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Code Description

All simulations were performed with the extensively validated high-order, Navier-Stokes solver,
FDL3DI1;2. In this code, a finite-difference approach is employed to discretize the governing equa-
tions, and all spatial derivatives are obtained with high-order compact-differencing schemes.3 At
boundary points, higher-order one sided formulas are utilized that retain the tridiagonal form of
the scheme1;2. The derivatives of the inviscid fluxes are obtained by forming the fluxes at the
nodes and differentiating each component with the compact differencing scheme. Viscous terms
are obtained by first computing the derivatives of the primitive variables. The components of the
viscous fluxes are then constructed at each node and differentiated by a second application of the
same scheme. In the case of a maneuvering wing, the grid is moved in a rigid fashion using the
prescribed kinematics. The time metric terms are evaluated employing the procedures described
in detail in Ref. 4 to ensure that the geometric conservation law (GCL) is satisfied.

In order to eliminate spurious components of the solution, a high-order, low-pass spatial filtering
technique1;5 is incorporated that is based on templates proposed in References 3 and 6. With
proper choice of coefficients, it provides a 2N th-order formula on a 2N + 1 point stencil. These
coefficients, along with representative filter transfer functions, can be found in References 2 and
5. The filter is applied to the conserved variables along each transformed coordinate direction one
time after each time step or sub-iteration. For the near-boundary points, the filtering strategies
described in References 1 and 5 are used. For transitional and turbulent flows, the high-fidelity
spatial algorithmic components provide an effective implicit LES approach in lieu of traditional
SGS models, as demonstrated in References 7 and 8 and more recently in Ref. 9. All computations
presented here are performed with a sixth-order interior discretization scheme coupled with an
eighth-order accurate implicit filter.

Time marching of the governing equations is typically achieved through the iterative, implicit
approximately-factored integration method of Beam and Warming 10 . This method has been sim-
plified through the diagonalization of Pulliam and Chaussee 11 and supplemented with the use of
Newton-like sub-iterations to achieve second-order accuracy7;8. Sub-iterations are commonly used
to reduce errors due to factorization, linearization, diagonalization, and explicit specification of
boundary conditions12. Fourth-order, nonlinear dissipation terms13;14 are also appended to the
implicit operator to augment stability. The classical fourth-order, four-stage Runge-Kutta method
implemented in the low-storage form described in Ref. 15 is also available within FDL3DI. Explicit
time-integration is unsuitable for the wall-bounded flows considered in this work, so cases C2.3
and C3.4 discussed below utilize the implicit, second-order scheme, while case C3.3 employs the
Runge-Kutta time advancement.

MPI parallelization is utilized in the code through domain decomposition and overset. Typically,
five planes of overlap are maintained between adjacent blocks to provide communication. Periodicity
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is also imposed by means of a five-plane overlap that exchanges data after each stage or sub-iteration
of the time-advancement procedure. Shared memory parallelization is also implemented through
OpenMP directives to allow threading of each MPI task for hybrid parallelization, which has been
shown to achieve nearly perfect scalability for thread counts up to 8 or 16, depending on system
architecture.

Case Summaries & Results

Several cases have been analyzed. These correspond to the heaving and pitching airfoil (C2.3),
DNS of the Taylor-Green Vortex (C3.3), and DNS and LES of flow over 2D periodic hill (C3.4).
Each is summarized below accompanied with the respective results.
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C2.3: Heaving and Pitching Airfoil

Case summary

A NACA0012 airfoil is subjected to a heaving and pitching motion given by
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utilized in the code through domain decomposition and overset. Typically, five planes of overlap
are maintained between adjacent blocks to provide communication. Periodicity is also imposed by
means of a five-plane overlap that exchanges data after each stage or sub-iteration of the time-
advancement procedure. Shared memory parallelization is also implemented through OpenMP
directives to allow threading of each MPI task for hybrid parallelization, which has been shown to
achieve nearly perfect scalability for thread counts less than 8 or 16, depending on HPC system
architecture.

Case Summaries & Results

Several cases have been (or are in the process of being) analyzed. These correspond to the heaving
and pitching airfoil (C2.3), DNS of the Taylor-Green Vortex (C3.3), and DNS and LES of flow over
2D periodic hill (C3.4). Each is summarized below accompanied with the respective results.

C2.3: Heaving and Pitching Airfoil

Case summary

A NACA0012 airfoil is subjected to a heaving and pitching motion given by

h(t) =

8
<
:

0, if t < 0
1�cos⇡t

2 , if 0  t < 1
1, otherwise

(1)

✓(t) =

8
<
:

0, if t < 0
⇡
6

1�cos⇡t
2 , if 0  t < 1

1, otherwise
(2)

where h(t) is the vertical displacement of the airfoil, and ✓(t) is the corresponding angle of attack
relative to the free stream and taken about the 1/3 chord position.

Farfield boundary 
100c from surface

Figure 1: O-grid topology and near-field discretization for the NACA0012 domain at the coarsest
resolution
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where t is the solution time, h(t) is the vertical displacement of the airfoil, and θ(t) is the corre-
sponding angle of attack relative to the free stream and taken about the 1/3 chord position. The
airfoil’s trailing edge is rounded (r/c = 0.0018) to facilitate an O-grid topology for discretization
of the surface. For the baseline (coarse) configuration, 161 gridlines are distributed circumferen-
tially around the airfoil (ξ-direction) with variable spacing ranging from (∆s/c) = 4.0×10-3 at the
leading edge to 8.0×10-4 at the trailing edge, while the maximum spacing achieved in between is
(∆s/c)max = 2.0×10-2. This circumferential distribution is hyperbolically marched away from the
surface (η-direction) using 100 gridlines with an initial off-body spacing of (∆n/c)0 = 4.0×10-4 that
is stretched until reaching a circular far field boundary located 100 chord-lengths from the surface.
A depiction of the mesh can be seen in Fig. 1. Two refined meshes (medium and fine) are formed
by refining the baseline grid globally by factors of 4 and 16, respectively. The specific sizes and
spacings of each mesh are listed in Table 1.

At the far field boundary, free stream conditions are specified. It should be noted that near this
boundary, the mesh is stretched quite drastically, which in conduction with the high-order filtering
of the ILES scheme, provides a buffer-like region that prevents spurious waves from reflecting into
the domain. The airfoil surface is prescribed as a no-slip wall with a zero-normal pressure gradient
that is enforced through a fourth-order accurate extrapolation. The free stream Mach number is set
as M∞ = 0.2, Prandtl number is Pr = 0.72, and two Reynolds numbers are considered: Re = 1000
and 5000.

Table 1: Details of the computational domain for the heaving and pitching airfoil

Mesh nξ × nη (∆n/c)0 (∆s/c)LE (∆s/c)TE (∆s/c)max

Coarse 161× 100 4.0×10-4 4.0×10-3 8.0×10-4 2.0×10-2

Medium 320× 198 2.0×10-4 2.0×10-3 4.0×10-4 1.0×10-2

Fine 639× 395 1.0×10-4 1.0×10-3 2.0×10-4 0.5×10-2

nξ, nη Circumferential and normal mesh dimensions
(∆n/c)0 Initial off-body spacing
(∆s/c)LE, TE, max Leading edge, trailing edge, and maximum streamwise spacings
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Farfield boundary 
100c from surface

Figure 1: O-grid topology and near-field discretization for the NACA0012 domain at the baseline
resolution

Results

Simulations of the heaving and pitching airfoil have been conducted with each mesh and for each
time step of ∆τ = (4.00, 2.00, 1.00, 0.50, 0.25) × 10−3 to ensure adequate spatial and temporal
resolution is achieved for the quantities of interest. The requested metrics for comparison correspond
to the work (W) and vertical impulse (I) which the fluid exerts on the airfoil during the motion.
These integrated values as given from the case description are

W =

∫ 1

0

[
Fy(t) ḣ(t) + Tz(t) θ̇(t)

]
dt (1)

and

I =

∫ 1

0
Fy(t)dt (2)

where Fy(t) and ḣ(t) are the vertical force and velocity, respectively, and Tz(t) and θ̇(t) are the
torque and angular velocity, respectively, about the 1/3 chord location. Time histories of the
integrands (the power and vertical force) are recorded for each time-step and spatial resolution,
and trapezoidal integrations are performed as a post-processing step. The corresponding time
histories for both Reynolds numbers are presented in Fig. 2 for the fine resolution at a time step
of 0.5× 10−3.

The work and impulse for all spatial and temporal resolutions are presented in Tables 2 and
3 for Re = 1000 and 5000, respectively. At both Reynolds numbers, a fairly weak sensitivity is
seen with spatial resolution as each mesh provides nearly the same result. A stronger but still
small variation is seen with temporal refinement indicating that temporal errors mostly dominate
the spatial contributions for ∆τ < 0.001. The integrated quantities are completely converged to
the same value (three significant figures) on each mesh for Re = 1000 with ∆τ = 0.0005. The
instantaneous flow structure is displayed in Fig. 3 through vorticity contours. It is seen that more
than adequate spatial resolution of the near-field flow is provided by the baseline (mesh) at this
Reynolds number. Refinement of the mesh does capture a sharper trailing edge vortex into the
wake, however, it’s far proximity to the airfoil does not significantly affect the integrated quantities
on the surface.

4



At Re = 5000, however, we see that the integrated quantities from the medium and fine reso-
lutions converge to the same value between ∆τ = 0.0005 and 0.00025, while the coarse resolution
does not quite reach the intended values. The reason for this discrepancy at the coarse resolution
can be seen in the instantaneous flow structure presented Fig. 4 through contours of vorticity. Note
that the images vertical displacement of the airfoil in this figure have been exaggerated for viewing
clarity. Early in the motion, all resolutions produce virtually the same flow structure; however,
just past mid-stroke, the higher spatial resolutions allow an eruption of secondary vortex from the
surface that penetrates the leading edge vortex feeding sheet. This secondary vortex pairs with the
leading edge vortex, and the structure is propelled away from the surface through self-induction.
The added numerical dissipation from the coarsest resolution prevents this eruption from occurring
within the time of the motion. Increases spatial refinement also provides a sharper trailing edge
vortex, which allows the formation of Kelvin-Helmoltz instabilities in its feeding sheet as it moves
into the wake. The added resolution of these features does not appear to affect the integrated
quantities as they are not in close enough proximity to the surface.

Tables 4 and 5 provide a listing of the maximum CFL numbers achieved during the motion at
each time step for Re = 1000 and 5000 respectively. The local CFL number is computed by

CFLlocal = ∆τ max
(
J(Λξc + CΛξv), J(Ληc + CΛηv)

)
(3)

where J−1 is the inverse Jacobian or local cell area, Λc and Λv are the inviscid and viscous spectra
radii, respectively, with the superscripts, ξ and η, denoting the direction. These quantities are

Λκc =
(
|uκx + v κy|+ a

√
κ2
x + κ2

y

)
J−1 (4)

Λκv = max

(
4

3ρ
,
γ

ρ

)
µ

Re Pr
(κ2
x + κ2

y)J
−1 (5)

for κ = ξ or η, and a =
√
γp/ρ is the local speed of sound. Typically, central discretization schemes

utilize a constant coefficient of C = 4 as recommended, for example, by Blazek16 and the references
therein. In all cases, the implicit time-integration scheme allows a maximum CFL number several
orders of magnitude greater than the O(1) constraint of explicit schemes.
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Figure 2: Effect of Reynolds number on the instantaneous power (dW/dt) and vertical force (dI/dt)

Table 2: Effects of temporal and spatial resolutions on work and impulse for Re = 1000

Work Impulse
∆τ Coarse Medium Fine Coarse Medium Fine

4.00×10−3 -4.84 -4.84 -4.86 -4.31 -4.30 -4.32
2.00×10−3 -4.82 -4.82 -4.82 -4.29 -4.29 -4.30
1.00×10−3 -4.81 -4.81 -4.81 -4.28 -4.29 -4.29
0.50×10−3 -4.80 -4.80 -4.80 -4.28 -4.28 -4.28
0.25×10−3 -4.80 -4.80 -4.80 -4.28 -4.28 -4.28

Table 3: Effects of temporal and spatial resolutions on work and impulse for Re = 5000

Work Impulse
∆τ Coarse Medium Fine Coarse Medium Fine

4.00×10−3 -4.95 -4.93 -4.94 -4.54 -4.46 -4.48
2.00×10−3 -4.94 -4.95 -4.95 -4.48 -4.38 -4.38
1.00×10−3 -4.93 -4.94 -4.94 -4.46 -4.37 -4.37
0.50×10−3 -4.92 -4.93 -4.94 -4.46 -4.37 -4.37
0.25×10−3 -4.91 -4.93 -4.93 -4.46 -4.36 -4.36

Table 4: Maximum CFL number achieved during the motion for Re = 1000

∆τ Coarse Medium Fine

4.00×10−3 366 1295 4840
2.00×10−3 186 666 2516
1.00×10−3 93 335 1289
0.50×10−3 47 168 649
0.25×10−3 23 84 325
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Table 5: Maximum CFL number achieved during the motion for Re = 5000

∆τ Coarse Medium Fine

4.00×10−3 129 353 1172
2.00×10−3 64 177 606
1.00×10−3 32 90 308
0.50×10−3 16 46 157
0.25×10−3 8 23 79

(c) Fine(b) Medium(a) Coarse

Re = 1,000

-50 50
ωz

Figure 3: Effect of spatial resolution on the instantaneous flow structure, Re = 1000. Note that the
heaving displacement has been exaggerated for clarity of the overlaid images.
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(c) Fine(b) Medium(a) Coarse

Re = 5,000

-50 50
ωz

Figure 4: Effect of spatial resolution on the instantaneous flow structure, Re = 5000. Note that the
heaving displacement has been exaggerated for clarity of the overlaid images.
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C3.3: DNS of Taylor-Green Vortex

Case summary

The Taylor-Green vortex field is initialized on the periodic domain, −π ≤ (x, y, z) ≤ π, with the
following:

u = sin(x) cos(y) cos(z), (6)

v = − cos(x) cos(y) cos(z), (7)

w = 0, (8)

p =
1

γM2
0

+
1

16
[cos(2x) + cos(2y)] [cos(2z) + 2] (9)

ρ = γM2
0 p, (10)

where u, v, and w are the Cartesian velocity components, p is the pressure, and ρ is the density.
A uniform dimensionless temperature field of unity has been assumed along with the perfect gas
relation. The reference Mach number is chosen as M0 = 0.1 in order to minimize effects of com-
pressibility, and the ratio of specific heats is γ = 1.4. A constant Prandtl number of Pr = 0.71 is
also assumed along with Stokes’ hypothesis for the bulk viscosity, λ = −2/3µ.

The velocity components have been normalized by the maximum initial speed, V0, density is nor-
malized by its initial mean value, ρ0, and pressure is nondimensionalized by ρ0V

2
0 , while the spatial

components, (x, y, z), have been scaled by the reference domain length, L. The Reynolds number
based on the maximum initial velocity, mean density, and reference length, is Re = ρ0V0L/µ =
1, 600.

Four meshes with successive refinement of 65, 129, 193, and 257 points in each direction, re-
spectively, are used to discretize the periodic domain. The dimensionless time step for each grid
is chosen such that the initial maximum CFL condition is close to unity in order to ensure sta-
bility. The higher resolutions are also run in parallel through decomposition of the domain into a
number of MPI processes. Details of each mesh including the dimensions, corresponding time step,
maximum CFL, and number of processors are listed in Table 6.

Table 6: Mesh and simulation details

N Time step CFLmax Processors

65 5.00× 10−3 0.933 1
129 2.50× 10−3 0.933 8
193 1.60× 10−3 0.896 27
257 1.25× 10−3 0.933 64

Each simulation of the Taylor-Green vortex decay was run for 20 convective times, τ = t V0/L,
and several integrated quantities were computed and saved each time step. These quantities include
the dimensionless kinetic energy,

Ek =
1

Ω

∫

Ω

1

2
ρ (v · v) dΩ, (11)

the enstrophy,

ε =
1

Ω

∫

Ω

1

2
ρ (ω · ω) dΩ, (12)
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the viscous dissipation rate,

ε1 =
1

Ω Re

∫

Ω
2(Sd : Sd) dΩ, (13)

and the pressure diffusion rate,

ε3 = − 1

Ω

∫

Ω
p (∇ · v) dΩ, (14)

where Ω = (2π)3 is the domain volume, v is the velocity vector, ω = ∇× v is the vorticity vector,
and Sd is the deviatoric part of the rate of strain tensor given by

Sdij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− δij

1

3

∂uk
∂xk

(15)

Expanding the inner product of 2(Sd : Sd) and recombining terms, we are left with the viscous
dissipation function:

2(Sd : Sd) =

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2

+

(
∂v

∂x
+
∂u

∂y

)2

+

(
∂w

∂y
+
∂v

∂z

)2

(16)

+

(
∂u

∂z
+
∂w

∂x

)2

− 2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2
]

All derivatives of the high-order solution are computed with sixth-order, compact finite-differences.
Integrations over the periodic domain of a generic integrand, φ, are computed through trapezoidal
integration, which reduces to

1

Ω

∫

Ω
φdΩ =

1

(2π)3

N−1∑

i,j,k=1

φi,j,k J
−1
i,j,k (17)

where J = ∂(ξ, η, ζ)/∂(x, y, z) is the Jacobian of the transformation from Cartesian to computa-
tional coordinates, and N is the number of grid points in each direction. In the case of a uniform
grid on a domain of length, 2π, the inverse Jacobian is constant, J−1

i,j,k = ∆x∆y∆z = (2π/(N−1))3

Results

The temporal evolution of the integrated kinetic energy, Ek, is shown in Fig. 5 for the spatial
resolutions described in the previous section along with the supplied reference data from a pseudo-
spectral incompressible flow solver computed with 5123 degrees of freedom. Resolutions with N >
65 provide nearly identical kinetic energy over the simulation time. The mesh with N = 65 decays
slightly ahead of the other spatial resolutions. This is shown more clearly in the evolution of the
time rate-of-change of the kinetic energy, −dEk/dt, displayed in Fig. 6(a), where N = 65 produces
a similar decay rate but with the peak value occurring slightly before the other resolutions. All
meshes show slight fluctuations of the decay rates around the peak values that are not identifiable
in the spectral result.

Next, the enstrophy is plotted in Fig. 6(b). Increased spatial resolution provides less dissipation
and produces higher peak enstrophy that approaches the spectral result with N = 257 matching
very closely over the entire simulation. Similar distributions of the viscous dissipation rate, ε1, are
seen in Fig. 6(c), indicating that the energy decay rate is dominated by viscous diffusion.

Finally, the pressure diffusion rate, ε3, is shown in Fig. 6(d) for each spatial resolution. Com-
pressibility effects diminish substantially with spatial resolution with N > 193 producing values
two orders of magnitude less than the viscous dissipation rates of Fig. 6(c).
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Tabulated values for τ , Ek, −dEk/dτ , ε, ε1, and ε3 are provided for each mesh in the attached
files:

• IntegralValues-N065.dat

• IntegralValues-N129.dat

• IntegralValues-N193.dat

• IntegralValues-N257.dat

An example format of these files is as follows:

TAU ENERGY -dE/dt ENSTROPHY EPS1 EPS3

5.00000000e-03 1.24997656e-01 4.68601357e-04 3.74447088e-01 4.68742418e-04 -1.51310507e-08

1.00000000e-02 1.24995313e-01 4.68737496e-04 3.74443022e-01 4.68737296e-04 -4.25411833e-08

1.50000000e-02 1.24992969e-01 4.68620032e-04 3.74440926e-01 4.68734620e-04 -1.06303334e-07

2.00000000e-02 1.24990627e-01 4.68462946e-04 3.74440799e-01 4.68734406e-04 -2.23483044e-07

2.50000000e-02 1.24988285e-01 4.68252098e-04 3.74442641e-01 4.68736653e-04 -4.02306290e-07

... ... ... ... ... ...

All computations were performed on an in-house cluster at AFRL consisting of 2.67 GHz Intel
X5650 Westmere processors and 2.6 GHz Intel E5 Sandy Bridge processors with 2 GB of RAM per
core and connectivity maintained through an 8x Infiniband network interconnect. The computa-
tional cost of FDL3DI for each mesh on this system is documented in Table 7. The work units are
normalized by the runtime of the timing code, TauBench, run on one processor with 250,000 points
for 10 pseudo-times. This yielded a normalization time of T = 9.073 sec. The total work units
increase with resolution since the time-step decreases, and therefore, more iterations are required
to simulate 20 convective times. Additionally, the mesh with N = 193 resulted in higher work units
per iteration than the other cases due to poor load balancing on the system.

Table 7: Computational cost

N Processors Iterations Time/Iter. [sec] Work Units/Iter. Total Work Units

65 1 4,000 2.527 0.279 1,114
129 8 8,000 3.663 0.404 3,230
193 27 12,500 5.756 0.634 7,930
257 64 16,000 3.685 0.406 6,499

TauBench normalization time computed over 10 pseudo-times
on one processor with 250,000 points, T = 9.073 sec
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Spectral
FDL3DI, N= 65

Spectral
FDL3DI, N=129

Spectral
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Figure 7: Computed contours of vorticity (|ω|L/V0 = 1, 5, 10, 20, 30) on a subset of the periodic face,
x/L = −π at time t/tc = 8. Results from the a pseudo-spectral code are also overlaid for comparison.
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C3.4: DNS and LES of Flow over a 2D Periodic Hill

Case summary

Large-Eddy simulations are conducted of flow over a streamwise-periodic hill for two Reynolds
numbers, Reb = 2800 and 10595. The preferred source term for driving a constant mass flow
through the channel that was outlined in the case description led to spurious and persistent acoustic
perturbations in the evolving solution that dramatically affected the bulk fluid. The recommended
source term based on the inlet plane quantities and a simplified momentum equation is believed to
be ill-posed for high-order, compressible solvers. For this reason, a source term has been adopted
based on the work of Ziefle et al.17. In their work, the constant mass flow is driven by a temporally
varying but spatially constant source term added to the streamwise momentum equation designed
to enforce a constant volume-integrated streamwise momentum, enforced as

∂

∂t

∫

V
ρudV =

∫

V
RHSρudV + β

∫

V
dV ≡ 0 (18)

where RHSρu is the right-hand side of the streamwise momentum equation including all convective
and viscous components. Integration is taken over the entire computational domain, V. The forcing
term, β, is computed at each instant of the evolving solution and is also added to the energy equation
in the form, β u. This requires renormalization of all flow variables in terms of the volume-integrated
Reynolds number (ReV), which relates geometrically to the hill crest normalization17 by

ReV ≈ 0.72 Reb (19)

leading to Reynolds numbers of ReV = 2016 and 7628 to achieve the proper hill crest Reynolds
numbers of Reb = 2800 and 10595, respectively, as indicated in the case description. The Mach
number should also be scaled for consistency; however, this quantity had been unintentionally
neglected at the beginning of the study, so MV = 0.1 leading to Mb ≈ 0.139 for all cases presented
below. Implementation of this source term resulted in a well-behaved, evolving solution without
spurious waves.

Results

Three spatial resolutions have been considered for this study, and each are listed in Table 8 along
with the corresponding mean streamwise, normal, and spanwise spacings at the lower wall. The
coarse mesh, for example, is prescribed with 129 gridlines in the streamwise direction, 65 gridlines
in the normal direction, and 65 gridlines equally distributed in the spanwise direction. The medium
and fine resolutions are 2 and 4 times refined, respectively, in each direction from the coarse mesh.
A depiction of the geometry and discretization is shown in Fig. 8 for the coarse resolution where
every other gridline is shown for clarity. The grids used throughout this study do not correspond
to those provided by the case organizer since those did not enforce normal gridlines at the solid
surfaces, which may not be required for a finite volume or element method, but could cause errors
in the boundary condition approximations with a finite difference scheme.

The top and bottom boundaries are prescribed as no-slip walls with a zero-normal pressure
gradient that is approximated by a third-order accurate extrapolation, while the streamwise and
spanwise boundaries are periodic. All simulations utilize a nondimensional time step of ∆τ = 0.001
with the second-order, implicit time-integration scheme outlined in the introduction. The coarse
mesh is initialized with a parabolic velocity distribution at each x-station that achieves the desired
mass flow and is simulated for 50 flow-through lengths of the domain. That solution is then
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Table 8: Mean mesh spacings in the normal, streamwise, and spanwise directions for three resolutions

Resolution ∆s/h ∆n/h ∆z/h

129× 65× 65 0.0047 0.0106 0.0703
257× 129× 129 0.0094 0.0053 0.0352
513× 257× 257 0.0188 0.0026 0.0176

∆s/h streamwise spacing
∆n/h normal spacing
∆z/h spanwise spacing

Figure 8: Depiction of the domain at the coarse resolution (129× 65× 65) where every other gridline
is shown in each direction for clarity

interpolated onto the medium and fine resolutions, and all are advanced for another 50 flow-through
lengths to establish the periodic flow at each resolution, followed by another 50 flow-through lengths
of simulation for statistics gathering of the time-mean quantities. The resulting average Reynolds
number, mass flow rate, and forcing terms are documented in Tables 9 and 10 for Reb = 2800
and 10595, respectively. The established temporal evolution of the mass flow rate and source term
from the medium resolution are shown in Fig. 9 over the last 50 flow-through lengths, and the
corresponding time-averaged solution is also depicted in Fig. 10. Here, the time-mean streamlines
are shown along with the turbulent kinetic energy in (a) and the velocity profiles at several x-
stations in (b). Profiles from DNS results are also overlaid on the computed results from this study,
and shown to be in very favorable agreement.

Along with this abstract, several other quantities have been provided to the case organizer in the
format requested in the case description. These include the pressure and skin friction distributions
along the lower wall of the domain (X-CP-CF.dat), the temporal evolution of the mass flow rate
(mass-flow.dat), and profiles of the time-mean and fluctuating quantities: u/ub, v/ub, u′u′/u2

b ,
v′v′/u2

b , w
′w′/u2

b , and u′v′/u2
b . The profiles are taken at streamwise stations of x/h = 0.05, 0.5, 1,

2, 3, 4, 5, 6, 7, and 8 measured from the hill crest, which are provided in the files, AVG-PROFILES-
01.dat, AVG-PROFILES-02.dat, ..., AVG-PROFILES-10.dat, respectively.

Table 9: Periodic Hill Average Quantities, Re = 2800

Resolution Reb ṁ/Ac β

129× 65× 65 2797 0.9997 0.0129
257× 129× 129 2796 0.9998 0.0119
513× 257× 257 2796 0.9998 0.0119
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Table 10: Periodic Hill Average Quantities, Re = 10595

Resolution Reb ṁ/Ac β

129× 65× 65 10590 0.9989 0.0098
257× 129× 129 10583 0.9998 0.0092
513× 257× 257 10581 0.9999 0.0097

0 10 20 30 40 50
0.00

0.01

0.02

0.03

t c

β

0 10 20 30 40 50

0.9996

0.9998

1.0000

1.0002

1.0004

t c

ṁ
/A

c

Re = 2800!
Re = 10595

Re = 2800!
Re = 10595

(a) Mass flow rate through the inlet (b) Source term

Figure 9: Temporal evolution of (a) the mass flow rate, ṁ/Ac, and (b) the source term, β

(a) Distribution of turbulent kinetic energy and streamlines (b) Streamlines and u-velocity profiles (DNS data is overlaid with ×’s)

Re = 10595

Re = 2800

Figure 10: Distribution of turbulent kinetic energy, streamlines, and u-velocity profiles from the
time-mean and spanwise averaged solution on the medium resolution; (a) TKE and streamlines, (b)
Streamlines and u-velocity profiles along with profiles from available DNS
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