\mathrm{wr}}-\mathrm{T}_{\mathrm{o}}\right)}{\nu_{\mathrm{o}}} \tag{A-17}
\end{equation*}
$$

which results in the following combination of quantities in the second and fourth terms of the energy equation:

$$
\frac{u_{o}^{2}}{\mathrm{C}_{\mathrm{po}}\left(\mathrm{~T}_{\mathrm{wr}}^{-\mathrm{T}_{\mathrm{o}}}\right)} \quad \text { which equals } \mathrm{C}_{\mathrm{L}}
$$

The substitution of equations A-13, A-14, A-15, and A-16 into equation 10, the division by the quantity in (A-17) and the substitution of $C_{L}$ into the second and fourth terms results in equation 17 of the main text.

## Appendix B

## FINITE DIFFERENCE EQUATIONS

This Appendix provides the detailed derivations of the finite difference equivalents of the momentum and energy conservation equations, (16) and (17) respectively. For convenience the following definitions are introduced:
and

$$
Q=\left[\frac{\mathrm{k}^{*}}{\mathrm{P}_{\mathrm{ro}}}+\frac{\mathrm{E} \rho^{*} \mathrm{C}_{\mathrm{p}}^{*}}{\mathrm{P}_{\mathrm{rt}}}\right] \frac{\rho^{*} \mathrm{u}}{2 \psi^{*}}
$$

$$
\mathrm{S}=\left[\frac{\mu^{*}+\mathrm{E} \rho^{*}}{2 \psi^{*}}\right] \quad \rho^{*} \mathrm{u}
$$

These definitions and the assumption that $C_{p}^{*}=1.0$ permit the momentum and energy equations to be expressed as

$$
\begin{align*}
& u \frac{\partial u}{\partial X}=-\frac{1}{2 \rho^{*}} \frac{d P}{d X}+\frac{u}{2 \psi^{*}} \frac{\partial}{\partial \psi^{*}}\left[S \frac{\partial u}{\partial \psi^{*}}\right]  \tag{B-1}\\
& u \frac{\partial \theta}{\partial \bar{X}}=\frac{C_{L}}{2 \rho^{*}} u \frac{d P}{d X}+\frac{C_{L} u S}{2 \psi^{*}}\left[\frac{\partial u}{\partial \psi^{*}}\right]^{2}+\frac{u}{2 \psi^{*}} \frac{\partial}{\partial \psi^{*}}\left[Q \frac{\partial \theta}{\partial \psi^{*}}\right] \tag{B-2}
\end{align*}
$$

Before approximating these equations with finite difference relations a system of grid lines parallel to the X and $\psi^{*}$ axes must be introduced. As illustrated in figure B-1, a nodal point coincides with each intersection of these lines. Lines parallel to the $\psi^{*}$ axis are termed m-lines and those parallel to X axis n-lines. Each node is given a double subscript, the first being the number of the m-line passing through it, and the second the n-line number.


Figure B-1 Definition of Grid Lines for Finite Difference Solution

The values of the variables on the $\mathrm{m}=1$ line are the known initial conditions. The conservation equations express for each node on the $\mathrm{m}=2$ line its inter-relation with other nodes on the $m=2$ line and nodes on the $m=1$ line. If $m=2$ line nodes are only related to nodes which lie on the $m=1$ line, the finite difference scheme is termed explicit. If an $m=2$ node is also related to a number of other $m=2$ nodes, the scheme is termed implicit (See figure B-2).


Figure B-2
Diagrams of Explicit and Implicit Solutions
The implicit form of finite difference schemes leads to a series of N simultaneous algebraic equations relating the known initial conditions on the $m=1$ line and the unknown variables on each of the N nodes on the $\mathrm{m}=2$ line. After solution of these simultaneous equations, the variables on the $m=3$ line are expressed in terms of the known values on the $\mathrm{m}=2$ line. Proceeding in this manner, a solution to the complete flow field is marched out. Although simpler to program, the explicit scheme shows unstable characteristics if the m-lines are widely spaced relative to the $n$-line spacing. Implicit schemes show much more stable characteristics and therefore allow much larger m-line spacings, thus reducing computation times. The computer procedure presented in this report employs a system of implicit finite difference approximations which are defined using the notation described in figure B-3.


Figure B-3
Implicit Finite Difference Term Definition
The velocity at nodes $n+1$ and $n-1$ can be expressed in terms of a Taylor series expanded about node $n$, on the same $m$-line,

$$
\begin{aligned}
& u_{n+1}=u_{n}+\left.\Delta \psi_{1} \frac{\partial u}{\partial \psi^{*}}\right|_{n}+\left.\frac{\left(\Delta \psi_{1}\right)^{2}}{2} \frac{\partial^{2} u}{\partial \psi^{*}}\right|_{n} \quad+\text { higher order terms } \\
& u_{n-1}=u_{n}-\left.\Delta \psi_{2} \frac{\partial u}{\partial \psi^{*}}\right|_{n}+\left.\frac{\left(\Delta \psi_{2}\right)^{2}}{2} \frac{\partial^{2} u}{\partial \psi^{*}}\right|_{n} \quad+\text { higher order terms }
\end{aligned}
$$

$$
\text { Combining these equations to eliminate }\left.\frac{\partial^{2} u}{\partial \psi^{*}}\right|_{n} \text { yields, }
$$

$$
\frac{\left(\Delta \psi_{2}\right)^{2}}{2} u_{n+1}-\frac{\left(\Delta \psi_{1}\right)^{2}}{2} u_{n-1}=\frac{u_{n}}{2}\left(\Delta \psi_{2}^{2}-\Delta \psi_{1}^{2}\right)+\left.\frac{\partial u}{\partial \psi^{*}}\right|_{n} \frac{1}{2}\left(\Delta \psi_{1} \Delta \psi_{2}^{2}+\Delta \psi_{2} \Delta \psi_{1}^{2}\right)
$$

+ higher order terms

Neglecting terms of the order $(\Delta \psi)^{3}$ and higher, yields
$\left.\frac{\partial u}{\partial \psi^{*}}\right|_{n}=\frac{\left(\frac{\Delta \psi_{2}}{\Delta \psi_{1}}\right) u_{n+1}-\left(\frac{\Delta \psi_{1}}{\Delta \psi_{2}}\right) u_{n-1}-\left(\frac{\Delta \psi_{2}}{\Delta \psi_{1}}-\frac{\Delta \psi_{1}}{\Delta \psi_{2}}\right) u_{n}}{\Delta \psi_{2}+\Delta \psi_{1}}$

Defining $R_{1}=\frac{\Lambda \psi_{1}}{\lambda \psi_{2}\left(\Lambda \psi_{2}{ }^{+} \Delta \psi_{1}\right)}$
and

$$
\mathrm{R}_{2}=\frac{\Lambda \psi_{2}}{\Lambda_{1}\left(\Lambda \psi_{2}{ }^{+} \Lambda \psi_{1}\right)}
$$

yields,

$$
\begin{equation*}
\left.\frac{\partial u}{\partial \psi} *\right|_{n}=R_{2}\left(u_{n+1}-u_{n}\right)+R_{1}\left(u_{n}-u_{n-1}\right) \tag{B-5}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left.\frac{\partial \theta}{\partial \psi^{*}}\right|_{n}=R_{2}\left(\theta_{n+1}-\theta_{n}\right)+R_{1}\left(\theta_{n}-\theta_{n-1}\right) \tag{B-6}
\end{equation*}
$$

The second derivative term in the momentum equation is approximated using the following Taylor series expansions,

$$
\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n+\frac{1}{2}}=\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n}+\frac{\Lambda \psi_{1}}{2} \frac{\partial}{\partial \psi^{*}}\left[\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n}\right]+\frac{\Delta \psi_{1}^{2}}{4} \frac{\partial^{2}}{\partial \psi^{*}}\left[\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n}\right]
$$

$$
\begin{equation*}
+ \text { higher order terms } \tag{B-7}
\end{equation*}
$$

$$
\begin{align*}
\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n-\frac{1}{2}} & =\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n}-\frac{\Delta \psi_{2}}{2} \frac{\partial}{\partial \psi^{*}}\left[\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n}\right] \\
& +\frac{\Delta \psi^{2}}{4} \frac{\partial^{2}}{\partial \psi^{*}}\left[\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n}\right]+\text { higher order terms } \tag{B-8}
\end{align*}
$$

Neglecting terms of the order of $\frac{\Delta \psi^{2}}{4}$ and higher yields,

$$
\begin{align*}
\frac{\partial}{\partial \psi^{*}}\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n}= & \left\{\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n+\frac{1}{2}}-\left(s \frac{\partial u}{\partial \psi^{*}}\right)_{n-\frac{1}{2}}\right\}\left\{\frac{2}{\Lambda \psi_{1}+\Lambda \psi_{2}}\right\} \\
= & \frac{1}{\Delta \psi_{1}+\Delta \psi_{2}}\left[\frac{\left(s_{n+1}+s_{n}\right)\left(u_{n+1}-u_{n}\right)}{\Delta \psi_{1}}\right. \\
& \left.-\frac{\left(s_{n}+s_{n-1}\right)\left(u_{n}-u_{n-1}\right)}{\Delta \psi_{2}}\right] \tag{B-9}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\frac{\partial}{\partial \psi^{\star}}\left[Q \frac{\partial \theta}{\partial \psi^{\star}}\right]_{n}= & \frac{1}{\Delta \psi_{1}+\Delta \psi_{2}}\left[\frac{\left(Q_{n+1}+Q_{n}\right)\left(\theta_{n+1}-\theta_{n}\right)}{\Delta \psi_{1}}-\right. \\
& \left.\frac{\left(Q_{n}+Q_{n-1}\right)\left(\theta_{n}-() n-1\right.}{\Lambda \psi_{2}}\right] \tag{B-10}
\end{align*}
$$

The velocity at a node located at the intersection of the downstream m-1ine and any $n$-line $u_{2, n}$ can be expressed in terms of the following Taylor series,
$u_{2, n}=u_{1, n}+\left.\frac{\partial u}{\partial X}\right|_{n} \Delta x+\left.\frac{\partial^{2} u}{\partial X^{2}}\right|_{n}(\Delta X)^{2}+$ higher order terms

Use of the boundary layer equations implies that gradients in the $X$-direction are much smaller than those in the $\psi^{*}$-direction. Therefore it is permissible to use a simplier approximation of the X -direction derivatives.

Neglecting terms of $(\Delta X)^{2}$ and higher yields,

$$
\begin{equation*}
\left.\frac{\partial u}{\partial X}\right|_{n}=\frac{u_{2, n}-u_{1, n}}{\Delta X} \tag{B-12}
\end{equation*}
$$

This approximation is termed "backward-difference". Similarly,

$$
\begin{equation*}
\left.\frac{\partial \theta}{\partial \mathrm{X}}\right|_{\mathrm{n}}=\frac{{ }^{\theta}{ }_{2, n}-{ }^{\theta} 1, \mathrm{n}}{\Lambda X} \tag{B-13}
\end{equation*}
$$

The only terms in the energy and momentum equations which cannot be approximated using the preceeding equations are those containing the pressure gradient $\frac{d P}{d X}$. Assuming this gradient varies linearly throughout the $\Delta X$ interval yields,

$$
\begin{equation*}
\frac{\mathrm{dP}}{\mathrm{dX}}=\frac{1}{2}\left(\left.\frac{\mathrm{dP}}{\mathrm{dX}}\right|_{\mathrm{m}=1}+\left.\frac{\mathrm{dP}}{\mathrm{dX}}\right|_{\mathrm{m}=2}\right) \tag{B-14}
\end{equation*}
$$

## Momentum Equation

Combining equations ( $\mathrm{B}-1$ ), ( $\mathrm{B}-9$ ), ( $\mathrm{B}-12$ ) and ( $\mathrm{B}-14$ ) yields

$$
\begin{gather*}
u_{1, n} \frac{\left(u_{2, n}-u_{1, n}\right)}{\Delta X}=-\frac{1}{4 \rho_{1, n}^{*}}\left[\frac{d P}{d X}{ }_{m=1}+\frac{d P}{d X}{ }_{m=2}\right]+\frac{u_{1, n}}{2 \psi_{n}^{*}}\left(\frac{1}{\Delta \psi_{1}+\Delta \psi_{2}}\right) \\
{\left[\frac{\left(S_{n+1}+S_{n}\right)\left(u_{2, n+1}-u_{2, n}\right)}{\Delta \psi_{1}}-\frac{\left(S_{n}+S_{n-1}\right)\left(u_{2, n}-u_{2, n-1}\right)}{\Delta \psi_{2}}\right]} \tag{B-15}
\end{gather*}
$$

This equation can be expressed in the form

$$
\begin{equation*}
A_{n-1} u_{2, n}+B_{n-1} u_{2, n+1}+C_{n-1} u_{2, n-1}=D_{n-1} \tag{B-16}
\end{equation*}
$$

In which the coefficients are defined by equations 27 through 34 of the main text.

## Energy Equation

Combining equations (B-2), (B-5), (B-10), (B-13) and (B-14) yields

$$
\begin{align*}
\frac{u_{1, n}\left(\theta_{2, n}-\theta_{1, n}\right)}{\Delta X} & =\frac{C_{L} u_{1, n} S_{1, n}}{2 \psi^{*}}\left[R_{2}\left(u_{2, n+1}-u_{2, n}\right)+R_{1}\left(u_{2, n}-u_{2, n-1}\right)\right]^{2} \\
& +\frac{u_{1, n}}{2 \psi_{n}^{*}}\left[\frac{1}{\Delta \psi_{1}+\Delta \psi_{2}}\right]\left[\frac{\left(Q_{n+1}+Q_{n}\right)\left(\theta_{2, n+1}-\theta_{2, n}\right)}{\Delta \psi_{1}}\right. \\
& \left.-\frac{\left(Q_{n}+Q_{n-1}\right)\left(\theta_{2, n^{-\theta}} 2, n-1\right)}{\Delta \psi_{2}}\right]+\left(\frac{C_{L} u_{1, n}}{4 \rho_{1, n}^{*}}\right)\left[\frac{d P}{d X_{m=1}}+\frac{d P}{d X_{m=2}}\right] \tag{B-17}
\end{align*}
$$

This equation can be expressed in the form

$$
\begin{equation*}
A_{n-1} \cdot \theta_{2, n}+B_{n-1} \cdot \theta_{2, n+1}+C_{n-1} \cdot \theta_{2, n-1}=D_{n-1} \tag{B-18}
\end{equation*}
$$

in which the coefficients are defined by equations 37 through 45 of the main text.

## Appendix C

## Solution Procedure

The calculation procedure starts at the upstream flow boundary, where the values of all flow variables must be known or assumed. Specification of the velocity and temperature distribution, dimensionless eddy viscosity, duct and nozzle inlet dimensions, and working fluid, defines all initial conditions.

The known initial conditions, $m=1$ line, are related to the unknown conditions, $m=2$ line, by the previously derived equations, and assumed boundary conditions. These inter-relations form a set of $\mathrm{N}-2$ simultaneous algebraic equations, where N is the number of n -lines, and the equations are shown in Appendix B . The resultant matrix of coefficients is tridiagonal in form except for the initial and final rows which only contain two terms. Rapid, exact solutions to this type of matrix are obtained using the Thomas Algorithm, a successive elimination technique, which is described in this Appendix.

The solution for the variables on the $\mathrm{m}=2$ line is iterative, because of the presence of the unknown pressure in the momentum equation. The procedure adopted was to estimate the pressure gradient, and solve the equations, using the algorithm. The equations automatically satisfy conservation of mass, momentum, and energy, but only one pressure gradient yields the correct wall geometry. The duct dimension corresponding to the estimated pressure gradient was calculated from the $m=2$ line variables. The pressure gradient was then incremented by a small percentage of its initial estimated value, and the calculation process repeated for a new duct dimension. A third estimate of the pressure gradient was obtained by interpolation between the two calculated, and the actual duct dimension. In almost all the calculations performed to date, this value has been acceptably close, within $0.001 \%$, to the actual duct dimension. If this criterion is not met, a further iteration is applied, and a fourth solution obtained.

The now known variables on the $\mathrm{m}=2$ line become the new $\mathrm{m}=1$ line variables and the procedure is repeated for another set of $m=2$ line variables. Thus a solution to the complete flow field is marched out.

The difference form of the momentum and encrgy
equation is:

$$
\begin{equation*}
A_{n-1} x_{n}+B_{n-1} x_{n+1}+C_{n-1} x_{n-1}=D_{n-1} \tag{C-1}
\end{equation*}
$$

where x is either u or $\theta$. If the number of n -lines is N , there are $N-2$ equations of the form (1) and two equations expressing the boundary conditions. The first and the last equations represent the boundary conditions, which in difference form along the axis of symmetry are:

$$
\begin{equation*}
\frac{\partial u}{\partial \psi^{*}}=0 \text { or } u_{2,2}=u_{2,1} \tag{C-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \theta}{\partial \psi^{*}}=0 \text { or } \theta_{2,2}=\theta_{2,1} \tag{C-3}
\end{equation*}
$$

Equations (C-2) and (C-3) can be written in terms of X as follows:

$$
\begin{equation*}
x_{1}=x_{2} \tag{C-4}
\end{equation*}
$$

At the duct wall the boundary conditions are

$$
\begin{equation*}
u_{N}=0 \tag{C-5}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{2, \mathrm{~N}}=\theta_{2, \mathrm{~N}-1} \tag{C-6}
\end{equation*}
$$

Equations (C-5) and (C-6) can be written in terms of X as follows:

$$
\begin{equation*}
\mathrm{X}_{\mathrm{N}}=\mathrm{K}_{\mathrm{N}-1} \tag{C-7}
\end{equation*}
$$

where $K$ is 0 for the momentum equation and unity for the energy equation. Thus, the matrix form of the equation ( $\mathrm{C}-1$ ) is shown on the following page (Table C-1).

The second equation is

$$
\begin{equation*}
C_{1} X_{1}+A_{1} X_{2}+B_{1} X_{3}=D_{1} \tag{C-9}
\end{equation*}
$$

Substituting equation (C-4) into this equation yields:

$$
\begin{equation*}
A_{1}^{\prime} X_{2}+B_{1} X_{3}=D_{1} \tag{C-10}
\end{equation*}
$$

where $A_{1}^{\prime}=C_{1}+A_{1}$
The $N^{\text {th }}-1$ equation is

$$
\begin{equation*}
C_{n-2} x_{N-2}+A_{N-2} x_{N-1}+B_{N-2} x_{N}=D_{N-2} \tag{C-ll}
\end{equation*}
$$

Substituting equation (C-7) into this equation yields:

$$
\begin{equation*}
C_{N-2} X_{N-2}+A_{N-2}^{\prime} X_{N-1}=D_{N-2} \tag{C-12}
\end{equation*}
$$

where $A_{N-2}^{\prime}=A_{N-2}+K \cdot B_{N-2}$

Thus the $N$ equations ( $\mathrm{C}-8$ ) can be reduced to the $\mathrm{N}-2$ equations shown on Table C-2.

$$
\begin{aligned}
& 10 a^{-1} A^{N} a^{\infty} a^{\perp} a^{a} a^{\frac{1}{4}} 0^{\text {a }} \\
& \sqrt{x^{-1} x^{0} x^{0} x^{4} x^{\frac{1}{4}} x^{\frac{1}{4}} x^{\frac{1}{4}} x^{x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& 111111 \\
& 0000 \quad 1 \quad \underset{\sim}{\text { M }} 1 \quad 0 \quad 0 \\
& 0000 \quad 1 \quad \begin{array}{l}
\text { a } \\
\text { a }
\end{array} \quad 0 \quad 0 \\
& 0000 \quad 1,0 \begin{array}{l}
\square \\
\square
\end{array} 0 \\
& \begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & \infty^{\infty} & 1 & 0 & 1 & 0 & 0
\end{array} \\
& 0 \text { o m } \underbrace{\infty} 10100 \\
& 0 \prod^{-1} \mathbb{U}^{\infty} 10100 \\
& \because \mathbb{H}^{n} 0 \quad 1 \quad 0 \quad 100 \\
& L^{-1} \quad U^{-1} \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0
\end{aligned}
$$



The Thomas Algorithm
Starting with the first equation, $X_{2}$ can be expressed in terms of $X_{3}$. The second equation gives $X_{3}$ in terms of $X_{4}$. Continuing through all the equations until the $N^{\text {th }}-3$ equation gives $X_{N-2}$ in terms of $X_{N-1}$. Combining this with the last equation gives $\mathrm{X}_{\mathrm{N}-1}$. Working backwards through the equations then allows the remaining unknowns to be found. This procedure is most easily applied by defining the following:
$W_{1}=A_{1}^{\prime}$
$g_{1}=\frac{D_{1}}{W_{1}}$
$Q_{n-1}=\frac{B_{n-1}}{W_{n-1}}$
$n=2,3--(N-2)$
$W_{n}=A_{n}-C_{n} Q_{n-1}$
$n=2,3--(\mathrm{N}-2)$
$g_{n}=D_{n}-\frac{C_{n} g_{n-1}}{W_{n}}$
$n=2,3--(N-2)$

Equations (C-13) then reduce to:
$x_{N-1}=g_{N-2}$ and $x_{n}=g_{n-1}-Q_{n-1} X_{n+1} n=(N-2),(N-3),--2$
If the values of $W, Q$ and $g$ are calculated in order of increasing $n$ using equations ( $C-14$ ), then equations ( $C-15$ ) can be used to calculate the values of $X$ in order of decreasing $X$ starting with $\mathrm{X}_{\mathrm{N}-1}$. To clarify this procedure, the method is now used to solve the following four simultaneous equations:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
A_{1}^{\prime} & B_{1} & 0 & 0 \\
C_{2} & A_{2} & B_{2} & 0 \\
0 & C_{3} & A_{3} & B_{3} \\
0 & 0 & C_{4} A^{\prime}{ }_{4}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
D_{1} \\
D_{2} \\
D_{3} \\
D_{4}
\end{array}\right]} \\
& A_{1}^{\prime} x_{2}+B_{1} X_{3}=D_{1} \\
& W_{1}=A_{1}^{\prime} \\
& Q_{1}=\frac{B_{1}}{W_{1}} \\
& g_{1}=\frac{D_{1}}{W_{1}} \\
& \text { hence } X_{2}=g_{1}-Q_{1} x_{3}
\end{aligned}
$$

$$
A_{2} x_{3}+B_{2} x_{4}+C_{2} x_{2}=D_{2}
$$

$$
W_{2}=A_{2}-C_{2} Q_{1}
$$

$$
Q_{2}=\frac{B_{2}}{W_{2}}
$$

$$
g_{2}=\frac{D_{2}-C_{2} g_{1}}{W_{1}}
$$

$$
\begin{equation*}
\text { hence } x_{3}=g_{2}-x_{4} Q_{2} \tag{C-16}
\end{equation*}
$$

$$
\begin{align*}
& A_{3} X_{4}+B_{3} X_{5}+C_{3} X_{3}=D_{3} \\
& W_{2}=A_{3}-C_{3} Q_{2} \\
& Q_{3}=\frac{B_{3}}{W_{3}} \\
& g_{3}=\frac{D_{3}-C_{3} g_{2}}{W_{3}} \\
& \text { hence } X_{4}=g_{3}-Q_{3} x_{5}  \tag{C-17}\\
& A_{4}^{\prime} X_{5}+C_{4} X_{4}=D_{4} \\
& W_{4}=A_{4}-C_{4} Q_{3} \\
& g_{4}=\frac{D_{4}-C_{4} g_{3}}{W_{4}} \\
& \text { hence } X_{5}=g_{4} \tag{C-18}
\end{align*}
$$

Substituting in equation ( $\mathrm{C}-16$ ) yields $\mathrm{X}_{3}$. Equations ( $\mathrm{C}-17$ ) and ( $\mathrm{C}-18$ ) are special forms of equations ( $\mathrm{C}-15$ ) for $\mathrm{N}=6$ and $\mathrm{n}=4$.

## Appendix D

## COMPUTER PROGRAM

The computational procedure consists of a main program, which is divided into ten sections, and six subroutines. The program Flow Chart is shown on Figure D-1. The functions of each section of the main program are as follows:

Section (1): Input and Initialization
(a) Constants which have single, initial value for most applications are defined with data statements.
(b) The parameters which specify the test conditions are inputed from data cards.
(c) Dimensional parts of the data are non-dimensionalized.

## Section (2): Initial Profiles Generated

(a) The initial $u, \theta, \mu^{*}, \rho^{*}, \mathrm{E}, \mathrm{Y}$, and $\psi^{*}$ distributions are calculated.
(b) The shear layer and wall boundary layer thickness are calculated using a search technique applied to the $m=1$ line velocity profile.

Section (3): Turbulence Model
(a) The dimensionless eddy viscosity, which will subsequently be used in calculating the variables on the $m=2$ line, is calculated from $m=1$ velocity profile and one of the turbulence models detailed in the main text.

## Section (4): Choice of X-Step

(a) The distance between the $\mathrm{m}=1$ and $\mathrm{m}=2$ lines is chosen. Initially, this distance is related to the shear layer width but after this layer impinges on the wall boundary layer, it becomes a constant fraction of the duct radius or width.


Figure D-1
Computer Program Flow Chart


Figure D-1 (continued)

Section (5): Calculation of Velocity on $m \neq 2$ Line
(a) The duct radius or width at the $\mathrm{m}=2$ line, is interpolated from the input data.
(b) Initially, the $m=2$ line pressure gradient is set equal to the average of the pressure gradients at the previous two $m$ lines.
(c) The distribution of velocity on the $m=2$ line is calculated.

Section (6): Calculation of Temperature on $m=2$ Line
(a) The distribution of temperature on the $m=2$ line, is calculated, and from it the distributions of density and molecular viscosity.

## Section (7): Pressure Gradient Modification

(a) The position of the nth node, in the $y$-plane, is calculated from the $m=2$ line profiles. If this value is acceptably close to the duct wall, the pressure is incremented by dp.
(b) Alternatively if this requirement is not satisfied, then an improved estimate of the pressure gradient is made.
(c) Using this estimate, section 5(c) and section (6) are repeated.

Section (8): Transference
(a) The values of $u$ and $\theta$ calculated on the $m=2$ line are transferred to the storage space previously used for conditions on the $m=1$ line, in preparation for the advance to the next $m$-line.

## Section (9): Output

(a) The velocity and temperature profiles are printed out at defined intervals, and several flow variables are printed at every step.

Section (10): Termination Test
(a) If the maximum $x$-value has not been reached, execution is returned to Section (3), in order to advance to the next m-line. The functions of each sub-routine are as follows:

CALC: This evaluates $u$ and $\theta$ using the Thomas algorithm.

RADIUS: The duct shape is inputed to the calculation procedure, through this routine. It interpolates this data and calculates the local duct radius at every m-line.

TEMP: If the dimensionless temperature variation is a known boundary condition, it is specified in the routine. This routine is redundant with the present boundary conditions.

YDIS: The position of the grid nodes in the $y$-plane is calculated with this routine.

PSI: $\quad$ The position of the grid nodes in the $\psi$-plane is assigned in this routine. The initial flow conditions determine the form of this routine, i.e. single stream flow, two-stream and mass ratio.

LOOK: The shear layer and boundary layer width are calculated using a search technique applied to the $m=1$ line velocity profile.

CHECK: This routine checks the conservation of mass and energy.
MCHECK: This routine checks the conservation of momentum between adjacent m-lines.

PROF: Calculates the initial velocity and temperature profiles.

A(I)
B(I)
BB
BE
BH

BY

CC
C(I)
D(I)
DELTA
DP1
DP2
DP11
DX
E(I)

ENERG

FDUCT
FPRIM
GAMA
IF LOW

ITER
JF LOW
$A_{n-1}$
$B_{n-1}$
Minimum value of step size $\Delta X$
Dimensionless jet shear layer inner edge
Dimensionless jet shear layer width, BY-BE
Dimensionless jet shear layer outer edge
$\kappa$
$C_{n-1}$
$D_{n-1}$
$\Delta$
$\frac{d P}{d X}\left\{\begin{array}{l}\text { at } m=1 \text { line } \\ \text { at } m=2 \text { line } \\ \text { at } m=0 \text { line }\end{array}\right.$
$\Delta X$
E
$\sum_{i=1}^{N} \theta u \rho * \Delta Y$
Mass flow in duct
Mass flow in nozzle
$\gamma$
Control variable (zero upstream of point
where wall boundary layer and shear layer
meet, otherwise one)
Iteration counter for inner loop
Control variable with the value one for singlestream flow and two for two-stream flow

LVH
LZ

N
NL, NP, NPP, SQP

NJ
NSTEP
NTEST
PAMB
PCUM
PE
PH2O
PS(I)
PR
PRT
PSN
PSNJ
RHO(m, I)
RM
RNU
ROREF
$\mathrm{RR}(\mathrm{I})$
$T(\mathrm{~m}, \mathrm{I})$
TCLI

TF LOW

Dimensional local velocity head, $\bar{\rho} \bar{u}^{2} / 2 g_{o}$
$\mathrm{L}_{\mathrm{m}}$
Total number of node points on each m-line
Control variables for axisymmetric flow $\mathrm{NL}=1$,
$\mathrm{NP}=2$, $\mathrm{NPP}=0$ and $\mathrm{SQP}=0.5$; and for plane
flow $N L=0, N P=0, N P P=1$ and $S Q P=1$
Number of node points in jet
Number of downstream steps
Test number
Ambient pressure
Local dimensionless pressure
Pressure at nozzle exit plane
Local dimensional pressure
$\psi_{n}^{*}$
$\mathrm{P}_{\mathrm{r}}$
$\mathrm{P}_{\mathrm{rt}}$
Total $\psi^{*}$ in the duct
Total $\psi^{*}$ in the jet
$\rho^{*}$
$M_{i r}$
$\mu_{0}$
$\rho_{0}$
Duct width or diameter
$\theta$
$\mathrm{T}_{\mathrm{j}}$
Total mass, flow rate, $\sum_{i=1}^{N} \rho * u \Delta Y$

TREF
TSEC

TTP(J)
TTT(J)

TWREF
$\mathrm{U}(\mathrm{m}, \mathrm{I})$
UCLI
UPOT
URR
USE
UUU(I)
VHEAD
VIS(I)
X
XX

XX(I)

XRO
$\mathrm{Y}(\mathrm{I})$
YJ
YS
$\mathrm{T}_{\mathrm{o}}$
Temperature of secondary flow at nozzle exit plane
$\overline{\mathrm{T}}$
Dimensional stagnation temperature at each node,
$\overline{\mathrm{T}}+\frac{\bar{\rho} \bar{u}^{2}}{2 \mathrm{~g}_{\mathrm{o}}}$
$\mathrm{T}_{\mathrm{wr}}$
u
$u_{0}$
Velocity at inflection powi
$u^{*}$
Secondary velocity at nozzle exit
$\overline{\mathbf{u}}$
Reference velocity head, $\rho_{o} u_{o}^{2 / 2 g}{ }_{o}$
$\mu^{*}$
X
Distance from duct inlet at which calculation ends

Distance from duct inlet at which duct width, RR(I) are provided
Non-dimensional downstream distance with respect to the initial duct half width or radius Y
Half nozzle width or radius at nozzle exit $y^{+}$

Definition of the Input and Output Parameters

Part (a) Input data
The input data to the program must be prepared according to the following sequence:

Card No.

Parameters

SQP, NP, NPP, NL
DP1, DP2, DP11
$\mathrm{X}, \mathrm{xx}$
MK
$\{\operatorname{PROFE}(\mathrm{I}), \mathrm{I}=1, \mathrm{MK}\}$
NTEST
P01, TO1, PAMB, TOO, AMASS1, AMASSO, RD, YJ

$$
\{(\mathrm{PS}(\mathrm{I}), \mathrm{I}=53,70)\}
$$

NS
$\{(\operatorname{RR}(\mathrm{I}), \mathrm{I}=1, \mathrm{NS})\}$
$\{(\mathrm{XX}(\mathrm{I}), \mathrm{I}=1, \mathrm{NS})\}$
SQP, NP, NPP, NL

## Format

F5.0, 3I5
3E13.6
8F10.0
I5
8F10. 0

I5
8F10.0

6E13.6

I2

8F10.0

8F10.0

F5.0, 3 I5

Card 19 is the last card to end the calculation of the Program, on which NPP must be set a value larger than 1 .

Cards 1 through 18 are required for each set of data. For data more than one set, cards 1 through 18 must be repeated in the same sequence.

An example of input data for two sets of data are shown on Table A-1. The input parameters are:

| SQP, NP, NPP, NL | Control Card for axisymmetric flow |
| :---: | :---: |
|  | SQP $=0.5, \mathrm{NP}=2, \mathrm{NPP}=0, \mathrm{NL}=1$, for plane flow |
|  | $\mathrm{SQP}=1.0, \mathrm{NP}=0, \mathrm{NPP}=1, \mathrm{NL}=0$. |
| DP1, DP2, DPIl | Initial guessed dimensionless pressure gradients on $\mathrm{m}=1,2$ and zero lines respectively. The initial guesses of the values of DPl, DP2, DP1l at the initial plane may be assumed equal at any plus or minus dimensionless value of the order of $10^{-7}$ to $10^{-8}$. |
| X - | Distance from duct inlet to nozzle exit plane at which calculation begins, inches. |
| XX- | Distance from duct inlet at which calculation stops |
| MK- | A number which indicates the number of velocity and temperature detail being printed out. |
| PROFE (I)- | An array contains MK value of downstream positions in inches where the velocity and temperature detail are required to be printed out. |
| NTEST- | Test or Run number identity |
| PO1- | Stagnation pressure of the primary flow, psia |
| TOL- | Stagnation temperature of the primary flow, ${ }^{\circ} \mathrm{R}$ |
| PAMB | Ambient pressure (i. e., stagnation pressure of the secondary flow), psia |
| TOO- | Stagnation temperature of the secondary flow, ${ }^{\circ} \mathrm{R}$ |
| AMASSl- | Primary mass flow rate. |
| AMASS0- | Secondary Mass flow rate. <br> For axisymmetric flow, lbm/sec. For plane flow, lbm/sec-in. |
| RD- | Half duct width at nozzle discharge plane, inches |
| YJ- | Full jet width, inches, (Outside dimension of nozzle exit) |

Card No.


PS(I)-

Indicates the total number of duct geometry to be read in the

RR(I) -

XX(I) -
To take care of the boundary layer problem, the last 18 values to the wall are required to be specified in the SUBROUTINE PSI. SUBROUTINE PS(I) already includes the values needed for the computer calculation. The computer values were selected to satisfy the following:
(l) grid spacing of the wall should not correspond to a value of $\mathrm{y}^{+}$greater than 3.
(2) neighboring grid spacings should not differ in size by more than $50 \%$.
(3) close spacing is also required in any region away from the wall where the velocity gradient is large.

## SUBROUTINE RADIUS

An array contains the total number (NS) of duct width, inches
An array contains the total number (NS) of axial downstream distance, where $R R(I)$ are provided, inches

Part (b) Output Parameters
The first section of the output repeats the most important input data for different test or run number.

Velocity ratio $=\frac{\text { initial velocity of secondary flow }}{\text { initial velocity of primary flow }}$
Width ratio $=\frac{\text { initial duct width }}{\text { nozzle width }}$
Mass flow ratio $=\frac{\text { secondary mass flow }}{\text { primary mass flow }}$
J - Indicates node point counting from centerline to wall
$Y(J)$ - Dimensionless $Y$ coordinate with respect to the local half duct width.
$\mathrm{U}(\mathrm{J})$ - Dimensional velocity on Jth node, $\mathrm{ft} / \mathrm{sec}$

Dimensional stagnation temperature on Jth node, ${ }^{\circ} \mathbf{F}$

I -

XIN -

X/BO -

B/BO -

PH2O -

UCENT -

TOCENT -

AUGMENT -

USTER -

Print step counter at approximately XIN increases 0.25 inches
downstream distance from nozzle exit plane where calculation begins, inches
ratio of downstream distance with respect to initial half duct width.
ratio of the local duct width with respect to initial duct width.

Local wall static pressure, 9 inches of water
velocity of the flow at centerline, ft/sec centerline stagnation temperature of the flow, ${ }^{\circ} \mathrm{F}$ Local momentum flux, $2 \int_{0}^{y_{w}} \bar{\rho} \bar{u}^{2} d y$, divided by initial jet momentum

Local friction velocity, ft/sec

The selection of intervals at which calculations are made is determined by a subroutine in the computer program. The data is printed out at approximately quarter inch intervals. The locations where temperature and velocity profiles are printed out are specified by the user in $\operatorname{PROFE}(1)$ described in the input data.

## PROGRAM LISTING

The program listing included in this report is for the program as run on a CDC/6600. The program was initially developed on an IBM $360 / 50$. The deck is the one successfully run on the $\mathrm{CDC} / 6600$.

The essential changes to the program necessary to recover the IBM 360/50 deck are:

1. Certain variables should be in a real* 8 mode

Add

Card
JMX40 REAL*8 Y, DABS, DLOG, YB1, YB2
YIS20
CHE20
BLC20
REAL* 8 ZY, Y

LEF20
REAL* 8 Y
REAL* 8 Y
REAL*8 Y
Change

Functions ABS( ), and ALOG( ), should be changed to DABS( ), and DLOG( ). These occur in cards

| JMX2710 | JMX3750 | JMX4450 |
| :--- | :--- | :--- |
| JMX3030 | JMX4340 | JMX4460 |

Card YIS50 should be $Y(1)=0.0 \mathrm{D} 0$
Output Hollerith symbols should be changed from * to These occur in cards

| JMX460 | JMX660 | JMX730 | JMX2120 | JMX5640 |
| :--- | :--- | :--- | :--- | :--- |
| JMX470 | JMX700 | JMX740 | JMX5190 | JMX5650 |
| JMX520 | JMX710 | JMX2090 | JMX5200 | JMX5660 |
| JMX530 | JMX720 | JMX2110 | JMX5590 | JMX5670 |
| GEM110 | CHE330 | BLC190 |  |  |
| GEM120 | CHE340 | BLC200 |  |  |
| acters are BCD. |  |  |  |  |

## Figure D-2

## COMPUTER PROGRAM LISTING

RUN VERSTON 2.7 --OSR LEVEL 29R-=














RUM VFOSION 2.7--PSR LEVEL 29R**

|  |  |  | Y/5 | 10 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | GIMFNSION Y(70), PS (70). AHO (2,70), U(2,70) | YIS | 30 |
| 000n1n |  | COMMON NP, SUR, NPD,NL | vis | 40 |
| 000010 |  | $y(1)=0.0$ | $Y$ IS | 50 |
| 000011 |  | no 500 $1=2, N$ | Y15 | 60 |
| 00001 ? |  |  | Y15 | 70 |
| 000023 |  |  | Y15 | 80 |
| $00004 \%$ | 500 |  | $Y 15$ | 90 |
| 000050 |  | PETURN | Yis | 100 |
| 000050 |  | ENO | Y/5 | 110 |

```
GUN VFRSION 2.3 --PSR LEVEL 29AOE
Y01$
rois
SUHPPOGRAM LENAFH
000106
FUNCTION ASSIGNMENTS
STATEMENT ASSITANENTS
BLOCK NAMES ANN LENGTHS
    - ODOON4
```



```
2 =000104 2r -000105
START OF CONSTANTS
00005?
START OF TEMPODARIES
000054
START OF TNOIRFCTS
000073
Unusen compileg space
073300
```

```
HIIN VFPGION 2.3 --DSR LEVFL 29A-%
```



```
    RUA VFOSION 2.T =-PSR LEVEL ZOROM CALC
    CALC
SUGOROGQAM LENATH
000437
FIJHCTION ASSIGNMENTS
STATENENT ASSITAMENTS
glOCK NamES ANN LENGTHS
```



```
START OF CONSTANTS
000064
START OF TFMPOQARIES
000n65
STADT OF INNIRECTS
000nt1
UNUSEM COMPILED SPACE
07220n
```

RIJN VFRSION 2.3 --PSA LEVEL 29R-F


```
DUA: VERSIOA 2.3 --PSR LEVEL 29R=-
                    SURROUTINE PSI| N. PSN,NJ,PS,PSNJI
C
    nIMFNSION PS(7A)
C OIMFNSION PSEI IS THE NUMAER OF NODE POINTS IN JET
    JN=11
        N,J= JN*l
        PS(1) =n.0
        DO 30 I = 2.NJ
        PS(I)= PSNJ/2.*(1.-COS(3.1416/FLOAT(JN)*FIOAT(I-1))
        TO CONTINUE
        FS = 0.1*(PSN-PSNJ)
        J=NJ+1
        K=NJ*JN
            no 40 l=J,k
            PS(I) PS(NJ)*FS*(1.-COS(3.1416/(2.*JN)*FLOAT(I-NJ)))
            CONT INUE
            OFLDS =.85*(PSN-PSNJ)/FLOAT(N-K-18)
            J =K+l
            K=N-1A
            no 50 I = J.K
            PS(I)=DS(I-I) *OELPS
            CONTINUF
            FSA=.05*(PSN-PSNJ)
            J=K+1
            RFAN(5.200) (PS(I),I=J,N)
            FODMAT (SEJ3.6)
            DO कD I JiN
            P5(I) = PS(K) FSA*PS(I)
            CONTINUE
            ON 101I=1.N
            PS(f) = SORT(PS(I))
            CONTINUE
            RETURN
            ENN
RUN VEQSION 2.3 --PSR LEVEL 29g-- PSI
PSI
SUgDEOSAAM LENATH
000225
FUAETION ASSIGNMENTS
STATENENT ASSTONMENTS
200 - 000174
BLOCK NaNES ANN LENGTHS
```



```
STACT OF CONSTANTS
00:162
STEST OF TFMPORARIES
00C176
STAFT OF INNIRECTS
0COनו5
UNUSEO COMPILER SPACE
07270n
```

    \(\begin{array}{ll}\text { PSI } & 10 \\ \text { PSI } & 20\end{array}\)
    

RUN VFRSTON 3.3 --PSR LEVEL 29R-*


RUN VFRSION 2.3 --PSR LEVFL 29A=-

| SUPROUTINE CHECKIY, E,U,RHO,YT,FOUCT, TTP, TTT,NN, UCLI, UJRI |  |  | CHE | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 000018 |  | COMMON NP, SGP, NPP, NL | CHE | 30 |
| OOOCl6 | OIMFNSION Y(70), E(70),1J(2,70), RHO (2,70), ¢YP(70),TTT(70) |  | CHE | 40 |
| 000014 | ENFRTix0. |  | CHE | 50 |
| 000017 | TFLOWE0. |  | CHE | 60 |
| 000020 | VISCINaO. |  | CHE | 70 |
| 000021 | NEL? $\mathrm{O}^{\text {O }}$ |  | CHE | 80 |
| 000072 |  |  | CHE | 90 |
| 000023 | JP1aJ+1 |  | CHE | 100 |
| 000025 |  |  | CHE | 110 |
| $\left.1 *\left(R_{H} \cap(2, J P)\right)+R_{H \cap}(2, J)\right)$ |  |  | $\mathrm{CHE}^{\text {che }}$ | 120 |
|  |  |  | CHE | 130 |
| 000056 |  |  | CHE | 140 |
|  |  |  | CHE | 150 |
| 00010 ? |  |  | CHE | 160 |
|  |  |  | CHE | 170 |
| 000134 |  |  | CHE | 180 |
| 1*(1)(?,JP1) +U(2,J))*(RHU(?,JP1) +RHO(2,J))/8. |  |  | CHE | 190 |
| 000172 | 3471 CONTINUE |  | CHE | 200 |
| 000175 | IF INP - EO. O) TO TO 219 |  | CHE | 210 |
| 000176 | FFiFRG=ENERG/ (FDUCT*YT**2) |  | CHE | 220 |
| 000200 | TFLOW=TFLOW/(FOUCT*YT**) |  | CHE | 230 |
| 000201 | 219 | GO 10319 CONTINUE | CHE | 240 |
| 000207 |  |  | CHE | 250 |
| 00070 ? |  | DSN = FOUCT | CHE | 260 |
| $\begin{aligned} & 000203 \\ & 000705 \end{aligned}$ | ENFRG=ENERG/PSN |  | $\begin{aligned} & \text { CHE } \\ & \text { CHE } \end{aligned}$ | 270 280 |
| 000206 | 319 | 「ONTINUE | CHE | 290 |
| 000706 | VISCIN=VISCIN*.000158**2 |  | CHE | 300 |
| 006310 | กEL $2=D E L 2 * * .5 * .000158 / U C L I$ |  | CHE | 310 |
| 000214 | WHTTF(6, 3472)ENERG, TFLOW, VISCIN, DEL? |  | CHE | 320 |
| 00023? |  IAx,*VISCIN=*,E1\&, 6, 2x,*DEL2 =*, E14, 61 |  | CHE | 330 |
|  |  |  | CHE | 340 |
| $00073 ?$ | RETURN |  | CHE | 350 |
| 000233 | F.NO |  | CHE | 360 |

RUN VFQSTON 2.3 - -PSR LEVEL 29A-a CHECK

```
CHECK
SIIRDOCGOAM LENGTH
000405
FUNCTYON ACEIGNMENTS
```



```
BLOCK NANFE ANT LENGTHS
    - 0000004
VARTARLF ASETGNMENTS
```



```
STADT OF CONSTANTS
00^235
START OF TFMPNRARIES
0007Gn
stapt of inNypects
000344
UN:JSFO COMDILED SPACE
07250n
```

RUN VFRSTON 2.3--PSH LEVEL 29A-*

```
                GURROUTINF HLCHFK(N,U,PS,Y,OX OOPZ,UCLI,HGR;TOLO ,URR,RHO,AAI RLC
```



```
- YOLO(2) COMMON NP, SOP, NPP, NL
กก 1 J \(=1, N\)
nUX(J) \(=(U(2, J)=U(1, J)) / 0 \mathrm{X}\) CONTINUE
AA1! =
002 J=2.N
\(J\) Ji = \(=\mathrm{J}=1\)
\(A A(J)=A A(J=1)+(\cap U X(J)=P S(J)+O(J X(J M 1)=P S(J M 1))=(P S(J)-P S(J M 1))\)
RAA (J) \(=D P 2 \quad Y(J) *(N P+N P P) /(2\) ©FLOAT(NP+NPP))
2 CONTINUE
```



```
\(A O A=A B d(N) /(B-A A(N))\)
\(B C=B-A A(N)\)
```




```
\begin{tabular}{llll}
000147 & RETUAN & & BLC \\
000143 & ENO & 210 \\
220
\end{tabular}
```

HUA, VFGSION ?. 7 - $-P S R$ LEVEL 29A.-
ALCHEK

RLCMEK
SIHPROGRAM LENGTH
00034 ?
FUNCTION ASSIGNMENTS
STATEMENT ASSITANHENTS
$40-\operatorname{OODIE} \quad 100=000142$

RLOCK NAMFS AND LENGTHS

- .n000n4

| AA | - | 000005 | A0B | $=$ | 000340 | R | - | 000337 | BEA | - | 000001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BC | - | 000.341 | OUX | - | 000227 | $J$ | - | 000335 | JM1 | - | 000336 |
| NL | - | 000003 Col | No | - | 000000001 | NPP | - | $000002 \mathrm{C01}$ | RMO | - | 000004 |
| YOLn | - | 000002 | UCLI | - | 000000 | URR | - | 000003 |  |  |  |

STAQT OF CONSTANTS
000145
START OF TFMPGRARTES
000165

START OF INDIRFCTS
000710
UNUSEN COMPTLEO SPACE
072700

RUN VFASIOM 2.7 --PSR LEVFL 29R-*

|  |  |  | LEF | 10 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | LEF | 20 |
|  |  | FOP EJECTOP FLOW AS PER FER. 19 | LEF | 30 |
|  | c |  | LEF | 40 |
| 0000? ${ }^{0}$ |  | OIMFNSION H(2.70), Y(70) | LEF | 60 |
|  | C | SEAQCH FAR INFLECTION POINT | LEF | 70 |
| 000078 |  | no 770 J=JJK, NN | LEF | 80 |
| oncnel |  | $\mathrm{M}=\mathrm{J}+1$ | LEF | 90 |
| 000023 |  | KmJt? | LEF | 100 |
| 000025 |  | $n Z=(U(1 ; J)-U(1, M)) /(Y(J)-Y(M))=(U(1, M)-U(1, K)) /(Y(M)-Y(K))$ | LEF | 110 |
| 000044 |  | IF(nz.GT.0.)GO TO 771 | LEF | 120 |
| 000046 | 770 | CONTINUE | LEF | 130 |
| 000050 | 771 | IFIOT.LT. O.) GO TO 776 | LEF | 140 |
|  | $\boldsymbol{C}$ | NO INFLECTION POINT | LEF | 150 |
| $00005 ?$ |  | $J J=N-M-1$ | LEF | 160 |
| 000055 |  | UPOT=U(1,M) | LEF | 170 |
| 000057 |  | PF(Y, M) LE.BY) GO TO 776 | LEF | 180 |
| onones |  | QEI. TA = Y (N) -DELTA | LEF | 190 |
| OOOC65 |  | TF(Y(M),GE, HELTA)G0 TO 776 | LEF | 200 |
|  | C | SEARCH FOR SHEAR LAYEA SIITER EDGE | LEF | 210 |
| 000070 |  | MY =M-1 | LEF | 220 |
| 000077 |  | no 1319 lelimy | LEF | 230 |
| 000073 |  | ITYZ(U) $1, M-1)$-UPOT)/(UC(1,1)-UPOT) | LEF | 240 |
| 000103 |  | TFIUYY.GT..OO3)GO TO 13?0 | LEF | 250 |
| 00010 m | 1319 | CONTINUE | LEF | 260 |
| 000110 | 1320 | $M P=M-I+1$ | LEF | 270 |
| 000111 |  | $J J K=M P$ | LEF | 2AO |
| 000114 |  |  | LEF | 290 |
|  |  |  | LEf | 300 |
|  | $c$ | SEAPCH FOR SHEAR LAYER [NNER EOGE | LEF | 310 |
| 000133 |  | no 77? Im3, M | LEF | 320 |
| $000134$ |  |  | LEF | 330 |
| $00014 \%$ |  |  | LEF | 340 |
| 000144 | 77 ? | ROMTINUE | LEF | 350 |
| 000146 | 773 | $R E x Y(I-1)+(Y(I)-Y(I-1)) *(U(1,1)-U(1,1-1)=$ | LEF | 360 |
|  |  | $1.0 n 3 \times(\cup(1,1)-\cup P O T) /(U(1,1)-U(1,1-1)$ | LEF | 370 |
| OnO16A |  | IFIT.EU.3) $\mathrm{SE}^{\text {wo. }}$ | LEF | 380 |
| $000171$ |  | AFRACEFE/Y | LEF | 390 |
| 000173 |  | IF (RFAAC.LEE.050) CC=.10日 | LEF | 400 |
| 000179 |  | RH天AY-HE | LEF | 410 |
|  | C | SEARCH FOR EDGE OF WALL ROUNOARY LAYER | LEF | 420 |
| 000707 |  | no 774 IzI, JJ | LEF | 430 |
| 000703 |  |  | LEF | 440 |
| 000711 |  | TF(IKK.GT. 010$) 60$ TO 775 | LEF | 450 |
| 000714 | 774 | CONTINUE | LEF | 460 |
| 000714 | 775 | $K I=M+I-1$ | LEF | 470 |
| 000721 |  |  | LEF | 4 An |
|  |  | IUPOT)/(U)1,KI+1)-U(I.Kil) | LEF | 490 |
| $000736$ |  | IFIRY.GE.PELTA)GO TO 776 | LEF | 500 |
| $000240$ |  | NELTA $=Y(N)$-BELTA | LEF | 510 |
| $000747$ |  | MZaKI-MP | LEF | 520 |
| $000345$ |  | IF (M).LE.1)G0 TO 776 | LEF | 530 |
| 000747 | c TFLO |  | LEF LEF | 540 550 |

RUN VFASION 2.3 --PSR LEVEL $298=0$
LOOK


```
RIJN VFRSION 2.1-OFSR LEVFL 2OR=-
LOOK
SURPROGGAM LENGTH
000329
FUNCTTON AESIGNMENTS
```



```
BLOCK NaMFY ANM LFNGTHS
```



```
START OF CONSTANTS
00025A
START OF TFMPNQARIES
0007A4
START OF INNIPECTS
000777
UNUSEN COMPTLFD SPACE
072400
```


## REFERENCES

1. Hickman, K. E., Hill, P. G., and Gilbert, G. B.: "Analysis and Testing of Compressible Flow Ejectors with Variable Area Mixing Tubes, " NASA CR-2067 and ASME Paper 72-FE-14.
2. Patankar, S. V., and Spalding, D. B. ,: "Heat and Mass Transfer in Boundary Layers," Morgan-Grampian, London 1967,
3. Denny, V.E., and Landis, R.B., : "An Improved Transformation of the Patankar-Spalding Type for Numerical Solution of Two-Dimensional Boundary Layer Flows, " Int. J. Heat Mass Transfer, Vol. 14, pp. 1859-1862, Pergamon Press, 1971.
4. Schlichting, H.,: 'Boundary Layer Theory," McGraw-Hill Book Company, Inc., New York, 1968.
5. Hedges, K. R., and Hill, P. G., : "A Finite Difference Method for Compressible Jet Mixing in Converging-Diverging Ducts," Queen's University Thermal Sciences Report No.3/72, June 1, 1972, Department of Mechanical Engineering, Kingston, Ontario, Canada.
6. Hickman, K.E., Gilbert, G.B., and Carey, J.H.,: "Analytical and Experimental Investigation of High Entrainment Jet Pumps," NASA CR-1602, July 1970.
7. Kline, S. J., and McClintock, F.A.,: "Describing Uncertainties in Single Sample Experiments," Mechanical Engineering, 1953.

Table 1
Mixing Section Dimensions for 1.875" Throat Size

| $\begin{gathered} \mathrm{x} \\ \text { Inches } \end{gathered}$ | $\pm \mathrm{y}$ <br> Inches | x Inches | $\pm \mathrm{y}$ <br> Inches | x Inches | $\stackrel{ \pm y}{\text { Inches }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -3.000 |  | -0.937 | 1.960 | 1.062 | 1.280 |
| -2.937 | 4.496 | -0.875 | 1.922 | 1.125 | 1.268 |
| -2.875 | 4.288 | -0.812 | 1.886 | 1.187 | 1.256 |
| -2.812 | 4.128 | -0.750 | 1.850 | 1.250 | 1.244 |
| -2.750 | 3.982 | -0.687 | 1.814 | 1.312 | 1.234 |
| -2.687 | 3.860 | -0.625 | 1.782 | 1.375 | 1.222 |
| -2.625 | 3.740 | -0.562 | 1.746 | 1.437 | 1.210 |
| -2.562 | 3.628 | -0.500 | 1.715 | 1.500 | 1.200 |
| -2.500 | 3.510 | -0.437 | 1.688 | 1.562 | 1.192 |
| -2.437 | 3.412 | -0.375 | 1.658 | 1.625 | 1.182 |
| -2.375 | 3.310 | -0.312 | 1.632 | 1.687 | 1.174 |
| -2.312 | 3.226 | -0.250 | 1.608 | 1.750 | 1.162 |
| -2.250 | 3.140 | -0.187 | 1.586 | 1.812 | 1.154 |
| -2.187 | 3.064 | -0.125 | 1.562 | 1.875 | 1.146 |
| -2.125 | 2.998 | -0.062 | 1.540 | 1.937 | 1.138 |
| -2.062 | 2.918 | 0.000* | 1.519 | 2.000 | 1.130 |
| -2.000 | 2.840 | 0.062 | 1.502 | 2.125 | 1.116 |
| -1.937 | 2.778 | 0.125 | 1.486 | 2.250 | 1.100 |
| -1.875 | 2.708 | 0.187 | 1.470 | 2.375 | 1.086 |
| -1.812 | 2.646 | 0.250 | 1.452 | 2.500 | 1.077 |
| -1.750 | 2.586 | 0.312 | 1.438 | 2.625 | 1.066 |
| -1.687 | 2.520 | 0.375 | 1.422 | 2.750 | 1.058 |
| -1.625 | 2.464 | 0.437 | 1.406 | 2.875 | 1.048 |
| -1.562 | 2.404 | 0.500 | 1.394 | 3.000 | 1.042 |
| -1.500 | 2.350 | 0.562 | 1.380 | 3.125 | 1.038 |
| -1.437 | 2.296 | 0.625 | 1.366 | 3.250 | 1.034 |
| -1.375 | 2.246 | 0.687 | 1.354 | 3.375 | 1.030 |
| -1.312 | 2.196 | 0.750 | 1.340 | 3.500 | 1.024 |
| -1.250 | 2.152 | 0.812 | 1.328 | 3.625 | 1.018 |
| -1.187 | 2.110 | 0.875 | 1.318 | 3.750 | 1.014 |
| -1.125 | 2.070 | 0.937 | 1.304 | 3.875 | 1.010 |
| -1.062 | 2.030 | 1.000 | 1.288 | 4.000 | 1.007 |
| -1.000 | 1.990 |  |  | 8.000 | 0.938 |
|  |  |  |  | 11.000 | 0.938 |
|  |  |  |  | 23.500 | 1.593 |

Table 2
Variation of Individual Integrated Traverse Mass Flows For Each Test Run

| Run | Variation of Integrated Traverse Mass Flow Rate Around An Average Value | Number of Traverse Locations |
| :---: | :---: | :---: |
| 1 | +2. $2 \%,-3.0 \%$ | 4 |
| 2 | $+3.5 \%,-2.3 \%$ | 5 |
| 3 | $+3.4 \%,-3.9 \%$ | 9 |
| 5 | +0\%, -0\% | 3 |
| 6 | +2.3\%, -2.8\% | 4 |
| 7 | +4.1\%, -2.8\% | 5 |
| 9 | $+5.6 \%,-2.6 \%$ | 5 |
| 10 | $+4.0 \%,-2.2 \%$ | 5 |
| 11 | $+3.8 \%,-2.6 \%$ | 5 |
| Average w/o Run 5 | $+3.6 \%,-2.8 \%$ |  |

Table 3
Location of Test Data for Each Test Run

|  | $\begin{gathered} \text { Run } \\ 1 \end{gathered}$ | $\begin{gathered} \text { Run } \\ 2 \end{gathered}$ | $\begin{gathered} \text { Run } \\ 3 \end{gathered}$ | $\begin{gathered} \text { Run } \\ 4 \end{gathered}$ | $\begin{gathered} \text { Run } \\ 5 \end{gathered}$ | $\begin{gathered} \text { Run } \\ 6 \end{gathered}$ | Run 7 | $\begin{gathered} \text { Run } \\ 8 \end{gathered}$ | $\begin{gathered} \text { Run } \\ 9 \end{gathered}$ | $\begin{gathered} \text { Run } \\ 10 \end{gathered}$ | $\begin{gathered} \text { Run } \\ 11 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Test Conditions and Mass Flows | T4 <br> T5 <br> F11 | T5 F11 | $\begin{aligned} & \text { T5 } \\ & \text { Fl1 } \end{aligned}$ |  | $\begin{aligned} & \mathrm{T} 5 \\ & \mathrm{~F} 11 \end{aligned}$ | $\begin{aligned} & \mathrm{T} 5 \\ & \mathrm{~F} 12 \end{aligned}$ | $\begin{aligned} & \mathrm{T} 5 \\ & \mathrm{~F} 12 \end{aligned}$ |  | $\begin{aligned} & \text { T5 } \\ & \text { F12 } \end{aligned}$ | $\begin{aligned} & \text { T5 } \\ & \text { F12 } \end{aligned}$ |  |
| Static Pressures | F13 | F13 | F13 | T6 | F13 | F14 | F14 | T6 | F14 | F14 | T6 |
| Centerline Velocities and Temperatures | F15 | F15 | F15 | - | F15 | F16 | F16 | - | F16 | F16 | - |
| Velocity Profiles | F17 | F18 | $\begin{aligned} & \text { F19a } \\ & \text { F19b } \end{aligned}$ |  | F20 | F21 | F22 |  | $\begin{aligned} & \text { F23a } \\ & \text { F23b } \end{aligned}$ | F24 | - |
| Temperature Profiles | - | - | F25 | - | - | - | - | - | F26 | - | - |
| Eddy Viscosity Sensitivity | - | - | $\begin{aligned} & \text { F27 } \\ & \text { F28 } \\ & \text { F29 } \end{aligned}$ | - | - | $\begin{aligned} & \text { F27 } \\ & \text { F28 } \\ & \text { F29 } \end{aligned}$ | - | - | - | - | - |
| Flow Rate Sensitivity | - | - | F97 | - | - | F27 | - | - | - | - | - |

T Stands for Table
F Stands for Figure
Table 4

|  |  | $\stackrel{10}{\sim}$ | $\xrightarrow{\square}$ | $\xrightarrow{-1}$ |  | － | ¢ <br> $\substack{\text { ¢ }}$ <br>  |  |  |  |  | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | － |  |  |  |  | ion $\stackrel{\infty}{\infty}$ － |  |  |  |  | $\rightarrow$ |
|  | $3^{3}$ | $\begin{aligned} & \text { Non } \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \text { ® } \\ & \text { ஸ゙ } \end{aligned}$ | $\stackrel{\oplus}{\stackrel{\infty}{\infty}}$ | $\begin{aligned} & n \\ & \infty \\ & \infty \end{aligned}$ | $\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$ | ¢ | $\stackrel{\infty}{\sim}$ | $\begin{aligned} & \text { ¢ } \\ & \text { + } \end{aligned}$ | $\begin{aligned} & 6 \\ & \pi^{\circ} \end{aligned}$ | \％ | ＋ |
|  | $3{ }^{\infty}$ | \％． | $\begin{aligned} & \text { toty } \\ & \text { On } \end{aligned}$ | － | $\begin{aligned} & \text { :0 } \\ & \text { © } \\ & \hline \end{aligned}$ | 答 | 皆 | － | 隼 | － | $\stackrel{0}{9}$ | ＋ |
|  | $B^{8}$ | $\begin{aligned} & \infty 0 \\ & \stackrel{0}{4} \\ & 0 \end{aligned}$ | $\begin{gathered} \underset{\mathrm{H}}{\mathbf{N}} \\ \stackrel{1}{2} \end{gathered}$ | $\begin{aligned} & \text { 上 } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | $\begin{gathered} \infty \\ \hline 0 \\ \hline 0 \\ \hline \end{gathered}$ | $$ | $\begin{gathered} \stackrel{\rightharpoonup}{*} \\ \stackrel{\rightharpoonup}{*} \\ \hline \end{gathered}$ | $$ | $$ | － |  | $\circ$ 0 0 0 |
|  | $3^{7}$ | $\begin{aligned} & 8 \\ & \stackrel{8}{5} \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \stackrel{5}{6} \\ & 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \text { 응 } \\ & \stackrel{5}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { H } \\ & \mathbf{\infty} \\ & \dot{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{5}{6} \\ & 0 \end{aligned}$ | $\begin{aligned} & \mathbb{N} \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \text { ザ } \\ & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \stackrel{N}{\infty} \\ & \stackrel{\circ}{\circ} \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \mathbf{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{\circ} \\ & \hline \end{aligned}$ | H ¢ 0 0 | 0 <br> 0 <br> 0 <br> 0 |
|  | 1 | $\begin{aligned} & \text { Oit } \\ & \text { ' } \\ & \dot{0} \end{aligned}$ | $\begin{aligned} & \mathscr{0} \\ & \text { O} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 항 } \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \text { § } \\ & \stackrel{8}{\circ} \\ & \stackrel{0}{8} \end{aligned}$ |  | $\begin{aligned} & \text { © } \\ & \stackrel{8}{\circ} \\ & \stackrel{1}{0} \\ & \dot{0} \end{aligned}$ | $\begin{aligned} & 8 \\ & \stackrel{8}{8} \\ & \stackrel{0}{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { H. } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathfrak{N} \\ & \stackrel{y}{6} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 毋. } \\ & \text { O } \\ & \dot{\circ} \end{aligned}$ | 8 <br> 8 <br> 0 |
|  | $\mathrm{F}^{\text {T }}$ | 涌 | \％ | 葹 | 尔 | 免 | 岛 | ¢ | W | 号 | F | \％ |
|  | 0 | 8 ¢ － | $\begin{aligned} & 8 \\ & \dot{U} \end{aligned}$ | $\begin{aligned} & \text { E- } \\ & \text { Ui } \end{aligned}$ | $\begin{aligned} & \overrightarrow{6} \\ & \underset{\sim}{4} \end{aligned}$ | － | 8 $\pm$ $\#$ | ¢ ＋ | ¢ － | － | 앆 | \＆ ＋ ＋ |
|  | $0^{z}$ | $\begin{aligned} & \mathbb{N} \\ & \stackrel{\sim}{0} \\ & \stackrel{+}{0} \end{aligned}$ | $\begin{aligned} & \text { し̛ } \\ & \stackrel{0}{\circ} \\ & \dot{\circ} \end{aligned}$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{0}{*} \end{aligned}$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{6} \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{\otimes}{\otimes} \\ & \stackrel{+}{\circ} \end{aligned}$ | ＋ | \＃ S 0 0 | $\begin{aligned} & \mathbf{o} \\ & \text { O. } \\ & 0 \\ & 0 \end{aligned}$ | － | 0 0 0 0 | 0 0 0 |
|  | \％ | $\begin{aligned} & \infty \\ & \neq 0 . \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
| N N 会 | $\cdots$ | F్ઠ | ¢ | $\stackrel{8}{8}$ | $\stackrel{8}{8}$ | \％ | $\stackrel{9}{6}$ | F | \％¢ | 免 | 8 | ¢ |
|  | 0 | 8.8 <br>  | $\begin{aligned} & \dot{8} \\ & \text { i } \end{aligned}$ | $\begin{aligned} & \mathbf{6} \\ & \overrightarrow{0} \end{aligned}$ | $\begin{aligned} & \text { H. } \\ & \text { H్ల } \end{aligned}$ | $\underset{\sim}{\underset{\sim}{i}}$ | \％ | － | $\begin{aligned} & \infty \\ & \stackrel{\infty}{i} \end{aligned}$ | $\begin{aligned} & \text { 毋 } \\ & \stackrel{\circ}{\circ} \end{aligned}$ | 웅 | \％ |
| 號安 |  | － | N | $\infty$ | $\pm$ | 45 | $\omega$ | $\checkmark$ | $\infty$ | $\infty$ | 윽 | $\underset{\sim}{7}$ |

Table 5
Comparison of Experimental and
Analytical Mass Flow Rates

| $\begin{gathered} \text { Run } \\ \text { No. } \end{gathered}$ | Throat <br> Width <br> (inches) | Mixing Section Mass Flow Rate From Traverse Data lb/sec. in. (1) | Mixing Section Mass Flow Rate From Orifice Data lb/sec. in. (2) | Percent Difference In Measured Data (1) - (2) <br> (1) | Analytical <br> Mass Flow For <br> Best Static Pressure Match lb/sec.in. (3) | Comparison Of <br> Traverse To <br> Analytical Mass Flow (1) - (3) <br> (1) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.25 | 0.408 | -- | -- | 0.382 | +6.4\% | -- |
| 2 |  | 0.341 | 0.320 | +6.7\% | 0.322 | +5.6\% | -. $6 \%$ |
| 3 |  | 0.357 | 0.3535 | +1.0\% | 0.351 | +1.7\% | +. $7 \%$ |
| 5 | $\dagger$ | 0.384* | -- | -- | 0.395 | - 2.9\% | -- |
| 6 | 1.875 | 0.434 | 0.417 | +4.0\% | 0.420 | +3.2\% | - . $7 \%$ |
| 7 |  | 0.458 | 0.447 | +2.5\% | 0.443 | +3.3\% | +. $9 \%$ |
| 9 |  | 0.501 | -- | -- | 0.485 | +3.2\% | -- |
| 10 | $\dagger$ | 0.525 | -- | -- | 0.508 | + $3.2 \%$ | -- |

* Transducer Battery May Have Been Going Bad During This Test

Table 6
Tabulation of Static Pressures For
Runs 4, 8, and 11

| Distance <br> From Nozzle <br> Discharge <br> inches | Run No. | 4 | 8 | 11 |
| :---: | :---: | :---: | :---: | :---: |
|  | Nozzle Pressure psia | 35.61 | 31.80 | 35.68 |
|  | Throat Height | $1.25{ }^{\prime \prime}$ | $1.875^{\prime \prime}$ | $1.875^{\prime \prime}$ |
|  | Wall Static Pressure in Inches of Water Gage |  |  |  |
| -1.62 |  | -8.05 | -6. 8 | -10.4 |
| -1.25 |  | -11.2 | -9.1 | -13.7 |
| -0.87 |  | -13.7 | -10.7 | -16.3 |
| -0.46 |  | -17.1 | -13.0 | -19.5 |
| +0.03 |  | -19.5 | -14.2 | -21. 5 |
| +0.56 |  | -19.5 | -13.9 | -20.9 |
| +0.99 |  | -20.7 | -14.2 | -21.5 |
| +1.50 |  | -21.5 | -13.9 | -22.4 |
| +2.00 |  | -28.0 | -16.5 | -26.6 |
| +2.50 |  | -32.2 | -17.7 | -28.6 |
| +3.00 |  | -35.7 | -18.6 | -30.1 |
| +3.50 |  | -37.5 | -18.3 | -30.1 |
| +4.00 |  | -39.5 | -18.6 | -31.0 |
| +4.50 |  | -40.7 | -18.3 | -31.3 |
| +5.00 |  | -41.9 | -18.3 | -31.6 |
| +5.50 |  | -42.7 | -18.0 | -31.9 |
| +6.00 |  | -43.1 | -18.0 | -32.5 |
| +7.00 |  | -48.7 | -18.6 | -33.6 |
| +8,00 |  | -54.3 | -19.2 | -35.4 |
| $+9.00$ |  | -55.8 | -18.5 | $-35.4$ |
| +10.50 |  | -58.1 | -17.7 | -35.1 |
| +12.00 |  | -42.2 | -13.0 | -28.6 |
| +13.00 |  | -30.1 | -9.1 | -23.3 |
| +15.00 |  | -13.2 | -2.5 | -15.1 |
| +17.00 |  | $-2.3$ | +2.2 | - 8.3 |
| +19.00 |  | + 4.9 | +5.9 | - 5.1 |
| +21.00 |  | + 9.9 | +8.6 | + 0.7 |
| +23.00 |  | +13.2 | +10.9 | + 3.7 |

$$
\begin{array}{ll}
1 & \text { Primary Nozzle } \\
2 & \text { Side Plates } \\
3 & \text { Nozzle Holder } \\
4 & \text { Suction Plenum } \\
5 & \text { Upper Contoured I } \\
6 & \text { Lower Contoured } \\
7 & \text { Plexiglass Window } \\
8 & \text { Inlet Bellmouth } \\
9 & \text { Diffuser }
\end{array}
$$


Primary


Figure 2
Picture of Primary Nozzle


Figure 3
Picture of Nozzle Positioned in the Mixing Section


Figure 4
Picture of Mixing Section Discharge


Figure 5
Extended Inlet on Ejector Test Rig


[^0]

Figure 7
Picture of Right Side of Ejector Rig


Figure 8
Picture of Left Side of Ejector Rig

Figure 9
Mixing Section Static Pressures


Figure 10
Mixing Section Traverse Locations


Figure 11 Comparison of Experimental and Analytical Mass Flow Rates for Runs 1, 2, 3 and 5


Figure 12 Comparison of Experimental and Analytical Mass Flow Rates for Runs 6, 7, 9, and 10

Solid Lines are Analytical Results




Solid Lines are Analytical Results



Figure 15 Maximum Velocities for 1.25" Throat Mixing Section

$$
\mathrm{p}_{\mathrm{N}}=17.0 \mathrm{psig}
$$



Figure 16 Maximum Velocities for 1.875" Throat Mixing Section

$$
\mathrm{p}_{\mathrm{N}}=21.0 \mathrm{psig}
$$



Figure 17 Velocity Profiles for Run 1 for $1.25^{\prime \prime}$ Throat Mixing Section $\mathrm{p}_{\mathrm{N}}=17.0 \mathrm{psig}, \mathrm{T}_{\mathrm{N}}=181^{\circ} \mathrm{F}, \mathrm{W}_{\mathrm{N}}=.0780 \mathrm{lb} / \mathrm{sec} . \mathrm{in}$.


Figure 18 Velocity Profiles for Run 2 for 1.25" Throat Mixing Section $\mathrm{p}_{\mathrm{N}}=17.0 \mathrm{psig} \mathrm{T}_{\mathrm{N}}=177^{\circ} \mathrm{F}, \mathrm{W}_{\mathrm{N}}=0.0782 \mathrm{lb} / \mathrm{sec} . \mathrm{in}$.

Analytical $\mathrm{W}_{\mathrm{m}}=0.351 \mathrm{lb} / \mathrm{sec}$. in.


Figure 19a Velocity Profiles for Run 3 for 1.25" Throat Mixing Section

$$
\mathrm{p}_{\mathrm{N}}=17.0 \mathrm{psig}, \mathrm{~T}_{\mathrm{N}}=246^{\circ} \mathrm{F}, \mathrm{~W}_{\mathrm{N}}=0.075 \mathrm{lb} / \mathrm{sec} . \mathrm{in} .
$$

Analytical $W_{m}=0.351 \mathrm{lb} /$ sec. in.


Figure 19b Velocity Profiles for Run 3 for 1.25" Throat Mixing Section $\mathrm{p}_{\mathrm{N}}=17.0 \mathrm{psig}, \mathrm{T}_{\mathrm{N}}=246^{\circ} \mathrm{F}, \mathrm{W}_{\mathrm{N}}=0.075 \mathrm{lb} / \mathrm{sec} . \mathrm{in}$.


Figure 20 Velocity Profiles for Run 5 for 1.25" Throat Mixing Section

$$
\mathrm{p}_{\mathrm{N}}=17.0 \mathrm{psig}, \mathrm{~T}_{\mathrm{N}}=188^{\circ} \mathrm{F}, \mathrm{~W}_{\mathrm{N}}=.0787 \mathrm{lb} / \mathrm{sec} . \mathrm{in} .
$$



Figure 21 Velocity Profiles for Run 6 for $1.875^{\prime \prime}$ Throat Mixing Section $\mathrm{p}_{\mathrm{N}} 21.0$ psig, $\mathrm{T}_{\mathrm{N}} 189^{\circ} \mathrm{F}, \mathrm{W}_{\mathrm{N}}=.0882 \mathrm{lb} / \mathrm{sec} . \mathrm{in}$.


Figure 22 Velocity Profiles for Run 7 for $1.875^{\prime \prime}$ Throat Mixing Section $\mathrm{p}_{\mathrm{N}}=21.0 \mathrm{psig}, \mathrm{T}_{\mathrm{N}}=187^{\circ} \mathrm{F}, \mathrm{W}_{\mathrm{N}}=.0884 \mathrm{lb} / \mathrm{sec} . \mathrm{in}$.


Figure 23a Velocity Profiles for Run 9 for 1.875" Width Mixing Section

$$
\mathrm{p}_{\mathrm{N}}=21.0 \mathrm{psig}, \mathrm{~T}_{\mathrm{N}}=184^{\circ} \mathrm{F}, \mathrm{~W}_{\mathrm{N}}=.0884 \mathrm{lb} / \mathrm{sec} . \mathrm{in} .
$$

$$
\text { Analytical } \mathrm{W}_{\mathrm{m}}=0.485 \mathrm{lb} / \mathrm{sec} . \mathrm{in} .
$$



Figure 23b Velocity Profiles for Run 9 for $1.875^{\prime \prime}$ Throat Mixing Section $\mathrm{p}_{\mathrm{N}}=21.0 \mathrm{psig}, \mathrm{T}_{\mathrm{N}}=184^{\circ} \mathrm{F}, \mathrm{W}_{\mathrm{N}}=.0884 \mathrm{lb} / \mathrm{sec} . \mathrm{in}$.


Figure 24 Velocity Profiles for Run 10 for 1.875" Throat Mixing Section $\mathrm{p}_{\mathrm{N}}=21.0 \mathrm{psig}, \mathrm{T}_{\mathrm{N}}=200^{\circ} \mathrm{F}, \mathrm{W}_{\mathrm{N}}=.0874 \mathrm{lb} / \mathrm{sec} . \mathrm{in}$.


Figure 25 Temperature Profiles for Run 3 for 1.25" Throat Mixing Section


Figure 26 Temperature Profiles for Run 9 for $1.875^{\prime \prime}$ Throat Mixing Section


Figure 27 . Wall Static Pressure Sensitivity to Flow Rate and Eddy Viscosity for Run 3 and Run 6


Figure 28 Centerline Velocity and Temperature Sensitivity to Eddy Viscosity for Run 3 and Run 6



Figure 30 Mixing Section Throat Static Pressure As A Function of Throat Mach Number


[^0]:    Figure 6
    

