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Abstract
An explicit algebraic Reynolds stress model

originally formulated for incompressible flows has
been implemented in the WIND Navier-Stokes flow
solver. Validation results are presented for an
attached incompressible turbulent boundary layer
and indicate good agreement with experimental
data, though the model lacks the near wall terms
necessary to reproduce details such as the sharp
rise in turbulent kinetic energy outside of the
viscous sublayer. The model is then applied
to a compressible mixing layer and a supersonic
elliptic jet flow. Comparisons with two-equation
eddy viscosity models available in WIND indicate
that the algebraic stress model appears to better
replicate the shape of the mean velocity profiles
in both cases. The primary deficiency of the
model is that it slightly underpredicts the rate of
mixing. In all of these cases, the algebraic stress
model demonstrates its unique ability to predict an
anisotropic distribution of the turbulence intensities.

Nomenclature
Aexit nozzle exit area
b mixing layer thickness between transverse

locations where eu = eu1 − 0.1∆eu andeu = eu2 + 0.1∆eu
bij Reynolds stress anisotropy tensor,

bij = ρu′′i u′′j /2ρ̄k − δij/3
Cf local skin friction coefficient
Deq equivalent diameter, Deq = 2

È
Aexit/π

k turbulent kinetic energy, ρ̄k = ρu′′i u′′j
M Mach number
Mc Convective Mach number,

Mc = (eu1 − eu2) / (a1 + a2)
where a is the speed of sound

P production of turbulent kinetic energy
P pressure

∗AIAA Member

Sij strain rate tensor, Sij = (ui,j + uj,i)/2
Rij rotation tensor, Rij = (ui,j − uj,i)/2
Rex Reynolds number based on x
T temperature
u velocity
Ujet ideal jet exit velocity,

Ujet =
r�

2γ
γ−1

�
RgasTt

�
1−

�
Pt

P∞

�(1−γ)/γ
�

uτ friction velocity, uτ =
È

τwall/ρwall

x, y, z spatial coordinates
y0 mixing layer centerline (midpoint between

transverse locations where eu = eu1 − 0.1∆eu
and eu = eu2 + 0.1∆eu )

y+ sublayer scaled wall distance, y+ = yuτ/νL

∆eu freestream velocity difference, ∆eu = eu1 − eu2

δ boundary layer thickness
δij Kronecker delta
ε turbulent dissipation rate
κ Kármán constant, κ = 0.41
µ kinematic viscosity
ν dynamic viscosity
ΠD

ij deviatoric pressure strain correlation
tensor

ΠD
ij = P ′

�
∂u′′

i

∂xj
+

∂u′′
j

∂xi

�
− 2

3P ′ ∂u′′
k

∂xk
δij

ρ density
τT turbulent time scale
τij viscous stress tensor
τwall wall shear stress
ω specific dissipation rate

subscripts/superscripts
∞ freestream
L laminar
T turbulent
t total
1 high-speed stream
2 low-speed stream

accents
uj Reynolds-averaged mean velocity
u′j Reynolds fluctuating velocityeuj Favre-averaged mean velocity
u′′j Favre fluctuating velocity
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Introduction

Previous work1 conducted at the NASA Glenn
Research Center and by industry partners has
indicated deficiencies of eddy viscosity turbulence
models when applied to compressible, shear-
dominated flowfields which have flow conditions
similar to those encountered in the exhaust nozzles
of subsonic commercial aircraft and proposed future
supersonic vehicles. Even with the inclusion of
additional terms to try to account for the round-
jet/plane-jet anomaly and compressibility effects,
these models still fail to provide agreement with
experimental data for shear layer spreading rates
and jet centerline velocity decay. In addition, there
is growing interest in the aeroacoustics community in
predicting not only the turbulent kinetic energy, but
also the individual Reynolds normal stresses which
form the components of k and using these values
as inputs to empirical noise prediction codes.2 This
has lead to the pursuit of higher-order turbulence
models such as algebraic Reynolds stress models.

Algebraic stress models (ASMs) are derived
from a simplified form of the Reynolds stress
transport equation. These models provide for
improved physical modeling of turbulence over
traditional two-equation eddy-viscosity models and
incur a relatively low cost compared to other
alternatives such as full Reynolds stress models.
From a computational standpoint, explicit ASMs
(EASMs) are preferred over implicit formulations
because: (1) explicit formulations provide direct
expressions for each of the Reynolds stresses without
having to sub-iterate on a system of non-linear
algebraic equations, and (2) implicit formulations,
when solved iteratively can result in non-unique
solutions and singularities which inhibit numerical
convergence.3

EASMs are generally written in terms of the
turbulent kinetic energy (k), turbulent dissipation
rate (ε), mean strain-rate tensor (eSij), and mean
rotation tensor ( eRij). The resultant expression
used to calculate the turbulent stresses resembles
that used with typical two-equation eddy viscosity
models with additional terms that are nonlinear
in eSij and eRij . However, unlike non-linear
eddy-viscosity models, which can have somewhat
arbitrary formulations for the higher-order terms,
the resulting expression for the stresses in an ASM
follows directly from simplifications made to the
Reynolds stress transport equation. Therefore while
the link between the ASM and k − ε model may
appear to be weak and involve merely replacing
the Boussinesq approximation with a slightly more

complicated formula, these ASMs are more closely
aligned with full Reynolds stress models. In
addition, these ASMs are calibrated for use with a
particular underlying k− ε model, which means one
cannot simply swap k − ε models as when using the
Boussinesq expression.

Rodi4 was among the first to propose an
algebraic Reynolds stress model. Since the
convection and diffusion terms make the Reynolds
stress transport equation a differential equation,
he proposed that these terms be related to the
convection and diffusion of the turbulent kinetic
energy. The key to this simplification is the
assumption that derivatives of the anisotropy tensor
bij are small and can be neglected. The transport
equation for the turbulent kinetic energy equation
is then used to replace the convection and diffusion
of turbulent kinetic energy with the production and
dissipation of k. This results in a nonlinear algebraic
equation for the Reynolds stresses. Unfortunately,
Rodi’s model is an implicit formulation subject
to the undesirable numerical behavior previously
described.

Building upon Rodi’s work, Pope5 presented
a methodology based on the use of integrity
bases from linear algebra which resulted in semi-
explicit relations for the turbulent stresses. Gatski
and Speziale6 extended this technique to three-
dimensional flows in non-inertial frames by treating
the ratio of production to dissipation of turbulent
kinetic energy as a known quantity and linearizing
the problem.

Girimaji7 demonstrated that if one does not
linearize about the equilibrium value of production
to dissipation, it is possible to reduce the non-linear
problem to the solution of a single cubic equation for
one of the closure coefficients. In solving the cubic
equation, Girimaji’s selection of the proper root is
governed by the argument that the closure coefficient
must be a continuous function.

Instead of using the continuity arguments of
Girimaji to provide an explicit solution to the
algebraic Reynolds stress equations, Jongen and
Gatski8 use the limiting behavior of a dynamic
system to show that the correct root to be used
is the one with the lowest real part. This
approach has been used by Rumsey and Gatski9,10

in implementing k − ε and k − ω based EASMs in
the CFL3D code and is the basis upon which the
WIND EASM has been formulated. Because k − ε
models have historically performed better than k−ω
models for computing free shear flows, the k − ε
ASM formulation of reference 9 is the focus of this
investigation.
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The goal of the present study is to implement
this explicit algebraic stress model in WIND11,12

and determine its level of accuracy relative to linear
two-equation eddy viscosity models in predicting
basic shear flows which are have flow characteristics
similar to those encountered in aircraft engine
exhaust nozzles. In order to provide an equivalent
comparison between models, no explicit corrections
for compressibility effects, such as those for pressure-
dilatation or dilatation dissipation, have been used.
Appropriate extension of the ASM formulation for
compressible flows shall be the subject of future
work.

ASM Formulation
In the ASM formulation, the turbulent stress

tensor is computed from

τT

ij = −ρu′′i u′′j (1)

= −2
3
ρ̄kδij +2µ∗T

� �eSij− 1
3
eSkkδij

�
+F1

�eSik
eRkj− eRik

eSkj

�
+F2

�eSik
eSkj− 1

3
eSkl

eSklδij

��
(2)

where the first line of Eq. (2) is identical to
the expression obtained using the Boussinesq
approximation. The coefficients multiplying the
nonlinear terms are given by

F1 = a2a4 (3)
F2 = −2a3a4 (4)

The “nonlinear” eddy viscosity expression used is

µ∗T = C∗
µρ̄kτT (5)

where the turbulent time scale is given by

τT =
k

ε
=

1
ω

(6)

Note that the specific dissipation rate ω used above
differs from that used in the k − ω formulations of
references 13 and 14 in that it does not contain the
embedded constant β∗ = 0.09. The coefficient C∗

µ

varies throughout the flowfield and is computed by
solving the following cubic equation.�

−C∗
µ

�3
+ p

�
−C∗

µ

�2
+ q

�
−C∗

µ

�
+ r = 0 (7)

where

p = −γ∗1/
�
η2
1γ∗0

�
(8)

q =

�
γ∗1

2 − 2η2
1γ∗0a1 − 2

3η2
1a2

3 + 2η2
2a2

2

�
(2η2

1γ∗0 )2
(9)

r = γ∗1a1/
�
2η2

1γ∗0
�2

(10)

η2
1 = τ2

T
eSij
eSij (11)

η2
2 = τ2

T
eRij

eRij (12)

γ∗0 = C1
1/2 (13)

γ∗1 =
C0

1

2
+

Cε2 − Cε1

Cε1 − 1
(14)

a1 =
2
3
− C2

2
(15)

a2 = 1− C4

2
(16)

a3 = 1− C3

2
(17)

a4 =
τT

γ∗1 + 2γ∗0C∗
µη2

1

(18)

The coefficients C1 through C4 follow from the
choice of model used for the deviatoric pressure-
strain correlation tensor. The following quasi-linear
expression is commonly used.

ΠD
ij

ρ̄ε
=−

�
C0

1 + C1
1

P
ρ̄ε

�
bij + C2

k

ε

�eSij −
1
3
eSkkδij

�
+ C3

k

ε

�
bik

eSjk + bjk
eSik −

2
3
bmn

eSmnδij

�
+ C4

k

ε

�
bik

eRjk + bjk
eRik

�
(19)

Speziale, Sarkar and Gatski15 suggest the following
values for the coefficients.

C0
1 = 3.4 C2 = 0.36 C4 = 0.4

C1
1 = 1.8 C3 = 1.25 (20)

The coefficients Cε1 and Cε2 used in computing γ∗1
are obtained from the underlying k − ε model used.

The following procedure is used to obtain the
root to Eq. (7) which has the lowest real part:
If η2

1 < 10−6, then the degenerate case of η2
1 → 0 is

given by

−C∗
µ =

−γ∗1a1

γ∗1
2 + 2η2

2a2
2

(21)

Otherwise, define

a = q − p2

3
(22)

b =
2p3 − 9pq + 27r

27
(23)

d =
b2

4
+

a3

27
(24)

If d ≥ 0, there will be one real and two complex
conjugate roots. The one with the smallest real part
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is computed from the following.

A =
�
− b

2
+
√

d

�1/3

(25)

B =
�
− b

2
−
√

d

�1/3

(26)

t1 = −p

3
+ (A + B) (27)

t2 = −p

3
− (A + B)

2
(28)

t3 = t2 (29)

−C∗
µ = min [ t1; t2] (30)

Else (d < 0), there will be three real and unequal
roots given by:

θ = arccos

�
− b

2
/

r
−a3

27

�
(31)

t1 = −p

3
+ 2

É
−a

3
cos

�
θ

3

�
(32)

t2 = −p

3
+ 2

É
−a

3
cos

�
θ

3
+

2π

3

�
(33)

t3 = −p

3
+ 2

É
−a

3
cos

�
θ

3
+

4π

3

�
(34)

−C∗
µ = min [ t1; t2; t3] (35)

Using trigonometric arguments, one can show that
t2 will always be the root of choice in Eq. (35).

The value of C∗
µ computed using this procedure

is limited by C∗
µ = max (C∗

µ, 0.0005) to ensure some
level of turbulence. Within the flat plate boundary
layer, C∗

µ varies from the typical k − ε value of 0.09
in the log layer to 0.18 in the sublayer and at the
edge of the boundary layer. For the planar mixing
layer case, C∗

µ is roughly 0.07 within the shear layer
and 0.18 in either core stream.

k − ε Model

For the k − ε formulation of the ASM, the
following additional equations are solved.

ρ
Dk

Dt
=

∂

∂xj

��
µL +

µ∗T
σk

�
∂k

∂xj

�
+ P − ρε (36)

ρ
Dε

Dt
=

∂

∂xj

��
µL +

µ∗T
σε

�
∂ε

∂xj

�

+ Cε1f1
ε

k
P − Cε2f2

ρε2

k
(37)

f1 = 1.0 (38)

f2 =
�
1− exp

�
− Ry

10.8

��
(39)

Ry =
√

ky/νL (40)
κ = 0.41 (41)

Cµ = 0.0885 (42)
Cε1 = 1.44 (43)
Cε2 = 1.83 (44)
σk = 1.0 (45)

σε =
κ2p

Cµ (Cε2 − Cε1)
≈ 1.4489 (46)

Wall Boundary Condition:

τT

ij = 0 µ∗T = 0 k = 0 ε = 2νL

�
∂
√

k

∂y

�2

(47)

Production Term
Rumsey10 suggests that the production of

turbulent kinetic energy may be approximated by

P = τT

ij

∂eui

∂xj
≈ 2µ∗T eSij

eSij (48)

which is exact for two-dimensional incompressible
flow. This approximation has been included in the
WIND implementation as an option and may be
investigated at a later time. However, all of the ASM
results presented herein were computed using the
complete production term obtained by substituting
the expression for τT

ij from Eq. (2) into Eq. (48).

Implementation
Implementation of the algebraic Reynolds stress

model in WIND was accomplished by building upon
the existing routines for solving the Chien k − ε
equations. Details of that solution methodology are
available in reference 16 and will not be repeated
here. However, key modifications of this algorithm
shall be outlined.

In order to accommodate the ASM into WIND,
modifications were made to the mean-flow equations
and the turbulent kinetic energy production term to
use the expression for τT

ij from Eq. (2) rather than
that from the Boussinesq approximation. Additional
routines were added to handle the turbulence model
source terms (namely those terms on the right hand
side of Eqs. (36) and (37) excluding the diffusion
terms), the enforcement of the wall boundary
conditions listed in Eq. (47), and the solution of the
cubic relation for C∗

µ given by Eq. (7).
Two other modifications were made to improve

the stability and robustness of the algorithm. First,
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the magnitudes of the minimum allowable k and ε
values were reduced in order to obtain acceptable
turbulence profiles within the sublayer region. Use
of higher values, such as those used in the original
Chien k−ε implementation, were found to artificially
impose the turbulent time scale τT = k/ε very near
the wall. Second, the implicit treatment of the
source terms was modified to improve the diagonal
dominance of the system.

Modifications were also made to the WIND
post-processing tool, CFPOST, to allow for the
examination and extraction of the turbulent stresses
from the solution files.

Results
The ASM results presented below are com-

pared with those obtained using the Shear Stress
Transport (SST)14 and Chien17 k − ε two-equation
turbulence models, which utilize the Boussinesq
approximation. The SST model is a two-layer
model, where the k−ω model of Wilcox18 is used in
the near-wall region and the high Reynolds number
k − ε model of Jones-Launder19 is used in the outer
region of the boundary layer and away from walls.
A blending function is used to facilitate the switch
between the two layers. The SST model is widely
used because of its robustness and versatility. The
Chien model is representative of the k − ε models
and can be numerically integrated through viscous
wall regions. Again, no explicit compressibility
corrections, such as those for pressure dilatation or
dilatation dissipation, have been used with any of
the turbulence models investigated.

Flat Plate
The incompressible flow over a smooth flat

plate, originally reported by Wieghardt20 and later
included in the compilation of reference 21, was
chosen as an initial validation case for two reasons.
First, this benchmark flow can be used to ascertain
the integrity of the WIND ASM k−ε implementation
without the added complexity of compressibility
effects, which the present model does not specifically
account for. Second, this case has been used to
validate many of the other turbulence models in
WIND and therefore provides a basis for comparing
computational issues such as grid sensitivity.

A Cartesian mesh with 111 points in the axial
direction and 81 points normal to the viscous wall
was used. The first 14 axial points upstream of the
leading edge of the plate were treated as an inviscid
wall to provide a uniform profile at the leading edge
location. The mesh was clustered in the streamwise
direction to resolve flow gradients near the leading
edge of the plate and normal to the surface to resolve

the boundary layer. Calculations were made on a
series of grids having a nominal y+ values of 1, 2, and
5 at the first point off the wall. In a previous study16

these values were shown to be representative of the
maximum y+ along the the plate. The freestream
Mach number in the simulations was set to 0.20,
slightly higher than in the experiment, in order to
accelerate the convergence rate of the code.

Based on skin friction results, the grid depen-
dence of the ASM was found to be comparable to
that of the Chien k−ε model. Both models exhibited
only minor differences between solutions obtained on
the y+ = 1 and y+ = 2 grids. However, the error
in the ASM predictions was found to increase to 20
percent when using the y+ = 5 mesh. For the Chien
k− ε model, the error was roughly 10 percent. This
grid sensitivity is decidedly more pronounced than
observed in the previous validation of the Chien k−ε
model16 and is likely due to reducing the minimum
allowable values of the turbulence variables. It is
generally recommended that one place the first grid
point deep within the sublayer, usually at or below
y+ ≈ 1. All of the results that follow are those
obtained on the y+ = 1 mesh.

Figure 1 shows the skin friction distribution
along the flat plate. The ASM and k − ε results are
in very close agreement with each other, while the
SST results are slightly lower. All of the solutions
are within 1 to 2 percent of the experimental data.
Velocity profiles at the Rex = 4.2x106 location
are given in Figure 2. All of the models provide
satisfactory results.

Turbulent kinetic energy profiles are shown in
Figure 3 with the “average” experimental data
compiled by Patel, Rodi, and Scheuerer.22 The
SST and ASM results are very similar and fail to
predict the peak in k that is located around y+ = 15.
This occurs because neither model contains the near-
wall terms needed capture this feature of the flow.
The Chien k − ε model does contain these terms
and provides better agreement with the data in this
regard.

All of the models reasonably predict the
turbulent shear stress in both the inner (Figure 4)
and outer (Figure 5) parts of the boundary layer.
Turbulence intensity profiles are shown in Figure 6.
Both the SST and k − ε models, which use
the Boussinesq approximation, predict an equal
partition of the turbulent kinetic energy between
the three components. The ASM does not rely
upon the Boussinesq approximation and predicts
v′′v′′ < w′′w′′ < u′′u′′, which is in agreement with
the data. However, the model’s lack of near-wall
terms to capture the peak in turbulent kinetic energy
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also prevents the model from predicting the sharp
rise in turbulence intensities very near the wall.

Mixing Layer

The second case to be examined is the
compressible planar shear layer, identified as case 2
by Goebel and Dutton.23 In this flow, two parallel
supersonic streams, which are initially separated by
a splitter plate, are allowed to interact to form
a shear layer. At the entrance of the mixing
region, the flow conditions for the high-speed stream
are reported to be M=1.91, Tt=578 °K, and
U=700 m/s. Those for the low-speed stream are
M=1.36, Tt=295 °K, and U=399 m/s. The two
streams are reportedly pressure-matched at 49 kPa.
The convective Mach number for this case, based
upon these flow conditions, is 0.46.

This problem was modeled using three zones.
The first two zones, each 101x101, were used
to model the growth of the upstream boundary
layers on either edge of the splitter plate. The
high-speed stream required an upstream extent of
240 mm in order to match the momentum thickness
measured in the experiment near the end of the
plate. Similarly, the low-speed stream required
160 mm. The third zone, 401x241 in size, was
used to model the 500 mm by 48 mm mixing
region. Forty-one points were placed across the
base region of the splitter plate which was 0.5 mm
thick. The grid was clustered vertically to capture
the boundary layers and the shear layer. It was also
clustered axially towards the splitter plate trailing
edge to resolve the initial development region of
the shear layer. The y+ values over the majority
of the domain varied between 0.8 and 1.0. In the
experiment, the upper and lower walls of the mixing
section were angled to accomodate the growth of the
boundary layers. For the computations, straight-
walled inviscid boundaries were used. Results
obtained using this grid sequenced one level (i.e.,
every other point) in both directions were nearly
identical to those obtained using the full grid.

Figure 7 compares the mean velocity profiles at
several axial stations throughout the mixing region.
At the entrance to the mixing region, all of the
results are nearly identical and agree very well with
the experimental data. Further downstream, there is
still very little difference between the SST and k− ε
model results, as one would expect for a free shear
flow such as this. These results can very nearly be
represented as a linear interpolation between either
core stream velocity. That is to say that these
velocity profiles exhibit a nearly linear slope which
abruptly changes at either edge of the shear layer.

The ASM profile results, on the other hand, have
a distinctive non-linear shape which appears to be
more in line with that exhibited by the experimental
data.

Profiles of the streamwise and transverse tur-
bulence intensities are shown in Figures 8 and
9. As with the boundary layer results, the SST
and k − ε models again predict a nearly equal
partition of k between these two normal stresses.
The ASM much more accurately predicts the higher
values of streamwise intensity and lower values of
transverse intensity indicated by the data. Profiles
of spanwise turbulence intensity are not shown,
due to lack of experimental data. However, the
predicted ASM profiles are similar in shape to
those shown in Figures 8 and 9, with peak values
that are not quite midway between those for the
streamwise and transeverse intensities. Profiles of
the turbulent shear stress given in Figure 10 also
appear to indicate the superiority of the ASM over
the SST and k− ε models, particularly in the initial
development region.

Figure 11 compares the shear layer thickness b,
which is defined as the distance between transverse
locations where eu = eu1−0.1∆eu and eu = eu2 +0.1∆eu.
The ASM is observed to predict a shear layer which
is roughly 20 percent thinner than that of the SST
or k−ε models. Refering back to the velocity profiles
given in Figure 7, one can clearly see that the width
of the shear layer predicted with the ASM is in fact
smaller. Even if the models were identical in their
predictions of the shear layer edge locations, the
ASM would still yield a smaller shear layer thickness
based on the 10 percent ∆eu criteria, due to the non-
linear shape of the ASM profiles.

With regards to the experimental data, the
ASM is in excellent agreement within the first
half of the mixing region. Further downstream,
the model underpredicts the shear layer thickness.
The SST and k − ε models predict a much more
rapid growth in the region from x =75 mm to
x =225 mm, but tend to provide slightly better
agreement further downstream. The mixing layer
growth rate, db/dx, is often used as a quantitative
measure of model performance. Table 1 summarizes
the values obtained in this investigation. These
are computed using a linear least-squares fit of the
CFD at the experimental profile locations between
100 mm and 450 mm, the self-similar region reported
in the experiment. Based on these values alone, one
would likely conclude that the k− ε model performs
the best. However, the profile plots indicate that
the ASM holds distinct advantages over the two-
equation models.
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db/dx
Goebel 0.0381
SST 0.0392
k − ε 0.0379
ASM k − ε 0.0295

Table 1: Mixing Layer Growth Rates

Elliptic Nozzle

The final case to be examined is the elliptic noz-
zle tested experimentally by Seiner and Ponton.24

As illustrated in Figure 12 this nozzle has an aspect
ratio (major axis diameter divided by minor axis
diameter) of 2 and an exit area of 1.571 in2. At the
exit plane, the nozzle wall was 0.02 inches thick. The
nozzle was operated at a total temperature of 564 °R
and a nozzle pressure ratio (nozzle total pressure
divided by freestream static pressure) of 3.67. This
provided a design exit Mach number of 1.52.

Due to the symmetry of the geometry, only a
90° section from the major axis to the minor axis
was modeled. The grid for this case was divided
into three zones. The mesh for the internal nozzle
region contained 87 points in the axial direction
and 61 points in the radial direction. The zone
used to model the freestream inflow region contained
61 axial and 61 radial points. These two zones
were point-to-point matched with a 101x151 zone
used to model the downstream plume region, which
extended 100 inches. This left 29 points in the radial
direction to resolve the base region downstream of
the nozzle lip. In each zone, 46 points were used in
the circumferential direction. The y+ values along
the interior nozzle wall were less than one.

The operating conditions described above were
used to set the inflow conditions for the calculations.
In order to prevent convergence difficulties, the
ambient air was modeled as having a freestream
Mach number of 0.07. WIND was run in 100 cycle
intervals at 5 iterations per cycle with a CFL number
of 1.5. Solutions were deemed converged when the
maximum percent change in the centerline velocity
between two successive solutions dropped below 0.01
percent.

Figure 13 compares the centerline velocity decay
of the jet. For this case, the k − ε model has the
highest initial rate of jet mixing, as indicated by
the length of the potential core, followed by the
SST model and the ASM. Relative to the data,
the k − ε model most accurately predicts the core
length. Further downstream, all of the models decay
at a slightly faster rate than indicated by the data.

Mean velocity profiles along the major and minor
axes are presented in Figure 14 at several axial

locations. The k − ε and SST models yield similar,
though not identical, results. Both predict a shear
layer which is thinner than experiment along the
major axis and thicker than experiment along the
minor axis. These calculations therefore predict a
jet which becomes much more round compared to
the data. These findings were previously reported
by Georgiadis,25 who speculated that the inability
of these models to accurately represent the three-
dimensional effects of this elliptic jet may be linked
to their isotropic nature. The ASM results for this
case appear to support that premise. The major axis
profiles illustrate a considerable improvement over
the two-equation results. The minor axis profiles
also show improvement. The only major difficiency
in the ASM results appears to be in the centerline
decay. Therefore one must recognize that solely
using the centerline velocity decay as an indicator of
the ability of these turbulence models will lead to the
incorrect conclusion that the two-equation models
are not only adequate, but superior, for this type of
flow.

Turbulence intensity profiles are presented in
Figure 15. The k − ε and SST results once again
predict a nearly isotropic distribution, while the
ASM clearly displays anisotropy. The turbulence
intensity in the streamwise direction is considerably
larger than in the other two directions. It is also
interesting to note that along the major (z=0)
axis v′′v′′ < w′′w′′, while along the minor (y=0)
axis this trend is reversed. This is consistent
with the planar mixing layer results in that the
turbulence intensity in the dominant shear direction
(the y-direction for that case) was found to be
the smallest. Along the major axis the dominant
velocity gradient is in the y-direction, while along
the minor axis the gradient is in the z-direction.
Unfortunately, no turbulence statistics are available
from the experiment to confirm this behavior.

Conclusions and Future Work

An incompressible algebraic Reynolds stress tur-
bulence model has been implemented in the WIND
Navier-Stokes flow solver and has been thoroughly
validated for an incompressible boundary layer. The
model was then applied to a compressible planar
mixing layer and a supersonic elliptic jet. In
all of these calculations, the ASM demonstrated
its unique ability to predict anisotropy among the
Reynolds normal stresses. For the mixing layer
calculation, the ASM was found to more accurately
predict the shape of the mean velocity profiles and
the turbulent stresses relative to two-equation eddy
viscosity models, but slightly underpredicted the
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shear layer growth rate. For the elliptic jet, the ASM
results for the mean velocity profiles along the major
and minor axes were in much better agreement with
experimental observations. The linear two-equation
models tended to predict a much more round-like
jet. However, in examining the centerline mean
velocity decay, the ASM was found to once again
underpredict the amount of mixing.

These results suggest that it may be necessary
to adjust some of the model coefficients in order to
increase the rate of mixing predicted by the ASM.
However, experience with two-equation models has
indicated that one must be careful in this regard,
since the amount of recalibration needed often
depends on the level of compressibility of the flow.
Future work shall focus first on determining the
ASM’s sensitivity to compressibility effects, then
on evaluating various modifications for compressible
flow. Model terms for the deviatoric pressure strain
correlation tensor and the pressure dilatation will
likely play a key role, as these correlation terms
involve the fluctuating pressure.
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Figure 1: Flat Plate Skin Friction Results.
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Figure 7: Planar Mixing Layer Velocity Profiles.
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Figure 8: Planar Mixing Layer Streamwise Turbulence Intensity Profiles.
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Figure 9: Planar Mixing Layer Transverse Turbulence Intensity Profiles.
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Figure 10: Planar Mixing Layer Turbulent Shear Stress Profiles.
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Figure 14: Elliptic Nozzle Mean Velocity Profiles.
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