NASA Logo - Web Link to NASA.gov Vertical Line

+ Text Only Site
+ Non-Flash Version
+ Contact Glenn

Go
ABOUT NASA NEWS AND EVENTS MULTIMEDIA MISSIONS MyNASA WORK FOR NASA
Computer drawing of the Wright 1903 aircraft engine operation
 during the compression stroke

For the forty years following the first flight of the Wright brothers, airplanes used internal combustion engines to turn propellers to generate thrust. Today, most general aviation or private airplanes are still powered by propellers and internal combustion engines, much like your automobile engine. On this page we will discuss the fundamentals of the internal combustion engine using the Wright brothers' 1903 engine, shown in the figure, as an example.

The brothers' design is very simple by today's standards, so it is a good engine for students to study to learn the fundamentals of engine operation. This type of internal combustion engine is called a four-stroke engine because there are four movements (strokes) of the piston before the entire engine firing sequence is repeated. In the figure, we have colored the fuel/air intake system red, the electrical system green, and the exhaust system blue. We also represent the fuel/air mixture and the exhaust gases by small colored balls to show how these gases move through the engine. Since we will be referring to the movement of various engine parts, here is a figure showing the names of the parts:

Computer drawing of the Wright 1903 aircraft engine showing the
 labeled parts in a single cylinder.

Mechanical Operation

At the end of the intake stroke the fuel/air mixture has been drawn into the cylinder at low (nearly atmospheric) pressure by the motion of the piston towards the crankshaft at the left. From our considerations of the engine cycle, we designate this condition as Stage 2 of the Otto cycle. The intake valve is then closed and the piston begins to move back towards the combustion chamber at the right. With both valves closed, the combination of the cylinder and combustion chamber form a completely closed vessel containing the fuel/air mixture. As the piston is pushed to the right, the volume is reduced and the fuel/air mixture is compressed. When the piston has moved completely to the right, we designate the conditions as Stage 3 of the cycle. During the compression stroke, the electrical contact is kept opened. When the volume is the smallest, and the pressure the highest, the contact is closed and current flows through the completed circuit. The switch is then quickly opened, producing a spark which ignites the mixture.

Thermodynamics

During the compression, no heat is transferred to the fuel/air mixture. As the volume is decreased because of the piston's motion, the pressure in the gas is increased. In the figure, the mixture has been colored blue at stage 2 and yellow at stage 3 to denote a moderate increase in pressure. To produce the increased pressure, we have to do work on the mixture, just as you have to do work to inflate a bicycle tire using a pump. There are thermodynamic equations which relate the pressure increase and temperature increase to the change in volume:

p3 / p2 = (V2 / V3) ^ gamma

T3 / T2 = (V2 / V3) ^ (gamma - 1)

where p is the pressure, T is the temperature, V is the volume of the mixture, and gamma is the ratio of specific heats of the mixture. The numbers indicate the two stages of the cycle. Since V2 is greater than V3 and gamma is greater than 1 (1.4 for pure air), p3 is greater than p2 and T3 is greater than T2. Pressure and temperature of the fuel/air mixture both increase during the compression process, and the final value (p3 and T3) depends only on a geometric compression ratio (V2/V3) to some power multiplied by the intial value (p2 and T2).



Activities:

Guided Tours



Navigation..

Button to Display Propulsion Index Button to Display Wright Brothers Index
Beginner's Guide Home Page

 

     First Gov Image


+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Budgets, Strategic Plans and Accountability Reports
+ Freedom of Information Act
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

 

NASA Logo   
Editor: Nancy Hall
NASA Official: Nancy Hall
Last Updated: May 05 2015

+ Contact Glenn