Barriers, Challenges & Opportunities for CFD Applications in Aircraft Design

John C. Vassberg
Boeing Technical Fellow
Advanced Concepts Design Center
Boeing Commercial Airplanes
Long Beach, CA 90846, USA

Invited Presentation

AIAA Sci-Tech Conference
Kissimmee, FL
7 January, 2015
OUTLINE

• BARRIERS
 – Moore’s Law
 – RANS/URANS

• CHALLENGES
 – Large-Scale Aerodynamic Databases
 – Automated Grid & Solution Checking
 – Non-Unique Solutions

• OPPORTUNITIES
 – Certification By Analysis
 – High-Fidelity MDAO
 – The CFD Stencil
BARRIERS

- **Moore’s Law**
 - Number of Transistors per CPU Chip Doubles Every Two Years
 - Gordon E. Moore, 1965
 "Cramming more Components onto Integrated Circuits", Electronics Magazine

- **Corollary**
 - Computing Speed Doubles Every 18 Months

- **Advancements in CFD Application (50 Years)**
 - Primarily Due to Growth of CPU Power \((10^9X)\)
 - What If These CPU-Growth Trends Stop?
MOORE’S LAW

http://betanews.com/2013/10/15/breaking-moores-law
MOORE’S LAW

http://www.singularity.com/charts/page67.html
The problem is that beyond 2014 shrinkages will no longer cut transistor’s cost.
Benjamin Sutherland
The Economist
November 2013
For planning horizons, I pick 2020 as the earliest date we could call Moore’s law dead. You could talk me into 2022, but whether it will come at 7 or 5nm, it’s a big deal.

Bob Colwell
Intel’s Former Chief Architect
August 2013

http://www.extremetech.com/computing/
MOORE’S LAW

• The End is Near for CMOS Growth!
 – Will this Occur Circa 2020-2025?
 – Will the Limit be 5nm?

• What’s Beyond Silicon?
 – Optical?
 – Biological?
 – Quantum?
 – IBM syNAPSE?
 – Carbon Nanotubes?

• How Do We Plan/Prepare?
 – We’ve Never been Faced with this Situation.
FLIGHT ENVELOPE
BARRIERS

• RANS/URANS Beyond Cruise Point?
 – Juncture-Flow Separations
 – Smooth-Body Separations
 – Buffeting Flows
 – Shock-Induced Separation / Reattachment
 – High-Lift Flows Near $C_{L_{max}}$

• Can Turbulence Models be Developed for RANS/URANS to Handle these Flows?
 – Experimental Data Needed
 – High-Quality, High-Resolution, Turbulence Data
 – Placed into the Public Domain
CHALLENGES

• Large-Scale Aerodynamic Databases
 – Spanning Full Flight Envelope
 – Numerous Altitude, Weight, Fuel Distributions, etc.
 – Cruise & High-Lift Configurations
 – Power Effects w/ Thrust-Drag Bookkeeping
 – Static Trim at Various CG Locations
 – Dynamic Gusts & Manuvers
 – Stability Derivatives; Spoilers, Control Surfaces
 – Coupled Aerodynamic-Structural Simulations
 – Stable Non-Unique Solutions & Hysteresis Loops
 – Automated Grid Generation w/ Checking
 – Automated Flow-Solution Checking
 – Automated Data Mining
 – $O(10^4)$ Cases
OPPORTUNITIES

• Certification By Analysis
 – Reduce Flight Tests (Time & Expense)
 – May Not Require Absolute Accuracy
 – Requires Consistant & Reasonably-Accurate Results
 – Will Better Than Low-Re Wind-Tunnel Data Suffice?
 – Start Where We Can; Expand Further ASAP

• High-Fidelity MDAO
 – Reduced A/C Design Time
 – Improved Designs
 – Higher-Order Methods
 – Remember, Very-Accurate Cruise Performance Matters!
OPPORTUNITIES

• Aerodynamic Databases
 – Simultaneously Solve Matrix \((\alpha, M)\) Sweeps
 – Can a Matrix of 33 \(\alpha\)'s and 9 Mach's be Solved via "Multigrid" for the Cost of \(O(10)\)?
 – Can the Matrix Linkage Provide Additional Information Regarding Non-Unique Solutions or Hysteresis Loops?

• Grid Convergence, Richardson Extrapolation
 – We Already Solve Most of the Basic Information Required.
 – Why Not Automate the Process and Output the Trends?
 – Can This Help Identify Issues?
GRID CONVERGENCE

NACA0012 Airfoil, FLO82 Results, $M = 0.8$, $\alpha = 1.25^\circ$

<table>
<thead>
<tr>
<th>MESH</th>
<th>ALPHA</th>
<th>CL</th>
<th>CD</th>
<th>CM</th>
<th>RED</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1</td>
<td>1.2500000000</td>
<td>0.2518307612</td>
<td>0.0149882300</td>
<td>-0.0493639569</td>
<td>-14.626</td>
</tr>
<tr>
<td>16-2</td>
<td>1.2500000000</td>
<td>0.3062491977</td>
<td>0.0225245242</td>
<td>-0.0270241915</td>
<td>-14.143</td>
</tr>
<tr>
<td>32-3</td>
<td>1.2500000000</td>
<td>0.3878427459</td>
<td>0.0278615931</td>
<td>-0.0429474988</td>
<td>-13.856</td>
</tr>
<tr>
<td>64-4</td>
<td>1.2500000000</td>
<td>0.3729213799</td>
<td>0.0254877919</td>
<td>-0.0435844268</td>
<td>-13.499</td>
</tr>
<tr>
<td>128-5</td>
<td>1.2500000000</td>
<td>0.3734695499</td>
<td>0.0237863714</td>
<td>-0.0438737395</td>
<td>-13.260</td>
</tr>
<tr>
<td>256-6</td>
<td>1.2500000000</td>
<td>0.3689802051</td>
<td>0.0233576511</td>
<td>-0.0425529413</td>
<td>-12.847</td>
</tr>
<tr>
<td>512-7</td>
<td>1.2500000000</td>
<td>0.3637479004</td>
<td>0.0230847486</td>
<td>-0.0410022279</td>
<td>-12.605</td>
</tr>
<tr>
<td>X</td>
<td>1.2500000000</td>
<td>0.0000000000</td>
<td>0.0226067813</td>
<td>0.0000000000</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.6516508876</td>
<td>0.0000000000</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0.0000000000</td>
<td>1.1654940919</td>
<td>0.6365514857</td>
<td>1.1740730188</td>
<td></td>
</tr>
</tbody>
</table>

Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015
GRID CONVERGENCE

Table IIb: FLO82-HCUSP Transonic Data at $M = 0.8$.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>$\alpha = 0^\circ$</th>
<th>$\alpha = 1.25^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>C_d</td>
<td>C_l</td>
</tr>
<tr>
<td>32</td>
<td>+0.011451356</td>
<td>+0.387842746</td>
</tr>
<tr>
<td>64</td>
<td>+0.010264792</td>
<td>+0.372921380</td>
</tr>
<tr>
<td>128</td>
<td>+0.008500758</td>
<td>+0.373469550</td>
</tr>
<tr>
<td>256</td>
<td>+0.008312402</td>
<td>+0.368980205</td>
</tr>
<tr>
<td>512</td>
<td>+0.008328328</td>
<td>+0.363747900</td>
</tr>
<tr>
<td>1,024</td>
<td>+0.008338967</td>
<td>+0.360812844</td>
</tr>
<tr>
<td>2,048</td>
<td>+0.008341760</td>
<td>+0.358281928</td>
</tr>
<tr>
<td>4,096</td>
<td>+0.008342211</td>
<td>+0.357142338</td>
</tr>
<tr>
<td>\star</td>
<td>+0.008342298</td>
<td>+0.356208937</td>
</tr>
<tr>
<td>p</td>
<td>2.631</td>
<td>1.151</td>
</tr>
</tbody>
</table>
Grid Convergence

Metric of Interest

Asymptotic Range

Accuracy Required

h^p
• **The CFD Stencil**
 - Compact Stencil & Unstructured Mesh Pushed 25+ Years.
 - Workshops Show ”Slope” Advantage to Structured Meshes.
 - A 100M-Node Overset Mesh Has $O(1M)$ Overlapping Nodes.
 - Why Not Use Expanded Stencils Globally and Compact Stencils Where Needed?
 - Corners of the Flight Envelope Exhibit Strong Shocks and/or Large-Scale Separations.
 - Separations Require Global Refinement (h or p).
 - Shocks Require Local h-Refinement.

• **What Is The Best Approach?**
 - Unstructured, High-Order, w/ both h+p Adaptation?
 - Hybrid Meshes w/ Predominately Expanded Stencils?
SUMMARY

• BARRIERS
 – Are We Prepared for The End of Moore's Law?
 – Can RANS Handle Full Flight Envelope?

• CHALLENGES
 – Large-Scale Aerodynamic Databases, $\mathcal{O}(10^4)$ Cases
 – Automated Grid & Solution Checking
 – Non-Unique Solutions / Hysteresis Loops

• OPPORTUNITIES
 – Certification By Analysis
 – High-Fidelity MDAO
 – Efficient Generation of Aerodynamic Databases
 – The CFD Stencil
Barriers, Challenges & Opportunities for CFD Applications in Aircraft Design

John C. Vassberg
Boeing Technical Fellow
Advanced Concepts Design Center
Boeing Commercial Airplanes
Long Beach, CA 90846, USA

Invited Presentation

AIAA Sci-Tech Conference
Kissimmee, FL
7 January, 2015