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1 Code Desctription

We are using PyFR[10], which is an open-source Python-based framework for
solving advection-diffusion type problems on streaming architectures using the
Flux Reconstruction scheme of Huynh[5]. PyFR is platform portable via the use
of a domain specific language based on Mako templates. This means PyFR can
run on AMD or NVIDIA GPUs as well as CPUs. A summary of the functionality
of PyFR is given in Table 1

Table 1: Functionality of PyFR v0.2.3

Systems Compressible Euler and Navier Stokes
Dimensionality 2D, 3D
Element Types triangles, quadrilaterals, hexahedra, prisms, tetrahedra

Platforms CPU clusters, Nvidia GPU clusters, AMD GPU clusters
Spatial Discretization arbitrary order Flux Reconstruction

Temporal Discretization explicit Runge-Kutta
Flux Differentiation Lagrange polynomial

Precision single, double
Riemann Solvers Rusanov, HLL[4], HLLC[8], Roe[7]
Viscous Interface LDG[2]

Parallel Structure MPI
Post Processing Paraview
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2 Case Summary

2.1 Test Case

The initial flow field is given by:
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The Reynolds number, defined as Re = ρ0V0L
µ , is equal to 1600. A compressible

flow solver is used and the fluid is specified with γ = 1.4 and Pr =
µcp
κ = 0.71.

The initial Mach number is nearly incompressible at Ma = V0

c0
= 0.1 given a

constant initial temperature field of T0. The simulation is run until a final time
of tc = 20, where one non-dimensional time unit is defined as tc = L

V0
.

2.2 Mesh and Solver

For this abstract we use P1 to P8 schemes with structured hexahedral elements
over −Lπ ≤ x, y, z ≤ +Lπ. Each of these are generated to provide ≈ 2563

degrees of freedom, as shown in Table 2. The interface fluxes are LDG and
HLL and Gauss-Legendre solution points are used. A five-stage fourth-order
adaptive Runge-Kutta scheme[1, 3, 6] is used with a maximum and relative
error tolerances of 10−6.

Table 2: Mesh and Degrees of Freedom

Degree Elements DOF
P1 1283 2563

P2 863 2583

P3 643 2563

P4 523 2603

P5 433 2583

P6 373 2593

P7 323 2563

P8 293 2613

2



2.3 Hardware

The simulation is performed across three NVIDIA Tesla K20c GPUs for P2 to
P8 schemes and six GPUs for the P1 scheme due to memory limitations. Com-
munication is performed using OpenMPI and with Infiniband interconnects. We
use the CUDA backend available in PyFR on a local group cluster at Imperial
College London.

No GPU implementation of TauBench was available at the time of writing.
Therefore, we scale our results from the TauBench results of a similarly priced
12 core Intel Xeon E5-2697 v2 CPU. An individual core of this CPU had a
TauBench time of 5.71 s, or 0.476 s adjusted for 12 cores.

3 Results

3.1 Performance

Simulation wall time, number of cards, card hours, and normalized computa-
tional time are shown in Table 3. The normalized time is computed from the
core count adjusted 0.476 s Taubench on the Intel Xeon E5-2697 v2 CPU. In
general, the higher-order schemes are more expensive due to a reduction in
the time-step size required to maintain stability with the adaptive Runge-Kutta
scheme and an increase in the total number of operations per degree of freedom.
This could be mitigated in the future by implementing bespoke sparse matrix
multiplication packages, such as the GiMMiK package developed for PyFR[11].

The P1 simulation is slightly slower than P2, which may be associated with
additional overhead from node to node communication. However, no analysis
was performed to confirm if this was the case.

Table 3: Performance Statistics

Degree Wall Time (hrs) Cards Card Hours Normalized
P1 6.0 6 36.1 2.72×105

P2 10.7 3 32.2 2.43×105

P3 11.9 3 35.7 2.70×105

P4 18.4 3 55.3 4.18×105

P5 25.2 3 75.6 5.71×105

P6 38.9 3 116.9 8.84×105

P7 43.4 3 130.2 9.84×105

P8 69.7 3 209.1 1.58×106
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3.2 Contours

Iso-contours of the dimensionless vorticity norm L
V0
|ω| = 1, 5, 10, 20, 30 on the

periodic face x
L = −π at t

tc
= 8 are shown in Figure 31 to Figure 7. These are

generated using ∇u, where u is the discontinuous representation of the solution
in each element.
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Figure 1: Iso-contours of the dimensionless vorticity norm for P1 (black) and
reference spectral DNS (red) [9].

Figure 2: Iso-contours of the dimensionless vorticity norm for P2 (black) and
reference spectral DNS (red) [9].
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Figure 3: Iso-contours of the dimensionless vorticity norm for P3 (black) and
reference spectral DNS (red) [9].

Figure 4: Iso-contours of the dimensionless vorticity norm for P4 (black) and
reference spectral DNS (red) [9].
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Figure 5: Iso-contours of the dimensionless vorticity norm for P5 (black) and
reference spectral DNS (red) [9].

Figure 6: Iso-contours of the dimensionless vorticity norm for P6 (black) and
reference spectral DNS (red) [9].
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Figure 7: Iso-contours of the dimensionless vorticity norm for P7 (black) and
reference spectral DNS (red) [9].

Figure 8: Iso-contours of the dimensionless vorticity norm for P8 (black) and
reference spectral DNS (red) [9].
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3.3 Energy
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Figure 9: Temporal evolution of kinetic energy for P1 (blue) and reference
spectral DNS (black) [9].
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Figure 10: Temporal evolution of kinetic energy for P2 (blue) and reference
spectral DNS (black) [9].
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Figure 11: Temporal evolution of kinetic energy for P3 (blue) and reference
spectral DNS (black) [9].
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Figure 12: Temporal evolution of kinetic energy for P4 (blue) and reference
spectral DNS (black) [9].
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Figure 13: Temporal evolution of kinetic energy for P5 (blue) and reference
spectral DNS (black) [9].
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Figure 14: Temporal evolution of kinetic energy for P6 (blue) and reference
spectral DNS (black) [9].

12



0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

tc

E
k

Figure 15: Temporal evolution of kinetic energy for P7 (blue) and reference
spectral DNS (black) [9].
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Figure 16: Temporal evolution of kinetic energy for P8 (blue) and reference
spectral DNS (black) [9].
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3.4 Dissipation
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Figure 17: Temporal evolution of kinetic energy dissipation rate for P1 (blue)
and reference spectral DNS (black) [9].
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Figure 18: Temporal evolution of kinetic energy dissipation rate for P2 (blue)
and reference spectral DNS (black) [9].
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Figure 19: Temporal evolution of kinetic energy dissipation rate for P3 (blue)
and reference spectral DNS (black) [9].
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Figure 20: Temporal evolution of kinetic energy dissipation rate for P4 (blue)
and reference spectral DNS (black) [9].
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Figure 21: Temporal evolution of kinetic energy dissipation rate for P5 (blue)
and reference spectral DNS (black) [9].
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Figure 22: Temporal evolution of kinetic energy dissipation rate for P6 (blue)
and reference spectral DNS (black) [9].
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Figure 23: Temporal evolution of kinetic energy dissipation rate for P7 (blue)
and reference spectral DNS (black) [9].
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Figure 24: Temporal evolution of kinetic energy dissipation rate for P8 (blue)
and reference spectral DNS (black) [9].
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3.5 Enstrophy
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Figure 25: Temporal evolution of enstrophy for P1 (blue) and reference spectral
DNS (black) [9].
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Figure 26: Temporal evolution of enstrophy for P2 (blue) and reference spectral
DNS (black) [9].
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Figure 27: Temporal evolution of enstrophy for P3 (blue) and reference spectral
DNS (black) [9].
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Figure 28: Temporal evolution of enstrophy for P4 (blue) and reference spectral
DNS (black) [9].
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Figure 29: Temporal evolution of enstrophy for P5 (blue) and reference spectral
DNS (black) [9].
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Figure 30: Temporal evolution of enstrophy for P6 (blue) and reference spectral
DNS (black) [9].
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Figure 31: Temporal evolution of enstrophy for P7 (blue) and reference spectral
DNS (black) [9].
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Figure 32: Temporal evolution of enstrophy for P8 (blue) and reference spectral
DNS (black) [9].
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