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Abstract

The Wind-US flow solver has been modified to include real gas thermodynamic properties and real gas fluxes of
conserved variables. The real gas evaluations relevant to a specific molecule have been isolated to a single subroutine
so that any substances can be implemented relatively easily. Molecular nitrogen and hydrogen have been
implemented in the program to date. The real gas model has been implemented in the Wind-US Roe approximate
Riemann solver at this time. The real gas nitrogen model has been used to predict converging-diverging nozzle flow
at total pressures ranging from nominally 250 to 20,000 psi at a nominal stagnation temperature of 3000oR and exit
Mach numbers of 8 to 14. A comparison of the 20,000-psi results with data is presented in this paper. The real gas
hydrogen model is used to model high-pressure shock tube calculations relevant to analysis of light gas hypervelocity
gun range facilities. 

I. Introduction

Hypersonic flight and testing result in flows where physical gas dynamic phenomena occur that are neglected in
ideal gas models. These phenomena include chemical reaction, ionization, thermal nonequilibrium, and
intermolecular forces. While all these phenomena could be considered real gas effects, with regard to this paper, real
gas effects are defined as the effects caused by high density as explained by John D. Anderson, Jr.1. This is the
definition adopted by the Test Medium Working Group of the Scramjet Test Standards Working Group of the
JANNAF Air Breathing Panel.

The impetus for the extension of the Wind-US2 code for real gas flows was the need to establish a capability to
analyze hypervelocity flow facilities at AEDC. Two facilities of particular interest are the Hypervelocity Wind
Tunnel 9 Facility and the Hypervelocity Gun Range Facility. 

Tunnel 9 is a blowdown facility with a nozzle set designed for operational Mach numbers of 7, 8, 10, 14, and 16.5
at simulated critical altitude regimes. At Mach 14 and 16.5, Reynolds numbers of 3.8 × 106 and 3.24 × 106,
respectively, can be attained. This facility utilizes nitrogen as the working gas with supply pressures up to 1900
atmospheres and supply temperatures up to 3650°R. These facility supply conditions result in real gas flows in the
subsonic portion of the converging-diverging nozzles. 

Impact and lethality testing are accomplished at AEDC in the Hypervelocity Gun Range facilities. These facilities
employ a two-stage light gas gun to drive projectiles to hypervelocity. As part of an ongoing development, an existing
two-stage light gas launcher was modified to a free piston shock tunnel configuration. This facility uses an explosive-
driven free piston to drive a shock in an impulse tunnel that will provide capabilities for studying hypersonic real-gas
aerodynamic and combustion/propulsion effects at very high Mach number conditions. As part of an ongoing facility
development program, a goal of a 100-kpsi supply pressure has been set. Modeling this high-pressure system requires
a real gas equation of state (EOS) for the molecular hydrogen driver gas. 
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Most modern shock-capturing techniques for the solution of the compressible Euler or Navier Stokes equations do
some form of flux splitting that requires an evaluation of the eigenvalues and eigenvectors for the system of equations
in conservation form. The procedure for obtaining the equations that are ultimately solved by Wind-US is to write the
Navier-Stokes equations in conservative form in Cartesian coordinates. The flux derivatives are then transformed
from Cartesian coordinates to computational space. The conservation equations are linearized in terms of the flux
Jacobians with respect to the conserved variables. Eigenvalues and eigenvectors of these flux Jacobians are needed to
diagonalize the flux terms. The procedure for obtaining these matrices is well established for ideal gases,3,4 and the
procedure for real gases is similar, with differences between real gas and ideal gas being confined to three parameters
(see details below).

II. Evaluation of Real Gas Thermodynamic Properties

Since the difference between the ideal gas and real gas formulations depends on the EOS, the form of the EOS that
was used is discussed first. Other authors5,6 have previously implemented real gas EOS in the solution of the Navier-
Stokes equations. Choi, Oh, and Jeung include a discussion of a general form for the thermodynamic relations
governing a real gas but appear only to have implemented the Van der Waals EOS in published results. Li, Xia, and
Merkle use a general EOS, but they use a table look-up from the REFPROP database,7 which seems awkward. For
the implementations in Wind-US, curve fits were used as discussed below. 

The thermally perfect EOS, p = ρRu T/M (where p is the absolute pressure, ρ is the mass density, Ru is the
universal gas constant, T is the absolute temperature, and M is the molecular weight), is adequate to describe the fluid
in most aerodynamic flows. In some cases (typically, hypersonic simulation facilities), the density is sufficiently high
that the thermally perfect EOS is no longer accurate. At high densities intermolecular distances are reduced enough
for intermolecular forces to become significant, and higher order equations of state such as van der Walls, Redlich-
Kwong, or other virial equations are required.8 The EOS takes many forms, but all are empirical, based on
measurements rather than on some deeper understanding of the behavior of fluids at high density. Since they are
based on experimental measurements, their range of applicability is limited by the range of the experimental data.
Different forms of the equations display different characteristics when extrapolated, but all EOS will produce
implausible results if extrapolated far enough. Span9 is recommended for a complete discussion of the topic. The
specific heat and related thermodynamic properties are also modified and are taken to be a function of both density
and temperature, e.g., , in contrast to the more ordinary ideal gas assumption in which these
properties are a function of temperature alone.

The real gas subroutines incorporated in Wind-US evaluate the enthalpy, speed of sound, and entropy as functions
of density and temperature. Since the curve fits are written with density and temperature as independent variables,
iterative methods are used to return properties in terms of any other two variable combinations of pressure,
temperature, and density. The enthalpy, internal energy, and isentropic speed of sound are computed in the real gas
routine. An effective gamma is computed as the speed of sound squared and divided by RT to allow the real gas speed
of sound to be retrieved as needed elsewhere in the code, including the eigenvalues of the flux Jacobians. As shown in
the next section, the Roe fluxes are computed with the speed of sound, enthalpy, and derivatives of pressure evaluated
using real gas relationships. The real gas pressure is obtained elsewhere in the code from , which
correctly returns pressure since β is h/e. The real gas subroutine also returns the following derivatives: ,

, , , , and .

A. Nitrogen Equation of State
The thermodynamic properties of N2 were calculated using the EOS formulated by Reynolds.10 The equation,

P = P(ρ,T) is a power series in density, through ρ9, plus a power series in density, through ρ13, divided by an
exponential of density squared. The coefficients of the power series are polynomials in temperature. A total of 33
constants are used to represent the high-density contribution to the pressure. The limiting form of the equation is the
thermally perfect EOS as density decreases. Pressure can be calculated directly, given temperature and density. An
iterative procedure is used to calculate density (or temperature) if pressure and temperature (or density) is known.
Analytic derivatives are used in Newton iteration, and the convergence is rapid.
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The thermally perfect, isochoric specific heat, cv0, was calculated from the equation given in Ref. 10. The form and
the constants used in cv0 are independent of the high density EOS for an equation of the form used here.

The high-density contributions to other thermodynamic properties are calculated by evaluation of appropriate
integrals of the proper derivatives of the EOS. For simplicity, all of the calculations are performed in a single
subroutine. The accuracy of the EOS and the subroutine used to implement it were checked by comparing the
property values with the comparable numbers from the NIST Webbook.7

In order to examine the possible consequences of the
thermodynamics models, authors calculated a one-
dimensional expansion to compare the difference
between ideal gas, thermally perfect but calorically
imperfect, and real gas assumptions. The total conditions
for the expansion were at a pressure of 77 MPa (11,236
psia) and a temperature of 842°K (1055°F). The real gas
compressibility factor, z = pM/pRT, was 1.32 at the total
conditions. The compressibility factor at the sonic point
was 1.17 and was 1 ± 0.01 in the freestream. The speed
as a function of area ratio is shown in Fig. 1 below. It can
be seen that there is little difference between the ideal
gas (γ = 1.4) assumption and the thermally perfect
assumption. The similarity is a result of the relatively
low temperature. However, the real gas speed is
substantially higher than that of the other models, roughly 20 percent higher at the sonic point and 5 percent higher at
an area ratio of 100. Thus the necessity of including real gas effects is established for these total conditions and for
higher total pressures with similar temperatures.

B. Hydrogen Equation of State
The literature, including Ref. 10, contains many examples of EOS for hydrogen in the high-density regime.

However, none of the equations located covered the range required for the problem at hand; thus an extrapolation of
the EOS is required.

Since no applicable data were found, direct comparisons of predictions and data cannot be performed to assess
accuracy. Rather, direct comparisons were done where data were available, and the plausibility of the extrapolated
values was checked over the whole range. This was a “sanity” check only and dependent largely upon engineering
judgment, but it is the best available. The specific heat, cv0, was calculated from equations appropriate to the low-
density limit over the temperature range required.

III. Real Gas Roe Approximate Riemann Solver

Wind-US solves the conservation form of the Navier-Stokes equations in curvilinear coordinates with total energy
being the conserved variable in the energy equation. The auxiliary equations relating pressure, enthalpy, and internal
energy to density and temperature depend on the gas model being used, where the available gas models are either
ideal, perfect, or real. For an ideal gas, specific heat at constant pressure and specific heat at constant volume are
constants. The perfect gas model includes single species or multi-species mixtures that are thermally perfect and
calorically imperfect. In this case, the enthalpy for each species is a function of temperature only. For a real gas, the
EOS is generally given by a polynomial in density and temperature, and the enthalpy is a function of two independent
thermodynamic properties. The real gas thermodynamic curves described above evaluate expressions in powers of
density and temperature. However, for the purpose of deriving the solution algorithm, it is simpler to consider
enthalpy as a function of pressure and density because the two are dependent variables in the nonconservative form of
the Navier-Stokes equations.

Figure 1. Comparison of Thermodynamic Models for
High-Pressure Expansions
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 Following a procedure similar to that of ideal gas to obtain the real gas algorithm, the conservative Wind-US form of
the Navier-Stokes equations is written in Cartesian coordinates as:

 where  and (1)

where  is velocity, e is total specific energy, ρi is species i density, and  is the viscous flux vector. At present, only
single-component real gases are being considered; therefore, the fourth element of the Q and  vectors are elimi-
nated. In addition, the source vector S is zero. The linearized version of the resulting equation can be expressed as fol-
lows:

 , where  and  is the viscous flux Jacobian. (2)

Equation (1) is then transformed to computational coordinates to obtain the following: 

, where  and (3)

Here, J is the Jacobian of the transformation,  is the del operator in the transformed coordinates and ξ, η, and ζ
are the computational coordinates. After linearizing and noting that J cancels out, we see that this equation can be
written as:

, where (4)

The three flux Jacobian matrices, corresponding to the three coordinate directions that are represented by  are not
evaluated directly, but are obtained from the nonconservative flux Jacobians via the same process that has been used
to develop the ideal gas flux Jacobians. The x-component of the  matrix (with y and z-components being similar in
form) for an arbitrary gas is given by: 

(5)
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where H = h + (1/2)V2,  , Et is total energy, and h is static enthalpy. Throughout this paper, a sub-
script with a comma indicates a partial derivative with respect to the subscript variable.

The nonconservative form of the Navier-Stokes equations can be written in linearized form as:

, where (6)

Here,  is the nonconservative flux Jacobian, and the nonconservative vector of dependent variables is given by:

(7)

Equation (6) can be obtained from the conservative equation, Eq. (4), by replacing Q with P−1q and multiplying on
the left by P to obtain

(8)

where P−1 is the Jacobian matrix ∂Q/∂q
Only the inviscid flux Jacobian, the second term of Eq. (6), is considered for the remainder of this section, since it

is needed to obtain the inviscid Roe flux vector. As has been done for ideal gas, the eigenvectors and eigenvalues are
obtained for the nonconservative flux Jacobian, and since the nonconservative and conservative matrices are related
by a similarity transformation, these values are the same for both. The differences between ideal gas and real gas
occur in the evaluation of the matrix P, the matrix P−1, and the thermodynamic properties. In the development of
these matrices, it is not necessary to distinguish between ideal gas and real gas if a general expression for enthalpy
and the EOS are used. At this point, the enthalpy is chosen as a function of two thermodynamic variables. Pressure
and density are a natural choice since they are contained in the nonconservative dependent variable vector and result
in the following relations:

, , , (9)

where 

With these relationships defined, the derivatives needed to determine the P and P−1 matrices can be derived. For
convenience, groupings of terms in these matrices containing enthalpy and enthalpy derivatives are defined as
follows:

, , and (10)

These groupings of terms occur only in the last row of the transformation matrix and isolate the difference between
real and ideal gas (note that β in this section is not the same as the β defined in the previous section). 

 (11)

222 wvuV ++=

0ˆ)ˆˆ( =∇⋅++
∂
∂ qaa

t
q

v
vr

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅∇
⋅∇
⋅∇

=
a
a
a

a
v

r

r
v

ς
η
ξ

ˆ

a
r

[ ]Tpuq vρ=

0ˆˆˆˆ 11 =∇+∇+
∂
∂ −− qPAPqPAP

t
qI v

rr

),( ρphh = ),( Tpp ρ= ),( ρpee = 22 2/12/1 VphVeEt ρρρρ +−=+=

)( 222 wvusqrtV ++=

ρρϕ ,hh += 1)1,( −−= phρβ 2/2V=α

ββββϕαβ
ρρ

ρρ
ρρ

wvu
w
v
u

P

−−−−
−
−
−

=
−−

−−

−−

)(
000
000
000
00001

11

11

11

1

1

000
000
000
00001

−

−

+

=

βρρρϕα
ρ

ρ
ρ

wvu
w
v
u

P

5
American Institute of Aeronautics and Astronautics



 The nonconservative flux Jacobian is obtained by a single matrix multiplication for each direction by using the
following relationship:

 to obtain (12)

where , c is the characteristic speed and k is replaced by ξ, η, or ζ for the fluxes in the three
grid coordinate directions. The  matrices can be obtained from the corresponding eigenvalue and eigenvector
matrices as

(13)

where the eigenvalues of the  matrices are similar in form to the ideal gas and are given by:

 (14)

where  

The corresponding Eignenvectors are also similar to the ideal gas form of the equations, as shown below.

 (15)

The characteristic speed of sound for a general gas obeying the thermodynamic functional form specified above is
given by

(16)

or, using Eq. (10),  
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At this point, the distinction between real and ideal gas can be made. For an ideal gas

, , and  (17)

While, for the real gas relations above,

,  and (18)

The conservative flux Jacobian matrix can now be obtained in terms of the above eigenvalues, and eigenvectors
and the dependent variable transformation matrices as

(19)

Roe’s numerical flux function can now be written as:

(20)

where 

IV. Pitot Pressure and Total Conditions

Iterative methods are required to compute the total conditions and the pitot pressure when the real gas EOS is used.
To compute the supersonic pitot pressure, one first calculates flow across a normal shock, and the total conditions are
computed after the shock. The equations governing a normal shock are given by

, ,  and (21)

where the subscripts 1, 2, and 3 (below) indicate the regions before the shock, after the shock, and at the pitot tube,
respectively. All the conditions in front of the shock are known or can be computed from static conditions. The total
enthalpy, momentum, and mass flux across the shock are constant, and the entropy must increase. One performs the
iteration for conditions behind the shock by computing initial guesses for the conditions behind the shock using ideal
gas relations. The difference in total enthalpy and momentum before and after the shock is computed and iterated on
until the differences are less than an acceptable limit and are given by 

, (22)

These quantities after the shock are taken as a function of temperature and density; therefore, the total differentials
are given by

 and (23)

These equations are solved simultaneously for dT and dρ using Eq. (21) relationships to obtain.
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and

where

(24)

At this point the properties downstream of the shock are reevaluated by computing:

, , and (25)

The real gas subroutine is then called to recalculate static pressure and enthalpy after the shock plus the required
derivatives above. The procedure continues until the total enthalpy change and momentum change are small enough.

The pitot pressure is obtained by computing the total pressure behind the shock. Finding the total pressure and total
temperature from post-shock static conditions for the real gas is also an iterative process similar to the shock solution.
In this case, since the entropy and total enthalpy are constant behind the shock, the total differential of enthalpy and
entropy are used as follows:

 and (26)

with  and 

Simultaneous solution of these equations is given by 

, 
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Once the iterative procedure reduces the total enthalpy and entropy changes to acceptable magnitudes, the total
temperature is the current iterated value, and the total pressure is obtained from the real gas subroutine with
temperature and density known.

V. Boundary Conditions

Characteristic boundary conditions use the eigenvalues and eigenvectors derived above. Therefore, the form
appropriate to the assumed gas model for β, ϕ, and c, as defined in Eq. (16), should be used for the boundary
conditions incorporated in the solver. The compatibility equations can be obtained by multiplying Eq. (4) (not
including the viscous flux) by the matrix containing the eigenvectors as rows. Letting  represent this
matrix,

(28)

For a specific eigenvalue, Λi as represented in Eq. (14), the compatibility equation can be obtained from Eq. (28)
as (see Janus4 for details):

 or at a boundary (30)

where Wi = ERiQ is the ith characteristic variable.
For each eigenvalue representing a wave traveling from the interior flow toward the boundary, Eq. (30) is used as a

boundary condition, while physical boundary conditions are used for eigenvalues going in from the boundary toward
the interior. Specifically, for subsonic total inflow conditions, the  characteristic variable is set using Eq. (30)
while the procedure using Eqs. (26) and (27) is used to establish the static conditions at the inflow from specified total
pressure and temperature. 

VI. Real Gas Computations

A. Mach 14 Nozzle
The real gas Wind model was used to compute the high total pressure, i.e., high Reynolds number conditions, in

the AEDC Tunnel 9 nozzle. The nozzle consisted of a 7-in.-long converging section followed by a 479-in.-long
contoured diverging section; a 36-in.-long tangent cone extension was added for comparison with data taken in the
test cell 24 in. downstream of the nozzle exit. The inlet diameter was 3.986 in., the throat diameter was 0.99 in., the
diameter at the end of the first computational zone was 3.986 in., and the exit diameter was 60.74 in. A two-
dimensional axisymmetric grid was used, and three turbulence models were investigated: the k-epsilon, SST, and
Spalart-Allmaras (S-A). The Spalart-Allmaras model yielded the best overall results. The real gas model was used to
simulate test conditions for a Mach 14 case with a total pressure of 19,980 psi and a total temperature of 3303°R. The
results of this computation are shown in Figs. 2 through 9. Figure 2 shows the overall geometry of the converging-
diverging nozzle and contour plots of Mach number for the perfect gas model (top) versus the real gas model
(bottom). The magnitude of the expansion can be
ascertained from the size of the small subsonic
section compared to the final cross-sectional area
and the nominal exit Mach number of 14. The
range of the Mach contours is limited for
improved clarity. In comparing the perfect gas
versus the real gas exit Mach numbers, authors
found that whereas the perfect gas attained a Mach
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Figure 2. Comparison of Mach Number for Perfect and Real
Gas Models
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number of 13.377, the real gas attained a Mach number of 13.927. It will be shown that most of the differences
between the two cases were originated in the subsonic and far upstream portion of the diverging nozzle.

Figures 3 and 4 show the first computational zone, which contains the converging portion of the nozzle and the
initial part of the diverging nozzle. Since the total inlet pressure and temperature were prescribed, there was very little
difference between the inlet static values. 

Centerline pressure at the exit of this zone was 794 psi for perfect gas and 689 psi for the real gas, while
temperature at the same point was 1493°R for perfect gas and 1450°R for real gas. Thus the real gas appears to be
expanding more than the perfect gas. 

The largest difference between the two cases in the subsonic section is in density, because the pressure and
temperature are being set. Figure 5 compares the density between the two gas models, and it is seen that the real gas
density (0.43 slugs/ft3) is much less than the perfect gas density (0.49 slugs/ft3). At the zonal exit these values are
0.038 slugs/ft3 and 0.043 slugs/ft3 for the real and perfect gases, respectively. 

The reason for the large density difference is explained by Fig. 6, which shows the compressibility for the real gas
model (the perfect gas compressibility is one, by definition). The figure shows an inlet compressibility of 1.283,
while at the zone boundary the compressibility was 1.01. Therefore, intermolecular forces made the real gas less
compressible, thus indicating repulsive forces between the molecules. At the end of this zone the gas could be closely
modeled as a perfect gas since the compressibility is almost one and will remain approximately one in the rest of the
supersonic nozzle.

The supersonic pressure and temperature are shown in Figs. 7 and 8, respectively, and while the contours appear to
vary, the centerline exit values are very close. Pressure equals 0.053 psi and temperature equals 98.75°R for the
perfect gas, while pressure equals 0.0509 and temperature equals 98.6°R for the real gas. The velocity (Fig. 9) is
somewhat higher for the real gas at the exit (6887 fps), while the perfect gas value is 6619 fps. The exit Mach
numbers were noted to be 13.927 and 13.377 for the real gas and the perfect gas, respectively. 

Figure 3. Comparison of Pressure for Perfect and
Real Gas Models

Figure 6. Real Gas Compressibility

Figure 4. Comparison of Temperature for Perfect
and Real Gas Models

Figure 5. Comparison of Density for Perfect and 
Real Gas Models
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The real gas model was compared with test data for this Mach 14 case, and as seen in Fig. 10, the real gas model
overpredicted the pitot pressure compared to the data. However, only a single nozzle joint, the most upstream nozzle
joint, was modeled out of a total of nine nozzle joints that make up the assembly. The inclusion of the remaining
joints could represent a large enough loss to result in accurate agreement. 

B. High-Pressure Shock Tube
A two-dimensional axisymmetric shock tube demonstration case was undertaken to demonstrate the capability of

computing shock tube conditions representative of the AEDC hypervelocity gun facilities. Two sets of chamber total
conditions were computed: 1) 20 kpsi and 3600°R, and 2) 100 kpsi and 3600°R, both with hydrogen as the working
gas. The low-pressure side of the diaphragm was set at 1 psi and 540°R. The traveling shock was computed for both a
perfect gas (calorically imperfect) and a real gas, with the results shown in Figs. 11 through 13. Figure 11 shows a
plot of centerline density for a traveling shock starting at 20 kpsi plus a contour plot. It is seen that there is little
difference between the gas models for this pressure and hydrogen. In Fig. 11b, the real gas shock can be seen to be
traveling slightly faster than the perfect gas shock. For this case the real gas compressibility did not vary substantially
from one, as is shown below. 

Figure 7. Comparison of Pressure for Perfect and
Real Gas Models

Figure 8. Comparison of Temperature for Perfect
and Real Gas Models

Figure 9. Comparison of Velocity for Perfect and
Real Gas Models
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The density results for the 100-kpsi traveling shock case are shown in
Fig. 12. It can be seen that the perfect gas shock speed is not as fast as
the real gas speed. The density variation is as expected from shock
theory; however, the pressure ratio (before to after the shock) is so high,
100,000:1, that the details are difficult to see. The density contours show
that the interaction region is significantly larger for the real gas than the
perfect gas. 

 Figure 13 compares the real gas compressibility for the two high-
pressure cases computed. The compressibility was as high as 1.57 for the
100-kpsi case, while for the 20-kpsi case the maximum was 1.1. This
indicates the relative importance of including real gas effects in the two
cases, and partially explains why variations for the 20-kpsi case between
the real gas and the perfect gas are small, while variations for the 100-
kpsi hydrogen are substantial. The variations are also affected by the
caloric models. 

Because temperature results for the above cases
indicated an unexpectedly high temperature in the shock
region, a program that solves the one-dimensional ideal
shock equations was executed for an additional case with
a pressure ratio of 10,000:1. The real gas peak
temperature is lower than either the ideal gas or perfect
gas. The real gas peak is not as wide as that of the ideal
gas or the perfect gas cases, and both the perfect gas and
real gas shock speeds appear to be lower than the ideal
gas speed. This is consistent with energy being stored as
internal energy in the more realistic models, and the
results appear to be plausible. 

VII. Summary and Conclusions

Real gas models for nitrogen and hydrogen have been added to the Wind-US program in the structured solver. Real
gas modifications have been included only in the Roe flux. However, since the real gas eigenvalues and eigenvectors
have been derived, extension to other solvers should be simplified. The real gas model has been developed to allow
investigators to add gases arbitrarily by including an appropriate thermodynamic evaluation routine. 

Two types of problems have been computed for real gases and compared to perfect gas solutions, i.e., a
converging-diverging Mach 14 nozzle and a high-pressure shock tube. The results show that real gas effects can
significantly alter flow and thermodynamic parameters as compared to perfect gas results. Comparisons with perfect
gas models and nozzle data indicate that reasonable results are being attained. Further validation should be

Figure 13. Comparison of Compressibil-
ity for 100-kpsi vs 20-kpsi
Chamber Pressure

Figure 14. Temperature Comparison of Gas Models for
2-µsec Shock Tube

a. Density on Centerline b. Density Contours
Figure 12. Comparison of Perfect Gas and Real Gas Density for 100-kpsi Shock
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accomplished to increase confidence in the models, especially since the high-pressure conditions considered are
beyond the normal experience of many investigators.

Work is continuing on more complete incorporation of the real gas capability into the Wind-US code, and future
plans are to incorporate the models in the unstructured solver as well as the structured solver.
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