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Abstract

In the following work, we present the results of selected simulations of the classical Taylor-Green vortex
problem with a variant of the Discontinuous Galerkin method (DG) labeled the “Discontinuous Galerkin
Spectral Element Method” (DGSEM). In the classical DGSEM formulation, the non-linear fluxes are co-
located on the solution grid, leading to a highly efficient scheme but possible aliasing errors. Polynomial
de-aliasing techniques proposed by Kirby and Karniadakis [5] avoid these errors, but incur a higher
computational cost. We show results for the co-location and fully de-aliased versions of DGSEM, along
with results for a locally adaptive de-aliasing approach.

Taylor-Green Vortex flow

The Taylor-Green vortex flow problem constitutes the simplest flow for which a turbulent energy cas-
cade can be observed numerically. Starting from an initial analytical solution containing only a single
length scale, the flow field undergoes a rapid build-up of a fully turbulent dissipative spectrum because
of non-linear interactions of the developing eddies (Fig. 1). The resulting flow field exhibits the features
of an isotropic, homogeneous turbulence and is often used in code validation or evaluation of numerical
approaches to subgrid scale modeling [2], [3], [4].
All our computations were run on a structured Cartesian grid of hexahedral elements, covering a triple-
periodic box of size [−π, π]3. The physical time frame from 0s to 20s was covered according to the
problem description, starting from the initial analytical solution with given velocity and pressure fields,
a constant temperature and an essentially incompressible flow field with a Mach number of Ma = 0.1.

Figure 1: Taylor-Green Vortex (Re = 5000). Isocontours of vorticity magnitude, colored by helicity at
t = 0.5s, 1.9s and 9.0s



Code Framework

Our code framework is based on a variant of the Discontinuous Galerkin method labeled the “Discon-
tinuous Galerkin Spectral Element method”, see Kopriva [6], and solves the compressible Navier-Stokes
equations. The implementation allows the selection of arbitrary polynomial order and thus enables us
to study the features of high order formulations very efficiently within our framework. In addition, the
integration precision of the flux terms can be chosen independently from the solution to allow polynomial
de-aliasing. Explicit time integration is achieved by a 5-stage 4th order Runge-Kutta scheme.
The code is accompanied by a postprocessing tool for visualization and a-posteriori extraction of relevant
flow features and a 3D Fast Fourier transform for the analysis of flow spectra. The whole framework is
fully MPI-parallelized, where special care has been taken to achieve a high parallel efficiency and excellent
scaling. On the JuQueen (IBM BlueGene/Q system, Jülich Supercomputing Center) system, a perfect
strong scaling was measured on up to 216, 000 ranks.
In this work, we present computations performed Cray XC40 “Hornet” cluster (TauBench of 4.7s) at the
High Performance Computing Center Stuttgart (HLRS) on up to 6912 cores.

Results

As indicated in the test case 3.3 setup description, a resolution of 2563 DOF is expected to resolve almost
all of the flow scales for a Reynolds number of 1600 and is thus very close to a DNS. We have conducted a
series of simulations of this test case with varying number of elements and associated polynomial degree.
Table 1 summarizes some selected setups and gives their computational effort in TauBench workunits.
Note that the solution polynomial is of degree N , while the integration of the flux terms is achieved on
a quadrature grid with M + 1 nodes. Thus, Cases 1 and 2 are co-location DGSEM, while the rest use
polynomial de-aliasing. Since the flow is essentially incompressible and thus the fluxes have quadratic
non-linearities, M = 3

2N results in a fully de-aliased solution. More details can be found e.g. in [1].
Cases 3 and 4 use a novel locally and temporally adaptive de-aliasing method.

Case No. elements N DOF M No. of cores Wall Time [s] WU (Wall Time) WU (CPU Time)
1 163 15 2563 15 2048 4925 1044 2.14E6
2 323 7 2563 7 4096 1430 303 1.24E6
3* 323 7 2563 11 4096 8440 1788 7.33E6
4* 483 7 3843 11 6912 27828 5898 4.07E7
5 243 7 1923 11 6912 367 1044 2.54E6
6 323 7 2563 11 4096 4380 928 3.80E6
7 483 7 3843 11 6912 14880 3153 2.17E7
8 163 15 2563 23 2048 21599 4556 9.33E6
9 243 15 3843 23 6912 32554 6899 4.76E7

Table 1: Selected Taylor-Green vortex computations: N : polynomial degree; M : polynomial degree of
fluxes; WU: Work units on CRAY XC40 “Hornet” with TauBench ≈ 4.7s. ∗ indicates computa-
tion with adaptive polynomial de-aliasing.

Figure 2 shows the results for the enstrophy evolution for cases from Table 1. The left plot presents the
results for the co-located DGSEM, the de-aliased and the adaptive de-aliased solution, all on a 323 grid
with N = 7. The right plots shows the grid convergence for the fully de-aliased N = 7 case.
Figure 3 shows a zoom-in on the dissipation rate and the grid convergence of the ε3 dissipation rate.
Figure 5 shows the isocontours of vorticity magnitude ( L

V0
|ω| = 10) for the classical de-aliasing (left) and

the adaptive approach (right).
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Figure 2: Evolution of enstrophy, left: 32×8 solutions for collocation, polynomial de-aliasing and adaptive
de-aliasing; right: Grid convergence for O(8); refer to Tbl.1 for details.
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Figure 3: Left: Kinetic energy dissipation rate; right: ε3 grid convergence; refer to Tbl.1 for details.



Figure 4: Vorticity contours; top: Cases 7 and 4; bottom: Cases 6 and 3

Figure 5: Isocontours of vorticity magnitude L
V0
|ω| = 10: Cases 6 (left) and 3 (right).
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