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Case 3.3: Taylor-Green Vortex Evolution
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Code Description

This work uses a higher-order discontinuous-Galerkin finite-element method to solve the compressible Navier-Stokes
equations [1,2]. The unsteady Navier-Stokes equations are discretized using a non-linearly stable space-time entropy-
variable formulation. The inviscid flux is computed using the approximate Riemann solver of Ismail and Roe [3]. The
viscous fluxes are computed using an interior penalty (IP) method equivalent to the second form of Bassi and Rebay
(BR2) [4]. Evaluation of the integrals appearing in the DG formulation are performed using a dealiased quadrature
rule using 2N points in each direction where N is the solution order (in either space or time). The nonlinear
problem arising at each time-slab is solved using a Jacobian-free Newton-Krylov method using a diagonalized-ADI
preconditioner [5]. Results are presented using the space-time formulation with accuracy up to 16th order (N = 16)
in both space and time.

The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are
performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center.
Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and
2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.

Case Description

The Taylor-Green vortex flow is simulated using the compressible Navier-Stokes equations at M0 = 0.1. The flow is
solved on an isotropic domain which spans [0, 2πL] in each coordinate direction. The initial conditions are given by:

u = V0 sin(x/L) cos(y/L) cos(z/L) (1)

v = −V0 cos(x/L) sin(y/L) cos(z/L) (2)

w = 0 (3)

p = ρ0V
2
0

[
1

γM2
0

+
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2))

]
(4)

where u,v and w are the components of the velocity in the x, y and z-directions, p is the pressure and ρ is the
density. The flow is initialized to be isothermal (pρ = p0

ρ0
= RT0). The flow is computed at a Reynolds number of

Re = ρ0V0L
µ = 1600, where µ is the viscosity. The Prandtl number is Pr = 0.71, while the bulk viscosity is given by

the Stokes hypothesis: λ = − 2
3µ. The unsteady simulation is performed for 20tc, where tc = L

V0
is the characteristic

convective time. The time-step is set based on maintaining a CFL of order 1 based on the convective speed, and
resolution length and time scales. Specifically, we set ∆t = CFL hN

M0c
, where CFL = 1 is the Courant-Friedrichs-Lewy

number, h = DOF 1/3 is the resolution length-scale, N is the solution order in the temporal direction, M0 = 0.1 is
the Mach number and c is the speed of sound.
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Meshes

The Taylor-Green vortex was simulated using the space-time DG formulation using 2nd-,4th-,8th- and 16th-order
in space and 4th-order in time. Direct numerical simulation was performed using six different mesh sizes for each
polynomial order considered, such that the total number of degrees of freedom in each coordinate direction was 48,
64, 96, 128, 192, 256.

Results

For each run the temporal evolution of the kinetic energy

Ek =
1

Ω

∫
Ω

1
2ρv · vdΩ (5)

was monitored. The evolution of the kinetic energy dissipation rate ε = −dEk

dt was computed by differentiating the
8th order polynomial fit given by the temporal quadrature points and lifted with the jump across temporal element
boundaries.

We assess the quality of our numerical solutions by computing individual terms in the kinetic energy evolution
equation. For incompressible flow the kinetic energy dissipation rate is equal to 2µE , where E is the enstrophy,
computed as:

E =
1

Ω

∫
Ω

1
2ρω · ωdΩ (6)

where ω = ∇× v is the vorticity. For compressible flow, the kinetic energy dissipation rate is given by the sum of
three contributions ε = ε1 + ε2 + ε3 = −dEk

dt :

ε1 =
1

Ω

∫
Ω

2µS : S dΩ (7)

ε2 =
1

Ω

∫
Ω

λ (∇ · v)2 dΩ (8)

ε3 = − 1

Ω

∫
Ω

p∇ · v dΩ (9)

where S = 1
2 (∇v + ∇vT ) is the strain rate tensor. We note that E , ε1, ε2 and ε3 are computed using the “lifted”

gradients in order to be consistent with our DG discretization.

Since the flow is nearly incompressible, we expect that the dissipation due to the bulk viscosity (ε2) and the pressure
strain term (ε3) to be small. The kinetic energy dissipation rate is then approximately equal to ε ≈ 2µE ≈ ε1.
Differences between these quantities indicates the presence of compressibility effects and numerical dissipation.

Figure 1 plots the dimensionless viscous dissipation ε1 vs time for 2nd-, 4th-, 8th, and 16-order schemes on all meshes
considered. Figure 1 also plots the dissipation computed for an incompressible simulation using a spectral code on
a 5123 grid [7]. Even on the finest mesh considered the second-order scheme resolves barely more than half of the
viscous dissipation. In contrast the 16th-order scheme resolves a significantly larger portion of the viscous dissipation
on the coarses mesh considered.

Figure 2 shows the error in the kinetic energy dissipation rate for the cases considered. For the same number of
degrees of freedom, increasing the polynomial order reduces the error. However, we are primarily interested in the
computational cost to reach a particular error leve. In Figure 3 we present the error versus work units. Once again,
the higher-order methods are more efficient than the low order scheme, in particular when a low error tolerance is
required. We note that the 16th-order scheme has a lower error level on the coarsest mesh than the 2nd-order scheme
on the finest mesh with a computational cost 3 orders of magnitude less. Finally we summarize the cases run in
Table .
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(a) N = 2
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(b) N = 4
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(c) N = 8
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(d) N = 16

Figure 1: Viscous dissipation due to strain for the Taylor-Green vortex evolu-
tion, M0 = 0.1, Re = 1600.
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Figure 2: Kinetic energy dissipation rate error vs h for the Taylor-Green vortex
evolution, M0 = 0.1, Re = 1600.
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Figure 3: Kinetic energy dissipation rate error vs. work units for the Taylor-
Green vortex evolution, M0 = 0.1, Re = 1600.
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N 1/h Work Units Error
2 48 3.29× 103 5.40× 10−2

2 64 1.10× 104 4.78× 10−2

2 96 7.28× 104 3.76× 10−2

2 128 2.28× 105 2.97× 10−2

2 192 1.17× 106 1.86× 10−2

2 256 3.79× 106 1.22× 10−2

4 48 2.64× 103 3.60× 10−2

4 64 8.77× 103 2.74× 10−2

4 96 4.99× 104 1.66× 10−2

4 128 1.66× 105 1.08× 10−2

4 192 8.52× 105 3.81× 10−3

4 256 2.80× 106 1.56× 10−3

8 48 4.02× 103 2.37× 10−2

8 64 1.12× 104 1.49× 10−2

8 96 5.53× 104 7.70× 10−3

8 128 1.86× 105 3.68× 10−3

8 192 9.68× 105 9.35× 10−4

8 256 3.19× 106 2.32× 10−4

16 48 8.15× 103 1.53× 10−2

16 64 2.38× 104 9.02× 10−3

16 96 1.05× 105 3.96× 10−3

16 128 3.33× 105 1.54× 10−3

16 192 1.67× 106 2.76× 10−4

16 256 5.91× 106 1.86× 10−5

Table 1: Taylor-Green Vortex case summaries
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