NASA Logo - Web Link to NASA.gov Vertical Line

+ Text Only Site
+ Non-Flash Version
+ Contact Glenn

Go
ABOUT NASA NEWS AND EVENTS MULTIMEDIA MISSIONS MyNASA WORK FOR NASA
Computer drawing of kids page link
This page is intended for college, high school, or middle school students. For younger students, a simpler explanation of the information on this page is available on the Kids Page.

Computer drawing of an airliner showing simple translation
 and combined translation and rotation.

We live in a world that is defined by three spatial dimensions and one time dimension. Objects move within this domain in two ways. An object translates, or changes location, from one point to another. And an object rotates, or changes its attitude. In general, the motion of any object involves both translation and rotation. The translations are in direct response to external forces. The rotations are in direct response to external torques or moments (twisting forces).

The motion of an aircraft is particularly complex because the rotations and translations are coupled together; a rotation affects the magnitude and direction of the aerodynamic forces which affects the translation. To understand and describe the motion of an aircraft, we usually try to break down the complex problem into a series of easier problems. We can, for instance, assume that the aircraft translates from one point to another as if all the mass of the aircraft were collected into a single point called the center of gravity.

We can describe the motion of the center of gravity by using Newton's laws of motion. There are four forces acting on the aircraft; the lift, drag, thrust, and weight. Depending on the relative magnitudes and directions of these forces, the aircraft climbs (increases in altitude), dives (decreases in altitude), or banks (rolls to one side and turns). The magnitude of the aerodynamic forces depends on the attitude of the aircraft during the translations. The attitude depends on the rotations about the center of gravity. A rotation is caused by a force being applied, at some distance from the center of gravity. When the aircraft is trimmed, rotations caused by several forces are balanced and the aircraft does not rotate.


Activities:
Button to Display Grade 6-8 Activity Button to Display Grade 6-8 Activity
Guided Tours
  • Button to Display Previous Page Forces, Torques and Motion: Button to Display Next Page
  • Button to Display Previous Page Basic Aircraft Motion: Button to Display Next Page

Navigation ..

Button to Display Aerodynamics Index Button to Display Propulsion Index Button to Display Wright Brothers Index
Beginner's Guide Home Page

 

     First Gov Image


+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Budgets, Strategic Plans and Accountability Reports
+ Freedom of Information Act
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

 

NASA Logo   
Editor: Nancy Hall
NASA Official: Nancy Hall
Last Updated: May 05 2015

+ Contact Glenn