
Problem C3.5 Direct Numerical Simulation of the

Taylor-Green Vortex at Re = 1600

1 Overview

This problem is aimed at testing the accuracy and the performance of high-order
methods on the direct numerical simulation of a three-dimensional periodic and
transitional flow defined by a simple initial condition: the Taylor-Green vortex.
The initial flow field is given by
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This flow transitions to turbulence, with the creation of small scales, followed
by a decay phase similar to decaying homogeneous turbulence (yet here non
isotropic), see figure 1.

Figure 1: Illustration of Taylor-Green vortex at t = 0 (left) and at tfinal = 20 tc
(right): iso-surfaces of the z-component of the dimensionless vorticity.
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2 Governing Equations

The flow is governed by the 3D incompressible (i.e., ρ = ρ0) Navier-Stokes
equations with constant physical properties. Then, one also does not need to
compute the temperature field as the temperature field plays no role in the fluid
dynamics.

Alternatively, the flow is governed by the 3D compressible Navier-Stokes
equations with constant physical properties and at low Mach number.

3 Flow Conditions

The Reynolds number of the flow is here defined as Re = ρ0 V0 L
µ and is equal to

1600.

In case one assumes a compressible flow: the fluid is then a perfect gas with
γ = cp/cv = 1.4 and the Prandtl number is Pr =

µ cp
κ = 0.71, where cp and cv

are the heat capacities at constant pressure and volume respectively, µ is the
dynamic shear viscosity and κ is the heat conductivity. It is also assumed that
the gas has zero bulk viscosity: µv = 0. The Mach number used is small enough
that the solutions obtained for the velocity and pressure fields are indeed very
close to those obtained assuming an incompressible flow: M0 = V0

c0
= 0.10,

where c0 is the speed of sound corresponding to the temperature T0 = p0
Rρ0

.
The initial temperature field is taken uniform: T = T0; thus, the initial density
field is taken as ρ = p

RT0
.

The physical duration of the computation is based on the characteristic
convective time tc = L

V0
and is set to tfinal = 20 tc. As the maximum of the

dissipation (and thus the smallest turbulent structures) occurs at t ≈ 8 tc, par-
ticipants can also decide to only compute the flow up to t = 10 tc and report
solely on those results.

4 Geometry

The flow is computed within a periodic square box defined as −πL ≤ x, y, z ≤
πL.

5 Boundary Conditions

No boundary conditions required as the domain is periodic in the three direc-
tions.

6 Grids

The baseline grid shall contain enough (hexahedral) elements such that approx-
imately 2563 DOFs (degrees of freedom) are obtained: e.g., 643 elements when
using p = 4 order interpolants for the continuous Galerkin (CG) and/or discon-
tinuous Galerkin (DG) methods. Participants are encouraged, as far as can be
afforded, to perform a grid or order convergence study.
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7 Mandatory results

Each participant should provide the following outputs:

• The temporal evolution of the kinetic energy integrated on the domain Ω:

Ek =
1

ρ0 Ω

∫
Ω

ρ
v · v

2
dΩ .

• The temporal evolution of the kinetic energy dissipation rate: ε = −dEk

dt .

The typical evolution of the dissipation rate is illustrated in figure 2.

Figure 2: Evolution of the dimensionless energy dissipation rate as a function
of the dimensionless time: results of pseudo-spectral code and of variants of a
DG code.

• The temporal evolution of the enstrophy integrated on the domain Ω:

E =
1

ρ0 Ω

∫
Ω

ρ
ω · ω

2
dΩ .

This is indeed an important diagnostic as ε is also exactly equal to 2 µ
ρ0
E

for incompressible flow and approximately for compressible flow at low
Mach number (cfr. section 8).
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Figure 3: Iso-contours of the dimensionless vorticity norm, L
V0
|ω| =

1, 5, 10, 20, 30, on a subset of the periodic face x
L = −π at time t

tc
= 8. Compar-

ison between the results obtained using the pseudo-spectral code (black) and
those obtained using a DG code with p = 3 and on a 963 mesh (red).

• The vorticity norm on the periodic face x
L = −π at time t

tc
= 8. An

illustration is given in figure 3.

Important: All provided values should be properly non-dimensionalised: e.g.,

divide t by L
V0

= tc, Ek by V 2
0 , ε by

V 3
0

L =
V 2
0

tc
, E by

V 2
0

L2 = 1
t2c

, etc.

8 Suggested additional results

Furthermore participants are encouraged to provide additional information.

• In incompressible flow (ρ = ρ0), the kinetic energy dissipation rate ε, as
obtained from the Navier-Stokes equations, is:

ε = −dEk
dt

= 2
µ

ρ0

1

Ω

∫
Ω

S : S dΩ

where S is the strain rate tensor. It is also easily verified that this is equal
to

ε = 2
µ

ρ0
E .

If possible, the temporal evolution of the integral 1
Ω

∫
Ω
S : S dΩ shall be

reported in addition to −dEk

dt and the enstrophy.

• In compressible flow, the kinetic energy dissipation rate obtained from the
Navier-Stokes equations is the sum of three contributions:

ε1 = 2
µ

ρ0

1

Ω

∫
Ω

Sd : Sd dΩ
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where Sd is the deviatoric part of the strain rate tensor,

ε2 =
µv
ρ0

1

Ω

∫
Ω

(∇ · v)
2
dΩ

where µv is the bulk viscosity and

ε3 = − 1

ρ0 Ω

∫
Ω

p∇ · v dΩ .

The second contribution is zero as the fluid is taken with µv = 0. The
third contribution is small as compressibility effects are small due to the
small Mach number. The main contribution is thus the first one; given
that the compressibility effects are small, this contribution can also be
approximated using the enstrophy integral.

If possible, the temporal evolution of ε1 and ε3 shall also be reported, in
addition to −dEk

dt and the enstrophy.

• participants are furthermore encouraged to provide numerical variants of
kinetic energy dissipation rate (eg. including jump terms for DG methods)
and compare those to the consistent values.

9 Reference data

The results will be compared to a reference incompressible flow solution. This
solution has been obtained using a dealiased pseudo-spectral code (developed
at Université catholique de Louvain, UCL) for which, spatially, neither numer-
ical dissipation nor numerical dispersion errors occur; the time-integration is
performed using a low-storage 3-steps Runge-Kutta scheme [2], with a dimen-
sionless timestep of 1.0 10−3. These results have been grid-converged on a 5123

grid (a grid convergence study for a spectral discretization has also been done
by van Rees et al. in[1]); this means that all Fourier modes up to the 256th
harmonic with respect to the domain length have been captured exactly (apart
from the time integration error of the Runge-Kutta scheme). The reference
solutions are to be found in the following files:

• spectral Re1600 512.gdiag provides the evolution of dimensionless val-
ues of Ek, ε = −dEk

dt and E .

• wn slice x0 08000.out provides the dimensionless vorticity norm on the
plane x

L = −π. One can use the python script read and plot w.py to
extract the data and visualize the vorticity field or use another language
following the format described in the script.
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