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1 Code Description

The Conservation Element and Solution Element (CESE) method [1, 2] was used as implemented in the
NASA research code ez4d [3]. The CESE method is a time accurate formulation with �ux-conservation
in both space and time. The method treats the discretized derivatives of space and time identically and
utilizes a staggered mesh approach consisting of conservation elements (CE) and solution elements (SE).
While high-order versions of the method exist [4, 5, 6], the 2nd-order accurate version was used. In regards
to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions
available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage
Interface (MPI) for parallel runs.

2 Meshes

Three sets of meshes were used for the computations: the 2D and randomly perturbed (RP) meshes provided
by the workshop and a set of meshes made from scratch using Pointwise®. The meshes made from scratch
were formed by producing a uniformly spaced structured grid and then diagonalizing it by dividing each
cell into two triangular cells using the �best �t� option within Pointwise®. The 2D and RP meshes were
run on grid levels 3 and 4 while the diagonalized structured (DS) meshes were run on grid levels 3 through
5. Domain sizes for the various meshes are shown in Table 1. For the boundary conditions (bc), periodic
boundary conditions were applied to the left and right boundaries of the domains while a non-re�ecting
boundary condition was applied to the top and bottom boundaries of the domains. Additional cases using
the DS meshes were run with periodic boundary conditions for all boundaries of the domains.

Table 1: Domain Sizes

Grid Level i Dimension j Dimension 2D Cells RP Cells DS Cells

3 128 128 32,768 32,768 32,768
4 256 256 131,072 131,072 131,072
5 512 512 - - 524,288

3 Case Summary

A summary of case con�gurations is shown in Table 2. Cases utilizing a single core were run on an Intel Xeon
W3680 core with times for running the TauBench executable ranging from 7.998s to 8.415s with an average
of 8.141s. Cases utilizing multiple cores were run on Intel Xeon X5670 cores (NASA Pleiades, Westmere)
with times for running the TauBench executable ranging from 8.689s to 8.741s with an average of 8.717s.
All cases were run out to an equivalent time of 50 time periods.
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Table 2: Case Con�gurations

Case # # of Cores Mesh Type Grid Levels Top/Bottom BC Vortex Speed

1 1 2D 3-4 Non-Re�ecting Fast
2 1 RP 3-4 Non-Re�ecting Fast
3 1 DS 3-4 Non-Re�ecting Fast
4 12 DS 5 Non-Re�ecting Fast
5 12 DS 3-5 Periodic Fast
6 48 DS 3-5 Periodic Slow

4 Results

4.1 Fast Vortex Cases

Non-dimensional u velocity contours for the fast vortex cases are shown in Fig. 1 through Fig. 4. Note that
the velocity contours are non-dimensionalized by the freestream u velocity. It can seen that the vortex core
strength decreases over time and that the vortex as a whole drifts down and to the right. Trends are similar
for all grid and boundary condition sets and mesh re�nement shows improvement in minimizing both the
vortex core strength decay and the vortex drifting.

(a) Level 3, T=1 (b) Level 3, T=50

(c) Level 4, T=1 (d) Level 4, T=50

Figure 1: Non-dimensional u velocity contours for the fast vortex on the 2D grids (with non-re�ecting bc).
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(a) Level 3, T=1 (b) Level 3, T=50

(c) Level 4, T=1 (d) Level 4, T=50

Figure 2: Non-dimensional u velocity contours for the fast vortex on the RP grids (with non-re�ecting bc).
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(a) Level 3, T=1 (b) Level 3, T=50

(c) Level 4, T=1 (d) Level 4, T=50

(e) Level 5, T=1 (f) Level 5, T=50

Figure 3: Non-dimensional u velocity contours for the fast vortex on the DS grids (with non-re�ecting bc).
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(a) Level 3, T=1 (b) Level 3, T=50

(c) Level 4, T=1 (d) Level 4, T=50

(e) Level 5, T=1 (f) Level 5, T=50

Figure 4: Non-dimensional u velocity contours for the fast vortex on the DS grids (all periodic bc).

The workshop requires the L2 norm of the u and v velocity errors of the 50 time period solution to be
computed and compared to the work units and length scale for each grid. The u and v velocity L2 norms
were computed as follows:
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The work units were de�ned as the time it took ez4d to run the entire simulation normalized by the time it
took to run the TauBench executable.

WorkUnit =
tez4d

tTauBench
(3)

In addition, the length scale was de�ned as:
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=

1
√
ncells

(4)

Figure 5 shows the u velocity errors verses work units and length scale while Fig. 6 shows the v velocity
errors verses work units and length scale. It can be seen that the velocity errors are mostly independent
of the grid con�guration (i.e. 2D, RP, DS) and only dependent on the number of grid cells. Also, it can
be seen that the velocity errors are nearly independent of the boundary condition applied to the top and
bottom of the domains. As expected, the u and v velocity errors decrease with decreasing length scale (and
subsequently with increasing work units).

(a) Error verses work units. (b) Error verses length scale.

Figure 5: Workshop metric results for the u velocity error, fast vortex.
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(a) Error verses work units. (b) Error verses length scale.

Figure 6: Workshop metric results for the v velocity error, fast vortex.

4.2 Slow Vortex Cases

Because the fast vortex cases showed little sensitivity to mesh type and to the top/bottom boundary condi-
tions, the slow vortex cases were run only on the DS meshes with all periodic boundary conditions. Figure
7 shows the L2 velocity errors verses work units and length scale for the slow vortex cases. As expected, the
u and v velocity errors decrease with decreasing length scale (and subsequently with increasing work units).
In addition, non-dimensional u velocity contours are shown in Fig. 8. Like the previous fast vortex contours,
the velocity contours are non-dimensionalized by the freestream u velocity. Trends are similar to that of the
fast vortex cases and mesh re�nement shows improvement in minimizing the vortex core strength decay.

(a) Error verses work units. (b) Error verses length scale.

Figure 7: Workshop metric results for the slow vortex cases.
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(a) Level 3, T=1 (b) Level 3, T=50

(c) Level 4, T=1 (d) Level 4, T=50

(e) Level 5, T=1 (f) Level 5, T=50

Figure 8: Non-dimensional u velocity contours for the slow vortex on the DS grids (all periodic bc).
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