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I. Discretization, iterative method and hardware

See the appendices.

II. Case summary

This classic test case aims at characterizing the solver’s ability to preserve vorticity in an inviscid flow.
The unsteady 2D Euler equations govern the simulation, which consists in a 2D vortex transported by a
uniform flow across a rectangular computational domain of dimensions (x, y) = (0, Lx)× (0, Ly). The initial
configuration of the vortex, centered in (xc, yc) and superimposed onto the uniform (infinity) flow, is given
by the following equations:

ρ0 = ρ∞
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)1/(γ−1)

, u0 = U∞ + δu, v0 = δv, T0 = T∞ − δT

where
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and

Cp =
γ

γ − 1
Rgas, r =

√
(x− xc)2 + (y − yc)2

R

The variable R represents the vortex characteristic radius while β defines its strength. Furthermore, γ = 1.4
is the constant specific heat ratio, Rgas = 287.87 J/(kg K) is the gas constant and U∞ = M∞

√
γRgasT∞

and ρ∞ = p∞/(T∞Rgas) are the velocity and density of the unperturbed flow, respectively.
The “slow vortex“ configuration, for which M∞ = 0.05, β = 1/50 and R = 0.005, is computed on regular

grids. Moreover, we assume Lx = Ly = 0.1 m, xc = yc = 0.05 m, p∞ = 105 Pa and T∞ = 300 K. The flow
is periodic in both directions, therefore no boundary closure is needed and the internal discretization is used
throughout the domain. As the problem is almost linear, no artificial dissipation was necessary for this case.
The solution is advanced in time with the classical RK4 scheme up to 50 periods (tfinal = 50U∞/Lx). For
this case the time step is dictated by stability requirements. Reducing the time step by a factor of two did
not change the results significantly. Since the vortex should be transported without distortion, the initial
solution can be used to asses the accuracy of the algorithm, hence the the norm of the error, L2

error, can be
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defined defined as:

L2
error =


N∑
i=1

error2
i |Ji|

N∑
i=1

|Ji|


1/2

, (1)

with
errori = φfinal

i − φinitial
i , i = 1, 2, ...,N, (2)

where φ is either the x-velocity u or the y-velocity v, N is the total number of grid points, and |Ji| is the
determinant of the metric Jacobian. The solution is computed on four structured uniform grids containing
332, 652, 1292 and 2572 vertices, respectively.

(a) x-velocity component u (b) y-velocity component v

Figure 1. L2 norms of the velocity components (u, v) as function of the grid size.

(a) x-velocity component u (b) y-velocity component v

Figure 2. L2 norms of the velocity components (u,v) as function of the work units. The quadruple precision 8th order
case is not shown to avoid excessive scaling.
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Figure 1 and 2 show the L2
error of the two velocity components as a function of h and work units. The

2nd order scheme does not show the design accuracy, in fact the error is almost flat. This indicates that the
asymptotic range has not been reached and therefore the 2nd order scheme requires much finer grids. Note
also that there is no difference between the error on the second finest and finest grid for the 8th order scheme
when running in double precision. It turns out that the reason for this behavior is finite arithmetic. When
running the solver in quadruple precision, the error goes down according to design accuracy of the scheme.
Most likely for the same reason the error reduction of the 6th order scheme is lower than expected when
going from the second finest to the finest grid. However, a quadruple precision computation is approximately
two orders of magnitude slower than the corresponding double precision computation and has therefore only
be carried out for the 8th order scheme.

A. Background information for the SBP-SAT scheme

As is well-known, stability of a numerical scheme is a key property for a robust and accurate numerical
solution. Proving stability for high-order finite-difference schemes on bounded domains is a highly non-
trivial task. One successful way to obtain stability proofs is to employ so-called Summation-by-Parts (SBP)
schemes with Simultaneous Approximation Terms (SAT) for imposing boundary conditions. With a simple
example, we will briefly describe how stability proofs can be obtained.

Consider the scalar advection equation,

ut + aux = 0, 0 < x < 1, 0 < t ≤ T (3)

a+u(0, t) = a+gl(t)

a−u(1, t) = a−gr(t)

where a+ = max(a, 0) and a− = min(a, 0). Furthermore, we augment the equation with initial data u(x, 0) =
f(x), bounded in L2. To demonstrate well-posedness, we employ the energy method.

‖u‖2t + a

∫ 1

0

uux dx = 0

‖u‖2t ≤ au2(0, t)− au2(1, t) ≤ a+gl(t)
2 − a−gr(t)2 (4)

Integrating in time gives the bound

‖u(·, T )‖ ≤ ‖f‖+ a+

∫ T

0

gl(t)
2 dt− a−

∫ T

0

gr(t)
2 dt. (5)

For linear PDEs, such a bound is sufficient to prove well-posedness.
Next, we turn to the SBP-SAT semi-discretization of (3). To this end, we introduce the computational

grid, xi = ih, i ∈ {0, 1, 2, ..., N} and h > 0 is the grid spacing. For the moment, we keep time continuous.
With each grid point xi, we associate a value vi(t), and define a grid function v(t) = (v0, v1, v2, ...)

T . The
SBP difference operator, D is a matrix with the following properties: D = P−1Q where P and Q are two
matrices; P = PT > 0 and Q+QT = B = diag(−1, 0, ..., 0, 1). The matrix P can be used to define a weighted
l2 equivalent norm as ‖v‖2 = vTPv. We will also need the vectors e0 = (1, 0, 0..., 0)T and eN = (0, ..., 0, 1)T .

Let w denote a smooth function and define a grid function w̄ = (w(x0), ..., w(xN ))T and w̄x = (wx(x0), ..., w(xN ))T .
It turns out that the SBP property precludes the accuracy of D to be uniform in space. We have

Dw̄ = w̄x + T̄

where T̄ is the truncation error. In general, it takes the form,

T̄T = (O(hs), ...,O(hs),O(hp), ...,O(hp),O(hs), ...,O(hs)). (6)

where s < p and the lower accuracy is confined to a few (finite) number of points close to the boundary.
SBP operators exist with various orders of accuracy, [1]. In particular, if P is a diagonal matrix, there are
SBP operators with p even and p ≤ 8, and s = p/2. If P is allowed to have off-diagonal elements for a few
points near the boundary s = p− 1 can be achieved.
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Using the SBP operators, we now define a semi-discrete scheme for (3).

vt + aDv = σla
+P−1e0(v0 − gl(t)) + a−σrP

−1eN (vN − gr(t))

The right-hand side are the SAT:s, which impose the boundary conditions weakly. (Originally proposed in
[2].) σl,r are two scalar parameters, to be determined by the stability analysis. Multiplying by 2vTP , we
obtain

‖v‖2t − a(v2
0 − v2

N ) = 2σla
+v0(v0 − gl(t)) + 2a−σrvN (vN − gr(t))

(7)

For stability, it is sufficient to obtain a bound with gl,r = 0. In that case, it is easy to see that we must
require σl ≤ −1/2 and σr ≥ 1/2 to obtain a bounded growth of ‖v‖. More generally, allowing boundary data
to be inhomogeneous when deriving a bound leads to strong stability. (See [3]. The benefit of proving strong
stability as opposed to stability is that less regularity in the boundary data is required.) For strong stability,
it can be shown that σl,r must satisfy σl < −1/2 and σr < 1/2, i.e., strict inequalities. As an example, the
choice σl = −1, σr = 1 leads to

‖v‖2t − a(v2
0 − v2

N ) = −2a+v0(v0 − gl(t)) + 2a−vN (vN − gr(t))

or

‖v‖2t ≤ −a+(v0 − g)2 + a+gl(t)
2 + a−(vN − gr(t)2)− a−g2 (8)

If v0 = gl, vN = gr, (8) is the same as (4), but this is not the case and the additional terms add a small
damping to the boundary. Upon integration of (8) in time, an estimate corresponding to (5) is obtained. We
also remark that the SAT terms are accurate as they do not contribute to a truncation error in the scheme.
Furthermore, semi-discrete stability guarantees stability of the fully discrete problem obtained by employing
Runge-Kutta schemes in time, [4].

The above example, demonstrates the general procedure for obtaining energy estimates for an SBP-SAT
scheme. Naturally, for systems of PDEs, in 3-D with stretched and curvilinear multi-block grids, and with
additional parabolic terms, the algebra for proving stability becomes more involved. However, the resulting
schemes are still fairly straightforward to use. For the linearized Euler and Navier-Stokes equations, semi-
discrete energy estimates have been derived. (See [5–7] and references therein.) Different boundary types,
including far-field, walls and grid block interfaces are included in the theory. For flows with smooth solutions,
linear stability implies convergence as the grid size vanishes. (See [8].)

B. Code description

Both a general code and specialized codes for some of the test cases (used in the 1st and 2nd high order
workshop, see [9]) are available. The general code is a 3D code that can handle multiblock grids and can
run on (massively) parallel platforms. For load balancing reasons the blocks are split during runtime in an
arbitrary number of sub-blocks with a halo treatment of the newly created interfaces, such that the results
are identical to the sequential algorithm.

The specialized codes assume a single block 2D grid and do not have parallel capabilities, hence they are
relatively easy to modify for testing purposes. Due to the fact that these codes can only be used for one
specific test case and the fact that the general purpose code can only handle 3D problems, the efficiency of
the specialized codes is quite a bit higher than the general purpose code.

The discretization schemes used are finite difference SBP-SAT schemes, see section A, of order 2 to 5.
Thanks to the energy stability property of these schemes no or a significantly reduced amount of artificial
dissipation is needed compared to schemes which do not posses this (or a similar) property. This leads to a
higher accuracy of the numerical solutions.

For the steady test cases the set of nonlinear algebraic equations is solved using the nonlinear solver
library of PETSc [10]. This library requires the Jacobian matrix of the spatial residual, which is computed
via dual numbers [11] and appropriate coloring of the vertices of the grid, for which the PETSc routines are
used. Initial guesses are obtained via grid sequencing, where appropriate. The solution of the linear systems
needed by PETSc’s nonlinear solution algorithm is obtained by Block ILU preconditioned GMRES.
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Implicit time integration schemes of the ESDIRK type [12] are available, for which the resulting nonlinear
systems are solved using a slightly adapted version of the steady state algorithm explained above. However,
for the unsteady test cases considered, the Euler vortex and the Taylor-Green vortex, the time steps needed
for accuracy are relatively small compared to the stability limit of explicit time integration schemes and
therefore the explicit schemes are better suited for these cases. The available explicit schemes are the
classical 4th order Runge Kutta scheme (RK4, [13]) and TVD Runge Kutta schemes up till 3rd order [14].
As the maximum CFL number of the RK4 scheme is significantly higher than the CFL number of the TVD
Runge Kutta schemes, the RK4 scheme is used for the unsteady test cases mentioned above.

For the post processing standard commercially available software, such as Tecplot, and open-source
software, such as Gnuplot, are used. Grid adaption has not been carried out.

C. Machines description

The results for the easy test cases have been obtained on a Linux work station running Ubuntu 10.04
with an Intel i7-2600 CPU running at 3.4 GHz, with 8 Mb of cache. The machine contains 16 Gb of RAM
memory with an equivalent amount of swap. Running the Taubench on this machine led to a CPU time of
5.59 seconds (average over 4 runs).

The difficult test cases were run on up to 512 processors on the LISA machine of SARA, the Dutch
Supercomputing Center and Hexagon, the Cray XE6 machine of the University of Bergen. Running the
Taubench on these machines led to a CPU time of 10.3 and 10.8 seconds respectively (average over 4 runs).
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