High Order Workshop Results for Case 3.3
Taylor-Green Vortex \(Re = 1600 \)

Michael J. Brazell * and Dimitri J. Mavriplis †

Department of Mechanical Engineering, University of Wyoming, Laramie WY 82071, USA

I. Code Description

A 3D Discontinuous Galerkin (DG) finite element method is used to discretize the compressible Navier-Stokes (CNS) equations. The solver can handle hybrid mixed element meshes (tetrahedra, pyramids, prisms, and hexahedra), curved elements, and incorporates both p-enrichment and h-refinement capabilities using non-conforming elements (hanging nodes). Additional equations that can be solved include a PDE-based artificial viscosity equation and the Spalart-Allmaras turbulence model (negative-SA variant). The implicit solver uses a Newton-Raphson method to solve the non-linear set of equations. These equations are linearized to obtain the full Jacobian. The linear system is solved using a flexible-GMRES (fGMRES) method. To further improve convergence of fGMRES a preconditioner can be applied to the system of equations. Preconditioners that have been implemented include Jacobi relaxation, Gauss-Seidel relaxation, line implicit Jacobi, and ILU(0). The solver is parallelized using MPI.

II. Case Summary

This simulation was solved explicitly using Runge Kutta 4 for 100,000 time steps on 1024 processors. These simulations were performed on the NCAR-Wyoming supercomputer (NWSC) Yellowstone which is a 1.5 Petaflops high performance IBM iDataPlex architecture featuring 72,576 Intel Sandybridge cores (2.6 GHz Intel E5-2670 processors configured in dual socket nodes) and 144.6 TB of memory. The Taubench for this machine is 8.4 seconds.

III. Meshes

A structured cartesian grid is created for this problem. The domain is from \([-\pi, \pi]\) and periodic boundary conditions are used on all boundaries. Two grids are used: one with \(32^3\) elements and another with \(64^3\) elements.

IV. Results

Eight simulations varying the basis polynomial degree and grid resolution were performed for the Taylor-Green vortex problem. Polynomial degrees of 1, 2, 3, and 4 were simulated along with two grids \((n = 32^3\) and \(n = 64^3\)). Figure 1 plots the Kinetic energy for all eight cases along with the pseudo-spectral kinetic energy. Figure 2 plots the dissipation rate calculated by taking the derivative of kinetic energy with respect to time (using a first order finite difference) along with the pseudo-spectral dissipation rate. Figure 3 plots the dissipation rate calculated using

\[
\epsilon_1 = \frac{2\mu}{\rho_0 \Omega} \int_{\Omega} S^d : S^d d\Omega
\]

* Post Doctoral Research Associate, AIAA Member
† Professor, AIAA Associate Fellow
along with the pseudo-spectral dissipation rate. Figure 4 plots the enstrophy along with the pseudo-spectral enstrophy. Figure 5 shows the L_∞ error for the dissipation rate versus work units. Figure 6 shows iso-contours of vorticity magnitude on the $\frac{t}{t_c} = -\pi$ face at $\frac{t}{t_c} = 8$.

![Figure 1. Kinetic energy for the Taylor-Green vortex at $Re = 1600$](image)

References

Figure 2. Dissipation rate $\frac{\partial E_k}{\partial t}$ for the Taylor-Green vortex at $Re = 1600$

Figure 3. Dissipation rate ϵ_1 for the Taylor-Green vortex at $Re = 1600$
Figure 4. Enstrophy \mathcal{E} for the Taylor-Green vortex at $Re = 1600$

Figure 5. Dissipation error vs work units for the Taylor-Green vortex at $Re = 1600$
Figure 6. Iso-Contours of vorticity magnitude $\frac{L}{\lambda_0} |\omega| = 15, 10, 20, 30$ at $\frac{t}{\tau_c} = 8$ and $\frac{t}{L} = -\pi$ for the Taylor-Green vortex at $Re = 1600$, DG $p = 4$, $n = 64^3$ (red), pseudo-spectral (black)