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Project Background

* In co-operation with NASA Langley, there has been an effort
to increase the fidelity of aircraft simulation when one or both
engines are operating in the sub-idle region.

* Engine sub-idle modeling facilitates aircraft simulation during
In-flight engine shutdown and/or restart

Potential events:
e Operation post unrecoverable surge
e Combustor blow out

 Loss of engine due to
— Bird strike
— Fuel loss
— Mechanical failure
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C-MAPSS40k Modifications

« Commercial Aero-Propulsion System Simulation 40k (C-MAPSS40k)
— Allinclusive dynamic high-bypass, dual-spool simulation developed at GRC

— Energy balance approach centered around compressor and turbine
performance maps

— External solver required for “converging” to a point of operation during any
given time step

» Modifications for sub-idle operation

— Extension of performance maps to increase the operational envelope of the
engine simulation

— Creation of backup empirical model to offer “fail safe” if simulation
convergence can not be achieved.
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Pressure ratio, PR

Map Extrapolation

Compressor and turbine maps were extended to include sub-idle
operational points

— Boundaries: 0 shaft speed, 0 mass flow, and unity pressure ratio

— Extrapolation into the paddle and turbine regions of the compressor map was

avoided due to uncertainty of performance resulting from a lack of engine
data.
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Integrated Architecture

A Fail-safe model was added to guarantee sub-idle model stability
— Model switching occurs once a criterion is satisfied
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Model Switching
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Fail-Safe Windmilling Modeling

 Nc, Nf, and Fnet generated
from 2-D table lookups based
on Alt. and MN.
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Restart Modeling

o Atypical start sequence consists of purging/cranking to get to a predefined
speed and clear all un-burnt fuel from the engine

 Modeling restart cases:

— Engine is operating on the extrapolated maps

» Cranking will occur if windmilling speeds are within specified limits and is modeled by
an external torque on the high pressure shatft.

* Re-light will occur once shaft speed exceeds 20% max

— Engine is operating on windmilling tables
* Low speed cranking engine model (transfer function) will drive the engine to 20%
shaft speed
* Re-light will occur and the model will be transitioned back to the baseline

» Cranking will continue as an external torque on the high pressure shaft based on
current shaft speed
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Updating Fuel Control

e Shutdown simulated by removing fuel from the engine
« Eliminating controller windup:

— PI feedback for limiters removed during blow out
— Integration in min limiters removed during start

Integrator eliminated

during engine blow out Simulated Burner Lit:
Max Limiters Fuel On/Off

Nf Nc Ps3 Accel EGT /
Fuel flow

—l— —l— demand

(Ps3) RU
EPR or Nf -~
controller Min himiters

Integrator eliminated until
start has ended

Control Fuel Flow
—
Inputs Request

Glenn Research Center

at Lewis Field




Starter Assist

Torque assist on high pressure shaft at low engine speeds
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Sub-Idle Model Operation

 Engine Simulated Shutdown and Restart at Sea Level Static conditions
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Performance Validation

« Validation challenging due to generic nature of model

« Comparison to textbook performance and pilot in-flight
performance confirmation
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Fig. 9.1 Key engine start phases and speeds versus time.

Figure from Walsh and Fletcher, Gas Turbine Performance, 2 ed
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Modeling Platform

Integrate new requirements into existing
NASA Glenn flight simulator
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Summary

* An in-flight shutdown and re-start model was developed and integrated
iInto C-MAPSS40k for use in the NASA Glenn flight simulator

 Two main techniques were used to extend the engine simulation
envelope

— Performance map extrapolation
— Alternate Sub-Idle model fail-safe

o Arestart model was created using a two tiered crank simulation
— External torque source
— Alternate cranking model fail-safe

* Engine control system was adjusted to account for integrator wind-up

 Model results show plausible results that allow for smooth transitioning
between engine shutdown and idle.
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