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Abstract

In the following work, we present the results of selected simulations of the classical Taylor-Green vortex
problem with a variant of the Discontinuous Galerkin method (DG) labeled the “Discontinuous Galerkin
Spectral Element Method” (DGSEM). In the classical DGSEM formulation, the non-linear fluxes are co-
located on the solution grid, leading to a highly efficient scheme but possible aliasing errors. Polynomial
de-aliasing techniques proposed by Kirby and Karniadakis [4] avoid these errors, but incur a higher
computational cost. We show results for the co-location and fully de-aliased versions of DGSEM, along
with results for a locally adaptive de-aliasing approach.

The Flow over a Periodic Hill

The flow over a periodic hill is frequently used benchmark case for turbulence modelling, see e.g. [2,
3, 6, 7]. In contrast to the more common square duct hill flows, it covers various physical phenomena
like flow separation, reattachment and, depending on the Reynolds number, turbulent transition and
relaminarization. Figure 1 shows the instantaneous vortical structures.
The shape of the hill is described in the test case description and in [1], the length of the channel is
Lx = 9h and corresponds to the distance between the two hills with h denoting the hill height. The
channel height is Ly = 3.035h and the spanwise extent is Lz = 4.5h. We choose two Reynolds numbers
of Reh = 2800 and Reh = 10595 based on the bulk velocity ub at the hill crest. We use Ma = 0.1 to
avoid compressibility effects. We apply isothermal no-slip boundary conditions at the lower and upper
walls with a nondimensional temperature of 1, all other boundaries being periodic. We employed the
provided 128 × 64 × 64 mesh, and coarsened it isotropically twice, resulting in 8192 cells for the final
mesh. Based on the original mesh, we curved our mesh by agglomeration to achieve a 4th order geometry
representation. The resulting grid is shown in Figure 2.

Code Framework

Our code framework is based on a variant of the Discontinuous Galerkin method labeled the “Discon-
tinuous Galerkin Spectral Element method”, see Kopriva [5], and solves the compressible Navier-Stokes
equations. The implementation allows the selection of arbitrary polynomial order and thus enables us
to study the features of high order formulations very efficiently within our framework. In addition, the
integration precision of the flux terms can be chosen independently from the solution to allow polynomial
de-aliasing. Explicit time integration is achieved by a 5-stage 4th order Runge-Kutta scheme.
The code is accompanied by a postprocessing tool for visualization and a-posteriori extraction of relevant
flow features and a 3D Fast Fourier transform for the analysis of flow spectra. The whole framework is
fully MPI-parallelized, where special care has been taken to achieve a high parallel efficiency and excellent
scaling. On the JuQueen (IBM BlueGene/Q system, Jülich Supercomputing Center) system, a perfect
strong scaling was measured on up to 216, 000 ranks.



Figure 1: Q-Criterion isocontours evaluated at t = 800, colored by velocity magnitude.
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Figure 2: Curved mesh for periodic hill computation.



Figure 3: Averaged velocity magnitude and flow profiles at sampling position (position x/h = 0.5 omitted
for clarity).

In this work, we present computations performed Cray XE6 “Hermit” cluster (TauBench of 15.1s) at the
High Performance Computing Center Stuttgart (HLRS) on up to 6912 cores.

Results

The following table list the cases considered in this contribution:

Case Reynolds no. N DOF M No. of cores Wall Time [s] WU (CPU Time)
1 2800 3 524288
2 2800 9 8192000
3 10595 4 1024000
4 10595 6 2809856
5 10595 9 8192000

Table 1: Periodic Hill computations on the mesh with 8192 elements. N : polynomial degree; M : poly-
nomial degree of fluxes; WU: Work units on CRAY XE6 “Hermit” with TauBench ≈ 4.7s.
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