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SUMMARY

An effort is currently underway at NASA Lewis tove#op two- and three-dimensional War-Stoles codes,
calledProteus, for aerospace propulsion applications. The emphasis in tlegment ofProteus is not algorithm
development or research on numerical methods, but rather treogenent of the code itself. The objediis to
develop codes that are user-oriented, easily-modified, and well-documewigtproven, state-of-the-art solution
algorithms are being used. Code readabitipcumentation (both internal andternal), and validation are being
emphasized. Thipaper is a status report on tRmteus development efort. Theanalysis and solution procedure
are described brieflyand the various features in the code are summarizée. results from some of thalidation
cases that va been run are presented for both the two- and three-dimensional codes.

1. INTRODUCTION

Much of the diort in applied computational fluid dynamics consists of modifying an existing program for
whatever geometries and fle regmes are of current interest to the researchifortunately nearly all of the aail-
able non-proprietary programs were started as research projects with the emphasis on demonstrating the numerical
algorithm rather than ease of use or ease of modification. Meopers usually intend to clean up and formally
document the program, but the immediate need to extend itMgewmetries and flo regmes takes precedence.

The result is often a haphazard collection of poorly written code withqutarsistent structureAn exten-
sively modified program may notven perform as expected under certain combinations of operating opfitath
new user must igest considerable time andfedft in attempting to understand the underlying structure of the pro-
gram if intending to do anything more than run standard test cases with it. Treesulsegquent modifications fur
ther obscure the program structure and thereforeeritaen more difficult for others to understand.

The Proteus two- and three-dimensional Mar-Stolkes computer codes are intended to be user-oriented and
easily-modifiable flv analysis programs, primarily for aerospace propulsion applicatiBesadability modularity,
and documentation ke keen the primary objeets. Ewery subroutine contains arxtensve mmment section
describing the purpose, input variables, outpariables, and calling sequence of the subroutiéth just three
clearly-defined exceptions, the entire program is written in ANSI stanaat@ i 77 to enhance portabilith mas-
ter version of the program is maintained and periodically updated with corrections, as wédinsgoas of general
interest, such as turbulence models.

The documentation is divided into threelumes. Ylume 1 is the Analysis Description, and presents the
equations and solution procedure usedPinteus. It describes in detail the gerning equations, the tuabence
models, the linearization of the equations and boundary conditions, the time and deaeeciify formulas, the
ADI solution procedure, and the artificial viscosity modalslume 2 is the Uses'Guide, and contains information
needed to run the program. It describes the prograerieral features, the input and output, the procedure for set-
ting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the
job control language used to run the program, ameraktest casesVolume 3 is the ProgrammerReference, and
contains detailed information useful when modifying the progréndescribes the program structure, trertfFan
variables stored in common blocks, and the details of each subprogram.



In this paperthe analysis and solution procedure are described h@aflythe \arious features in the code are
summarized. Theesults from some of the validation cases thaeHaen run are presented for both the two- and
three-dimensional code§ he paper concludes with a brief status report orPtioteus development effort, includ-
ing the work currently underway and our future plans.

2. ANALYSIS DESCRIPTION

In this section, the gmrning equations, the numerical solution method, and theulembe models are
described briefly For a much more detailed description, see Volume 1 of the documentatisne(TSchwab, Ben-
son, and Suresh, 1990).

2.1 GOVERNING EQUATIONS
The basic geerning equations are the compressiblevidaStoles equations. In Cartesian coordinates, the
two-dimensional planar equations can be written in strong conservatidora using vector notation as
a& + aE + aj = a& + aﬂ (1)
ot oJx ody 0x oy
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1. For brevity, in most instances this paper describes the-dinmmensionalProteus code. Theextension to three dimensions is
relatively straightforward. Differences between the two-dimensional and three-dimensional codes are noted whaerte rele
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In these equationg,represents timex andy represent the Cartesian coordinate directianandv are the
velocities in thex andy directions; p, p, and T are the static densjtpressure, and temperaturg; is the total
enegy per unit volume; ang, A, and k are the coefficient of viscosjtthe second coefficient of viscosignd the
coefficient of thermal conductivity.

In addition to the equations presentedvaban ejuation of state is required to relate pressure to the depen-
dent \ariables. Thesquation currently built into throteus code is the equation of state for thermally perfestes,
p = pRT, whereR s the gas constankor calorically perfect gases, this can be rewritten as

p=(y- 1)EET fp(u +v2)g 4)

wherey is the ratio of specific heats,/c,. Additional equations are also used to defind, k, and c,, in terms of
temperature for the fluid under consideration.

All of the equations ha keen nondimensionalized using appropriate normalizing conditions. Lengths ha
been nondimensionalized lhy, velocities byu,, density byp,, temperature by, viscosity by, , thermal conduc-
tivity by k., pressure and total energy yu?, time byL,/u,, and gas constant and specific heaupif,. The ref-
erence Reynolds and Prandtl numbers are thus defirRel &sp, u, L, /x4, andPr, = u,u?/k T,.

Because the grning equations are written in Cartesian coordinatey, dreenot well suited for general geo-
metric configurations.For most applications a body-fitted coordinate system is desifad greatly simplifies the
application of boundary conditions and the bookkeeping in the numerical method usee theselguationsThe
equations are thus transformed from physisaly(t) coordinates to rectangular orthogonal computatio&iah,(r)
coordinates. Equatiofl) becomes
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In these equations the detives &,, 4, €c., are the metric scale coefficients for the generalized nonorthogo-
nal grid transformationJ is the Jacobian of the transformation.

2.2 NUMERICAL METHOD

2.2.1 Time Differencing. The garerning equations are solved by marching in time from some known set of initial
conditions using a finite difference technique. The time differencing scheme currently used is the generalized
method of Beam and Warming (1978)ith this scheme, the time dediive term in equation (5) is written as
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whereAQ" = O™ - Q". The superscripta andn + 1 denote the known and unknown timedss, respectiely. By
choosing appropriate values féy and 6,, the solution procedure can be either first- or second-order accurate in
time.

Solving equation (5) fodQ/dr, substituting the result into equation (6) 8Q")/dr andaQ"/dr, and multi-
plying by Ar yields
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2.2.2 Linearization Procedure. Equation (7) is nonlineasnce, for e(ample,AIAEn =™ - £" and the unknen

E™ is a nonlinear function of the dependeatiables and of the metric coefficients resulting from the generalized
grid transformation. The equations must therefore be linearized to eddmvthe finite difference procedurgor

the inviscid terms, and for the non—cross-dative viscous terms, this is done by expanding each nonlingames

sion in a Taylor series in time about the known tim@lle. The cross-devitive viscous terms are simply lagged
(i.e., valuated at the known timeud n and treated as source terms.)

The linearized form of equation (7) may be written as
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wheredE/@Q anq aﬁ/aQ are Ehe Jacobian cdigient matrices resulting from the linearization of the @otive
terms, andE,, /0Q anddF,, /0Q are the Jacobian coefficient matrices resulting from the linearization of the viscous
terms.

The boundary conditions are treated implicitiyd may be viewed simply as additional equations to bedolv
by the ADI solution algorithm.In general, the aso involve ronlinear functions of the dependemtriables. Thg
are therefore linearized using the same procedure as for kg equations.

2.2.3 SolutionProcedure. The gwerning equations, presented in linearized matrix form as equation (8), agel solv
by an alternating direction implicit (ADI) method. The form of the ADI splitting is the same as used lyyaBdle
McDonald (1977), and by Beam and Warming (1978). Using approxiraaterization, equation (8) can be split
into the following two-sweep sequence.
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Sweep 2 (7 direction)
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These equations represent the two-sweep alternating direction implicit (ADI) algorithm used to advance the solution
from time level nton + 1. Q is the intermediate solution.

Spatial dewnatives in equations (9a) and (9b) are approximated using second-order cerfeatrie formu-
las. Theresulting set of algebraic equations can be written in matrix form with a block tri-diagonfitieaef
matrix. The are soled using the block matrix version of the Thomas algorithm (e.g., see Anderson, Tannehill, and
Pletcher 1984).

2.2.4 Artificial Viscosity. With the numerical algorithm described abgohigh frequeng nonlinear instabilities can
appear as the solutionwd#ops. For example, in high Reynolds numbemnfoscillations can result from the odd-
even decoupling inherent in the use of second-order central differencing for the inviscid terms. In addjtsicalph
phenomena such as shockwss can cause instabilities when thare captured by the finite difference algorithm.
Artificial viscosity, or anoothing, is normally added to the solution algorithm to suppress these high fremmestac
bilities. Two atificial viscosity models are currentlwalable in theProteus computer code — a constant dbef
cient model used by Ser (1978), and the nonlinear coefficient model of Jameson, Schmidt,uskel [1981).



The implementation of these models in generalized nonorthogonal coordinates is described by Pulliam (1986).

The constant coefficient model uses a combinatiorxplicd and implicit artificial viscosity The standard
explicit smoothing uses fourth-order fifences, and damps the high freqyemanlinear instabilities.Second-order
explicit smoothing, while not used by Steger or Pulliam, is alsiable in Proteus. It provides more smoothing
than the fourth-order smoothing, but introduces a larger ,eamt is therefore not used as often. The implicit
smoothing is second order and is intendedkterel the linear stability bound of the fourth-order explicit smoothing.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the following terms to the
right hand side of equation (9a) (i.e., the source term for the first ADI sweep.)

(2)AT £
(0e0:Q +0,0,Q) -

2Q+(0,0,)°QR

(2) andg(A) are the second- and fourth-order explicit artificial viscosityfaments. Thesymbols andA are back-
ward and forward first difference operators.

The implicit artificial viscosity is implemented by adding the feilog terms to the left hand side of the equa-
tions specified.

EIAT Ejzﬂg(JAQ )2 to equation (9a)

_ £|AT AN .
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The nonlinear coefficient artificial viscosity model is strictpkcit. Usingthe model as described by Pul-
liam (1986), but in the current notation, the following terms are added to the right hand side of equation (9a).
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The subscriptsandj denote grid indices in theands directions. Inthe abee expressiony is defined as
Y =xtyy
wherey, andy, are spectral radii defined by
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HereU andV are the contnariant velocities without metric normalization, defined by
U=4§&+&utéyy
V =+ ngutnyv

anda =y RT, the speed of sound.

The parameters® and ® are the second- and fourth-order artificial viscosity ficiehts. Fr the coef-
cients of thef direction differences,
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and x, and x, are constants. Similar formulas are used for the coefficients of tfieection diferences. The
parametew is a pressure gradient scaling parameter that increases the amount of second-order smootiary relati

fourth-order smoothing near shoclaves. Thelogic used to compute® switches dfthe fourth-order smoothing
when the second-order smoothing term is large.

2.3 TURBULENCE MODELS

Turbulence is modeled using either a generalizexsion of the Baldwin and Lomax (1978) algebraic eddy
viscosity model, or the Chien (1982 d&Reynolds numbek-& model.

2.3.1 Baldvin-Lomax Model. For wall-bounded flows, the Baldwin-Lomax twience model is a twvlayer
model, with

_ D(/-lt)inner for yn < yp

= 10
D(,Ut)outer for Yn > Yo ( )

Hi

wherey, is the normal distance from the wall, apglis the smallest value of, at which the values qof; from the
inner and outer region formulas are equadr free turbulent flows, only the outer region value is used.

The outer region turbulent viscosity at &egi & or ;7 station is computed from

(/lt)outer = KCcpp':KIewaakeRer (11)

whereK is the Clauser constant, taken as 0.0168Gpds a constant taken as 1.6.

The parameteF 4 is computed from

a
oo Bymaxlzmax for wall-bounded flows (12)
M T CCuVay l):/ﬂ for free turbulent flows
D max

whereC, is a constant taken as 0.25, and
Vaitt = Vlmex = M lin

whereV is the total velocity vector.

The parameteF ., in equation (12) is the maximum value of
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andy, . is the value ofy,, corresponding té .

For wall-bounded flws, y,, is the normal distance from theallv For free turbulent flows, tarvalues ofF

andy,.x are computed — one using the location\f.}« as the origin fory,, and one using the location of ||;,.
The origin giving the smaller value gf. is the one finally used for computing, F . and Y-

In equation (13).Q| is the magnitude of the total vorticjtgefined for two-dimensional planar fices

.. Oov ould
Q1= - oo (14)
Dax ayD
The parameteA" is the Van Driest damping constant, taken as 26.0. The coorgihetelefined as
T P R
+ PwlUr Yn Re, = VrwpwRe Vo (15)
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whereu, =3/1,/p,Re; is the friction elocity, r is the shear stress, and the subsarifiidicates a wall &lue. In
Proteus, ,, is set equal tqz,, Q..

The functionF .« in equation (11) is the Klebariohtermitteng factor For free turbulent flars, Fyq = 1.
For wall-bounded flows,

-1
g (]
Fraw = 3+ BI85 (16)
0 Ymex =]

In equation (16)B andCy,q, are constants taken as 5.5 and 0.3, reshcti

The inner region turbulent viscosity in the Baldwin-Lomax model is

(4)imner = p|2|Q|Rer (17)

wherel is the mixing length, gen by
— _ _y+/A+D
| Kyné{ evn (18)

andx is the Von Karman constant, taken as 0.4.

If both boundaries in agen coordinate direction are solid surfaces, the turbulence model is applied separately
for each sudce. Anaveaging procedure is used to combine the resultinggwarofiles into one.

The turbulent second coefficient of viscosity is simply defined as

2

Ay =—=
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The turbulent thermal conductivity coefficient is defined using Reynolds analogy as

Cp ki
ke= -2
' Pr

Pr,



wherec,, is the specific heat at constant pressure,Rands the turbulent Prandtl number.

2.3.2 Chienk-¢ Model. The lav Reynolds numbek-¢ formulation of Chien (1982) was chosen because of its rea-
sonable approximation of the near wall region and because of its numerical stil@tigk and e are the turblent
kinetic energy and the turbulent dissipation rate, resgbgti

In Cartesian coordinates, the two-dimensional planar equations for the IChigmodel can be written using
vector notation as
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The turbulent viscosity is gén by
k2
m=Cup— (20)

C.=Cy Sl - e—c3y*g

In the abee eyuations,Cy, C,, Cs, 0y, o, and C,, are constants equal to 1.35, 1.8, 0.0115, 1.0, 1.3, and
0.09, respectely. The parametey, is the minimum distance to the nearest solid surfaceyaigicomputed from
Yn. Inthe ab@e guations the mean floproperties hae keen nondimensionalized as described in SectionThé.
turbulent kinetic enagy k and the turblent dissipation rate have been nondimensionalized hy and p, uf/ 4,

respectiely.
After transforming from physical to rectangular orthogonal computational coordinates, equation (19) becomes
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The time differencing scheme and linearization procedure describeidysly for the mean flo equations
are also applied to equation (21). The meaw flariables arevaluated at the known timewve n. This allows the
k-& equations to be uncoupled from the meaw #quations and solved separateBpatial dervatives ae approxi-
mated using first-order upwind tifences for the coective erms, and second-order central differences for the vis-
cous terms. In the twdimensionaProteus code, the equations are sedivby the same ADI procedure as the mean
flow equations. Irthe three-dimensional code, yhare solved by a two-sweep LU procedure, as described by Hof
mann (1989).

The turbulent second coefficient of viscosity and the turbulent thermal conductivity cligént k, are
defined as described in the previous section.

3. CODEFEATURES

In this section the basic characteristics and capabilities of threamd three-dimension&roteus codes are
summarized. & a much more detailed description, see Volumes 2 and 3 of the documentatioe,(Schwab,
Benson, and Suresh, 1990).

3.1 ANALYSIS

The Proteus codes sole the unsteady compressibleWer-Stoles equations in either twor three dimensions.
The 2-D code can sadvdther the planar or axisymmetric form of the equatioBsvirl is allowed in axisymmetric
flow. The 2-D planar equations and the 3-D equations are solved in fully catiseferm. Assubsets of these
equations, options arevalable to sole the Euler equations or the thin-layervi&-Stoles equations. An option is
also aailable to eliminate the energy equation by assuming constant total gnthalp

The equations are solved by marching in time using the generalized tferertifng of Beam and &vming
(1978). Thamethod may be either first- or second-order accurate in time, depending on the choice ofarerecdif
ing parameters. Second-order central differencing is used for all spatiadtides. Nonlineaterms are linearized
using second-order Taylor series expansions in tifitee resulting difference equations are solved using an alternat-
ing-direction implicit (ADI) technique, with Douglas-Gunn type splitting as written by riled McDonald
(1977). Theboundary conditions are also treated implicitly.

Artificial viscosity, or amoothing, is normally added to the solution algorithm to damp pre- and post-shock
oscillations in supersonic fig and to preent odd-&en decoupling due to the use of central differences irveon
tion-dominated regions of the flo Implicit smoothing and tavtypes of explicit smoothing arealable in Proteus.
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The implicit smoothing is second order with constantfodents. Fr the eplicit smoothing the user may choose a
constant coefficient second- and/or fourth-order modebést&978), or a nonlinear coefficient mixed second- and
fourth-order model (Jameson, Schmidt, anak&l, 1981). The nonlinear coefficient model was designed specifi-
cally for flow with shock vaves.

The equations are fully coupled, leading to a system of equations with a block tridiagonal coefficient matrix
that can be sobd using the block matrix version of the Thomas algorithm. Because this algorithm isveetioesi
source code cannot be vectorized in the ADI sweep direchiamvever, it is vectorized in the non-sweep direction,
leading to an efficient implementation of the algorithm.

3.2 GEOMETRY AND GRID SYSTEM

The equations solved iAroteus were originally written in a Cartesian coordinate system, then transformed
into a general nonorthogonal computational coordinate systéra.code is therefore not limited toyaparticular
type of geometry or coordinate systeithe only requirement is that body-fitted coordinates must be used. In gen-
eral, the computational coordinate system for a particular geometry must be created by a separate coordinate genera-
tion code and stored in an unformatted file fhadteus can read.However, Smple Cartesian and polar coordinate
systems are built in.

The equations are solved at grid points that form a computational mesh within this computational coordinate
system. Theaumber of grid points in each direction in the computational mesh is specified by th&hmsédoca-
tion of these grid points can be varied by packing them at either or both boundarigsaoramnate direction.The
transformation metrics and Jacobian are computed using firfiéeedli€es in a manner consistent with théedénc-
ing of the goerning equations.

3.3 FLOW AND REFERENCE CONDITIONS

As stated earliethe equations solved IBroteus are for compressible fla Incompressible conditions can be
simulated by running at a Mach number of around Qdwer Mach numbers may lead to numerical probleffise
flow can be laminar or tutbent. Thegas mnstantR is specified by the usewith the value for air as the deflt.
The specific heats, andc,, the molecular viscosity, and the thermal conduptty k can be treated as constants or
as functions of temperature. The empirical formulas used to relate these properties to temperature are contained in a
separate subroutine, and can easily be modified if necesHayperfect gas equation of state is used to relate pres-
sure, densityand temperature. This equation is also contained in a separate subroutine, which could be easily modi-
fied if necessaryAll equations andariables in the program are nondimensionalized by normalizing valuesdieri
from reference conditions specified by the pgath values for sea &l air as the default.

3.4 BOUNDARY CONDITIONS

The easiest way to specify boundary conditionBristeus is by specifying the type of boundary (e.g., no-slip
adiabatic wall, subsonic inflg periodic, etc.). The program will then select an appropriate set of conditions for that
boundary For mary applications this method should be fsziEnt. If necessaryhoweve, the user may instead set
the individual boundary conditions onyaor dl of the computational boundaries.

A variety of individual boundary conditions are built into tRoteus code, including: (1) specifiedaiues
and/or gradients of Cartesiarlgcitiesu, v, and w, hormal and tangentialelocitiesV,, andV,, pressurep, tempera-
ture T, and densityp; (2) specified values of total pressysg, total temperaturdy, and flov angle; and (3) linear
extrapolation. Anotheuseful boundary condition is a "no change from initial condition" optiomuferw, p, T, p,
pr, and/orT+. Provision is also made for user-written boundary conditidBgecified gradient boundary conditions
may be in the direction of the coordinate line intersecting the boundary or normal to the boamdlargty be com-
puted using tw-point or three-point difference formulafor al of these conditions, the same type and value may
be applied wer the entire boundary surface, or a point-by-point distribution may be specified. Unsteady and time-
periodic boundary conditions are allowed when applies the entire boundary.

3.5 INITIAL CONDITIONS

Initial conditions are required throughout thewflfield to start the time marching proceduiféor unsteady
flows they should represent a real ficfield. A corverged steady-state solution from a previous run would be a good
choice. Ior steady flars, the ideal initial conditions would represent a real flield that is close to thexpected
final solution.
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The best choice for initial conditions, therefore, walry from problem to problemFor this reasorProteus
does not include a general-purpose routine for setting up initial conditions. The user must supply a subroutine,
called INIT, that sets up the initial starting conditions for the time marching proceduversion of INIT is, hov-
eva, built into Proteus that specifies uniform fle with constant flav properties gerywhere in the flas field. These
conditions, of course, do represent a solution to tlvergimg equations, and for maproblems may help minimize
starting transients in the time marching procedurawever, realistic initial conditions that are closer to the
expected final solution should lead to quickeragence.

3.6 TIME STEP SELECTION

Several different options arevailable for choosing the time stér, and for modifying it as the solution pro-
ceeds.Ar may be specified directlgr through a value of the Courant-Friedrichs-Lewy (CFL) numb®hen spec-
ifying a CFL numberthe time step may be eithglobal (i.e., constant in space) based on the minimum CFL limit,
or local (i.e., varying in space) based on the local CFL lirfibr unsteady time-accurate flows global values should
be used, bt for steady flows using local values may lead to fasterecgence. Optionsre aailable to increase or
decreas@r as the solution proceeds based on the change in the depesuglolies. Anoption is also zailable to
cycle Ar between tw values in a logarithmic progressiomep a ecified number of time steps.

3.7 CONVERGENCE

Five gotions are currentlywvailable for determining corergence. Theuser specifies a ceergence criteriore
for each of the geerning equations. Then, depending on the option choserergamce is based on: (1) the abso-
lute value of the maximum change in the conservatiiablesAQ .« Over a dngle time step; (2) the absolutelue
of the maximum changl&Q .« aveaged oer a ecified number of time steps; (3) the norm of the residual for
each equation; (4) thererage residual for each equation; or (5) the maximum residual for each equation.

It should be noted, hiever, that cowergence is in the eye of the beholddthe amount of decrease in the
residual necessary for camgence will vary from problem to problentzor some problems, it may be more appro-
priate to measure ceergence by some flow-related paramesech as the lift coefficient for an airfoiDetermin-
ing when a solution is sufficiently cesrged is, in some respects, a skill best acquired through experience.

3.8 INPUT/OUTPUT

Input to Proteus is through a series of namelists and, in general, an unformatted file containing the computa-
tional coordinate system. All of the input parameterseh#@fault values and only need to be specified by the user if
a dfferent value is desiredReference conditions may be specified in either English or Sl ukitestart option is
also aailable, in which the computational mesh and the initiakflield are read from unformatted restart files cre-
ated during an earlier run.

The standard printed outputailable in Proteusincludes an echo of the input, boundary conditions, normaliz-
ing and reference conditions, the computedvffeeld, and cowergence information.The user controlsxactly
which flow field parameters are printed, and at which tinweléeand grid points.Several debug options are also
awailable for detailed printout in various parts of the program.

In addition to the printed output,\&eal unformatted files can be written for various purposes. The first is an
auxiliary file used for post-processing, usually called a plot file, that can be writtenvetgenice or after the last
time step if the solution does not werge. Plotfiles can be written for the NASA Lewis plotting progr&@®N-
TOUR or the NASA Ames plotting prografLOT3D. If PLOT3D is to be used, tavunformatted files are created,
anxyz file containing the computational mesh anglfde containing the computed flofield. Anotherunformatted
file written byProteus contains detailed corrgence information. This file is automatically incremented each time
the solution is checked for cesigence, and is used to generate thevemence history printout and with lags-
developed post-processing plotting routines. And finallyo unformatted files may be written at the end of a calcu-
lation that may be used to restart the calculation in a later run. One of these contains the computational mesh, and
the other the computed ¥fidfield.

3.9 TURBULENCE MODELS

For turbulent flow, Proteus solves the Reynolds timeseraged Naier-Stokes equations, with turbulence mod-
eled using either the Baldwin and Lomax (1978) algebraic eddy-viscosity model or the Chien (1B8guaton
model.
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3.9.1 Baldvin-Lomax Model. The Baldwin-Lomax model may be applied to eithatlsounded flows or to free
turbulent flovs. For wall-bounded flas, the model is a two-layer moddtor flows in which more than one bound-
ary is a solid surfaceyaraging procedures are used to determine a siagpeofile. Theturbulent thermal conduc-
tivity coefficientk, is computed using Reynolds analogy.

3.9.2 Chienk-£ Model. With the Chien two-equation model, partialfeiiential equations are solved for the b

lent kinetic enggy k and the turbulent dissipation rate These equations are lagged in time and solved separately
from the mean flv equations. Irthe 2-DProteus code, the equations are solved using the same solution algorithm
as for the mean flw equations, except that spatial detives for the comective erms are approximated using first-
order upwind diferencing. Inthe 3-D code, theare solved by a two-sweep LU procedure, as described bfy Hof
mann (1989).

Since the Chien two-equation model is & IReynolds number formulation, thie-¢ equations are sadd in
the neatwall region. Noadditional approximations are needed. Boundary conditions that may be used include: (1)
no change from initial or restart conditions foande; (2) specified values and/or gradientka@nde; and (3) lin-
ear etrapolation. Specifiedradient boundary conditions are in the direction of the coordinate line intersecting the
boundaryand may be computed using two-point or three-point difference form#éiasall of these conditions, the
same type and value may be appligdrdhe entire boundary surface, or a point-by-point distribution may be speci-
fied. Spatiallyperiodic boundary conditions fdeand e may also be used. Unsteady boundary conditions are not
awailable for thek-¢ equations. Haever, unsteady flows can still be computed with the Chien model using the
unsteady boundary condition option for the meaw fjpantities and appropriate boundary conditionskfand e,
such as specified gradients or linear extrapolation.

Initial conditions fork and e are required throughout the fidield to start the time marching proceduféhe
best choice for initial conditions willary from problem to problem, and the user may supply a subroutine, called
KEINIT, that sets up the initial values londe for the time marching procedur@ version of KEINIT is built into
Proteus that computes the initialalues from a mean initial or restartldield based on the assumption of local
equilibrium (i.e., production equals dissipatioVariations of that scheme ¥ been found to be useful in comput-
ing initial k ande values for a variety of turbulent flows.

The time step used in the solution of e equations is normally the same as the time step used for the mean
flow equations. Hwever, the user can alter the time step, making it larger or smaller than the time step for the mean
flow equations, by specifying a multiplicatioadtor The user can also specify the numberkef iterations per
mean flov iteration.

4. VERIFICATION CASES

Throughout theProteus development effort, verification of the code has been emphasi&edariety of cases
have been run, and the computed results¥ehéieen compared with bothxjgerimental data and exact solutions.
Some cases are included inl¥me 2 of theProteus documentation (@wne, Schwab, Benson, and Suresh, 1990).
Other cases Iva keen reported by Confeand Zeman (1991), Saunders and Keith (1991), and Bui (1992).

Three cases are presented in this paper w- st a circular ylinder, flow through a transonic difser and
flow through a square—cross-sectioned S-duct.

4.1 FLOW PAST A CIRCULAR CYLINDER

In this test case, steadyMlgast a two-dimensional circular cylinder wasestigated. BothEuler and lami-
nar viscous flaw were computed.

4.1.1 Refeence Conditions. In order to allev comparison of théroteus results with incompressiblexgerimental
data and with potential floresults, this case was run with avlceference Mach number of 0.2. The cylinder radius
was wsed as the reference length, and was set equal toSkaihdard sea Vel conditions of 51°R and 0.07645
Ib,/ft2 were used for the reference temperature and derEity Reynolds number based opirder diameter s
40, matching the experimental value.
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4.1.2 Computational Coordinates. For this problem a polar computational coordinate system was thieusb
choice. Theadial coordinate varied from 1 at the cylinder surface to 30 at the outer boundénge the flov is
symmetric, only the top half of the fidfield was computed. The circumferential coordiréathus varied from Dat
the cylinder leading edge to 18at the trailing edgeFor the Euler flov case, a 21 (circumferentiak) 51 (radial)
mesh was used, with the radial grid packed moderately tightly near the cylinderesusr the viscous fiw case, a
51x 51 mesh was used, with the radial grid packed more tightly near the cylinder surface.

4.1.3 Initial Conditions. Constant stagnation enthglas assumed, so only three initial conditions were required.
For the Euler flov case, uniform flav with u =1, v =0, andp = 1 was used.

For the viscous flar case, the exact potential ficsolution was used to set the initial conditions at all the non-
wall points. Thus, with hondimensional free stream conditionpQf=u,, = T, = p, =1, the initial conditions
were?

1
u=1- 2 cos(®)

1 .
V= —r—zsm(ZH)
_ 1 (WP +VP)
P=(Pro 5 R
where
1 peoU,
(pT)oo = poo + é OOR

At the cylinder surface, the initialelocitiesu andv were set equal to zero, and the presgunes et equal to the
pressure at the grid point adjacent to theasigf Thuswith two-point one-sided diérencing,0p/on = 0 at he sur
face.

4.1.4 Boundary Conditions. Again, since we assumed constant stagnation egthalty three boundary condi-
tions were required at each computational boundBoy the Euler flav case, symmetry conditions were used along
the symmetry line ahead of and behind thknder. At the cylinder surface, the radial velocity and the radial gradi-
ent of the circumferential velocity were set equal to zero. The radial gradient of pressucemputed from the
polar coordinate form of the incompressible radial momentum equation written althétheequation is (Hughes
and Gaylord, 1964)

avr_'_pVS'% Vg_ @

Vi —-—
PYr r o P or

wherev, andyv, are the radial and circumferential velocities, respelgti At the cylinder surfacey, = 0. Thus,

op _ Vi U+

or P r p r
And finally, at the outer boundary the free stream conditions were specified as boundary conditions.

For the viscous flav case, symmetry conditions wereastg used along the symmetry line ahead of and behind
the glinder. At the cylinder surface, no-slip conditions were used for tiecity, and the radial pressure gradient
was ®t equal to zero. The outer boundargsasplit into an inlet region andake regon. Thesplit was made,

2. Note that the nondimensional gas consRuappears in these equations. This is because, iRrtiteus input and output, the
pressure is nondimensionalized pyRT,. Internal to the code, pressure is nondimensionalizewrhﬁ, as dscribed in
Section 2.1.
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somavhat arbitrarily at & = 135°. In the inlet region, the boundary valuesupf/, and p were kept at their initial al-
ues, which were the potential\losalues. Inthe wake regon, the boundary values pfwere lept at their initial &al-
ues, and the radial gradientsudindv were set equal to zero.

4.1.5 Numerics. Both the Euler and viscous flocases were run using a spatially varying time step, with a local
CFL number of 10. The constant coefficient artificial viscosity model was useds,witB and s(EA) =1.

The Euler flov case comerged in 210 time steps, and the viscousvftmse comerged in 360 time stepsThe
corvergence criterion for both cases was thatlthenorm of the residual for each equation drop tedd001.

4.1.6 ComputedResults. In Figure 1 the computed static pressure ficieft, defined asp(— p,)/(o;U%/2g.) is
plotted as a function df for both the Euler and viscousii@ases. Alsshavn are the experimental data of @ep
Shair Petersen, and Aoros (1964), and the exact solution for potentialnloThe Proteus results agree well with
the data for the viscous flocase, and with the exact potentialflsolution for the Euler flr case.

Proteus Viscous Results
— —  Proteus Euler Results ~ el
Experimental Data M
Exact Potential Flow

Static Pressure Coefficient, Cp
AN

\ /
\ /
\ /
2 QI o
N /
N /
3 g 8’
-4
0 30 60 90 120 150 180

Circumferential Location, 6, Degrees

Figure 1 Pressure coefficient for flopast a circular cylinder.
4.2 TRANSONIC DIFFUSER FLOW

In this test case, two-dimensional transonic turbulemt flas computed in a ceerging-diverging duct. Tur-
bulence was modeled using the Baldwin-Lomax moddéle flov entered the duct subsonicalbccelerated through
the throat to supersonic speed, then decelerated through a normal shoxkeshthe duct subsonicallyThe com-
putational domain is shown in Figure 2.

n y e =

T
T
L

Figure 2 Computational domain for transonic diffusemlo
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4.2.1 Refeence Conditions. The throat height of 0.14435 ft. was used as the reference lepgthhe reference
velocity u, was 100 ft/sec. The reference temperature and density were 52568®1 0.1005 Ih/ft3, respeciiely.

These walues match the inlet total temperature and total pressure used in other numerical simulations wf this flo
(Hsieh, Bogarand Coaklg, 1987).

4.2.2 ComputationalCoordinates. Thex coordinate for this duct runs fror#.04 to+8.65. TheCartesian coordi-
nates of the bottom wall are simpty= 0 for all x. For the top wall, the coordinate is gien by (Bogar Sajben, and
Kroutil, 1983)

El. 4144 for x < -2.598
y = Qga cosh/(a — 1+ cosh?) for —2.598< x < 7.216
81. 5 for x> 7.216

where the parametéris defined as

_ Cy(XIx)[L +Coxix ]
B (1 - x/x)Cs

The various constants used in the formula for the tajb eight in the corerging (-2. 598< x < 0) and dverging
(0 < x<7.216)parts of the duct aregin in the following table.

Constant  Cowverging  Diverging

a 1.4114 15
X -2.598 7.216
C 0.81 2.25
C, 1.0 0.0
Cs 0.5 0.0
C, 0.6 0.0

A body-fitted coordinate system was generated for the duct, with 81 pointsxmitteetion and 51 points in
they direction. Thecoordinate system is shown in Figure Fr clarity, the grid points are thinned by factors of 2
and 10 in thex andy directions, respeatély. Note that for good resolution of the flmear the normal shock, the
grid defining the computational coordinate system is denser ix direction in the region just emstream of the
throat. Inthey direction, the actual computational mesh was tightly packed near both walls te tasaiuriulent

boundary layers.

4.2.3 Initial Conditions. The initial conditions were simply zero velocity and constant pressure and temperature.
Thus,u=v=0and p=T =1 everywhere in the fla field.

4.2.4 BoundaryConditions. This calculation vas performed in three separate runs. In the first run, the exit static
pressure was gradually lowered toaue lav enough to establish supersonicwWlthroughout the dierging portion
of the duct. The pressure was lowered as follows:

go. 99 for 1 <n< 100
p(t) = 0-2. 1405 10°3n + 1. 20405  for 101< n < 500
go. 1338 for 501< n < 3001

wheren is the time lgel. The equation forp for 101< n <500 is simply a linear interpolation betwepn= 0. 99
and p = 0. 1338. In the second run, the exit pressure was gradually raised to a value consistent with the formation of

a normal shock just downstream of the throat. Thus,
(1) = 03.4327x 10“*n - 0. 89636 for 3001 <n < 5000
P = o, 82 for 5001< n < 6001
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Again, the equation fqo for 3001< n < 5000 is simply a linear interpolation betwepr 0. 1338and p = 0. 82. In
the third run, the exit pressure was kept constant at 0.82 for 66613000.

The remaining boundary conditions were the same for all runs. At the inlet, the total pressure and total tem-
perature were set equal to 1, andyhelocity and the normal gradient of tkevelocity were both set equal to zero.
At the exit, the normal gradients of temperature and beltiicity components were set equal to zero. At bathsy
no-slip adiabatic conditions were used, and the normal pressure gradient was set equal to zero.

4.2.5 Numerics. The case was run using a spatially varying time sfépe local CFL number was 0.5 for the first
two runs, and 5.0 for the third run. The nonlinear coefficient artificial viscosity model was leaethe first two
runs, the coefficients® ands® were 0.1 and 0.005, respeety. For the third rung® was lowered to 0.0004.

The cowergence criterion was that the absolutdue of the maximum change in the conservatiariables
AQ, be less than I6. At the end of the third run, the solution had not yewveayed to this leel. However, dose
examination of seeral parameters near the end of the calculation indicates that the solution is no longer changing
appreciably with time, lit oscillates slightly about some mean steadgl.leThis type of result appears to baily
common, especially for flows with shockawes. Thereason is not entirely cledmt may be related to inadequate
mesh resolution, discontinuities in metric information, dtor this particular case, the cause may also be inherent
unsteadiness in the flo The experimental data for this duct sha sIf-sustained oscillation of the normal shock at
Mach numbers greater than about 1.3 (Bp§ajben, and Kroutil, 1983).

4.2.6 ComputedResults. The computed fl field is shavn in Figure 3 in the form of constant Mach number con-

/T

Figure 3 Computed Mach number contours for transonic diffusev.flo

The flov enters the duct at aboM = 0. 46, accelerates to just undéf = 1. 3 slightly downstream of the
throat, shocks down to abolt = 0. 78,then decelerates and \ea the duct at abou¥l = 0. 51. The normal shock
in the throat region and the growing boundary layers in thergiihg section can be seen clearBecause this is a
shock capturing analysis, the normal shock is smeared in the streamwise direction.

The computed distribution of the static pressure ratio along the top and baittsnisveompared withxperi-
mental data (Hsieh, 8vdlan, Collins, and Coaklg 1987) in Figure 4.The static pressure ratio is here defined as
p/(pt)o, Where (pr), is the inlet core total pressure.
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Figure 4 Computed and experimental static pressure distribution for transonic diffuser flo

The computed results generally agree well with tkgeemental data, including the jump conditions across
the normal shockThe predicted shock position, Wwever, is dightly downstream of the experimentally measured
position. Thepressure change, of course, is also smeavedaofinite distance. There is also some disagreement
between analysis and experiment along the top wall near the Trtiet. may be due to rapid changes in thedlw
contour in this region without sufficient mesh resolution.

4.3 TURBULENT S-DUCT FLOW

In this test case, three-dimensional turbulent/ flo an Sduct was computed using first the Baldwin-Lomax
algebraic turbulence model and then the Clierturbulence model.The S-duct consisted of tw22.5° bends with
a mnstant area square cross sectidhe geometry and experimental data were obtained from a test conducted by
Taylor, Whitelaw, and Yianneskis (1982).

4.3.1 Refeence Conditions. The default standard seaékconditions for air of 519R and 0.07645 Ip/ft® were

used for the reference temperature and den3itye specific heat ratig was %t to 1.4. Since the experimenasv
incompressible, the reference Mach numbkrwas st equal to 0.2 to minimize compressibilitfests and, at the

same time, achie a easonable caergence rate with th@roteus code. Inthe experiment, the Reolds number

based on theutk velocity and the hydraulic diameter was 40,000. This value was therefore used as the reference
Reynolds numbeRe, in the calculation.The reference length, was st equal to 0.028658 ft. This value was com-
puted from the definition dRe,, whereM, and Sutherland’law were used to computg and g, , respectrely.

4.3.2 Computational Coordinates. Figure 5 illustrates the computational grid for the S-duct, created using the
GRIDGEN codes (Steinbrenné&hawner and Fouts, 1991)For clarity, the grid is shown only on three of the com-
putational boundaries, and the pointsénéeen thinned by a factor of éwin each direction. The boundary grids
were first created using the GRIDGEN 2D prograrhe 3-D volumetric grid was then generated from the boundary
grids using GRIDGEN 3D.
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Figure 5 S-duct computational grid.

The computational grid extended from 7¥ahaulic diameters upstream of the start of the first bend, to 7.5
hydraulic diameters downstream of the end of the second bend. The grid consisted3af831 points in the, ,,
and( directions, respeatély. Since the S-duct is symmetric with respect to ghre 1 plane, only half of the duct
was mmputed. © resohe the viscous layers, grid points were tightly paginear the solid walls using the alait
packing option in GRIDGEN 2D. At the grid point nearest the wall, the valyé wés aout 0.5.

4.3.3 Initial Conditions. The computations were done indweparate major steps: a calculation using the Bald-
win-Lomax turbulence model and a calculation using the Ckienmodel. D dart the Baldwin-Lomax calcula-
tions, the default initial profiles specified in subroutine INIT were udéuls, the static pressupewas €t equal to
1.0, and the velocity componenisv, and w were set equal to 0.@&ywhere in the ductTo dart the Chierk-¢ cal-
culations, the initial values af v, w, p, and the turbulent viscosity, were obtained from the Baldwin-Lomax solu-
tion. Theinitial values ofk ande were obtained using the default KEINIT subroutin®iateus.

4.3.4 Boundary Conditions. For both calculations, constant stagnation enthal@as assumed, eliminating the
need for solving the energy equatiofherefore, only four boundary conditions were required for the mearaflo
each computational boundarin addition, for the Chien calculation, boundary conditions were requirekl dod &

at each computational boundary.

For the Baldwin-Lomax calculation, at the duct inlet the total pressure was specified as 1.02828, the gradient
of uwas st equal to zero, and thelacitiesv andw were set equal to zero. The inlet total pressure was calculated
from the freestream static pressure and the reference Mach number using isentropic rélatioasiuct exit, the
static pressure was specified as 0.98416, and the gradients afid w were set equal to zerd.he exit static pres-
sure vas found by trial and error in order to match the experimental massafte. Atthe walls of the duct no-slip
conditions were used for the velocities, and the normal pressure gradeseito zero. Symmetry conditions were
used in the symmetry plane.

For the Chien calculation, the boundary conditions for the meam flere the same as for the Baldwin-
Lomax calculation, with onexeeption. Atthe duct exit, the value of the static pressure was changed sligbity
0.98416 to 0.98474, again in order to match the experimental masafo for thek-¢ equations, at the upstream
boundary the gradients of the turbulent kinetic gnérand the turbulent dissipation ratevere set equal to zero for
the first 20 time stepsAfter that time, the values ¢fand e were kept constant. At the downstream boundiduey
gradients ofk and ¢ were set equal to zerd\o-slip conditions were used at the solid boundaries, and symmetry
conditions were used at the symmetry boundary.

4.3.5 Numerics. Both the Baldwin-Lomax and Chien calculations were run using a spatially varying time step.
Since the flw field for the Baldwin-Lomax calculation was impulsy started from zero velocityerywhere, lage

CFL numbers specified at the very beginning of the calculation might result in an unphysid¢iaifiand cause the
calculation to blav up. Thereforethe calculations were run with a CFL number of 1 for the first 100 iterations, 5
for the next 200 iterations, and 10 for the remaining iteratidnsotal of 4,000 iterations was used for the Baldwin-
Lomax calculation.

For the Chien case, a small CFL number was again used at the beginning of the calculation. The calculations
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were run with a CFL number of 1 for the first 120 iterations, 5 for thé %@0 iterations, and 10 for the remaining
iterations. Atotal of 2,520 iterations was used for the Chien calculation.

The constant coefficient artificial viscosity model was used for both cases; withand e(E“) =1.

The cowergence criterion was that theemage residual for each equation be less thafi. 1I6oweve, both
calculations were stopped before reaching thi®l lef corvergence when examination of v@eal flow-related
parameters indicated that the solution was no longer changing appreciably with timevefBlge aesidual at the
end of the Baldwin-Lomax calculation ranged from>1for the x-momentum equation t033107° for the continuity
equation. Br the Chien calculation the values wene B0 for thex-momentum equation and<sL0® for the con-
tinuity equation.For both cases the residuals were continuing to drop when the calculations were stopped.

4.3.6 ComputedResults. In Figure 6, the computed fiofield from the Chien calculation is shown in the form of
total pressure contours at digations through the duct. (The upstream and downstream straight sections are not
shavn.) Asthe flowv enters the first bend, the boundary layer at the bottom of the duct initiallettiakue to the
locally adverse pressure gradient in thafioa. Inan S-duct, the high pressure at the outside (bottom) of the first
bend dies the lov enelgy boundary layer tward the inside (top) of the bend, while the corevflesponds to cen-
trifugal effects and maes toward the outside (bottom) of the bend@ihe result is a pair of counter-rotating secondary
flow vortices in the upper half of the cross-section. These secondary flows cause a significant ameudistdrio

tion, as shown by the total pressure contours.

In the second bend, the direction of the cross-fieessure gradientsverses, making the pressure higher in
the upper half of the cross-sectioHowever, the flov enters the second bend with artex pattern already estab-
lished. Thenet effect is to tighten and concentrate the existing vortices near the top of the duct, in agreement with
classical secondary flotheory The resulting horseshoe-shaped distortion pattern at the exit of the second bend is
typical of S-duct flows.

Figure 6. Computed total pressure contours for turbulent S-dust flo

In Figure 7, the calculated wall pressure distribution is compared with the experimental datgoof T
Whitelaw, and Yianneskis (1982). The agreement is very good. Both turbulence models correctly predicted the
pressure trend and the pressure loss along the dbetr andz coordinates noted in the legend are the same as
those defined by Taylpwhitelaw, and Yianneskis.
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Figure 7. Computed surface static pressure distribution for turbulent S-duct flo

In Figure 8, the experimental and computed velocity profiles in the symmetry plane arefehdhe five
streamwise stations that were =y&d in the gperiment. Thessurwey gations are at the same locations as the
total pressure contours sk in Figure 6. The agreement between computation and experiment is excellent for both
turbulence models. The asymmetry in the velocity profiles due to the pressure induced secondary motion is cor
rectly predicted.
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Figure 8 Computed streamwise velocity profiles for turbulent S-duet flo

5. CONCLUDING REMARKS

The Proteus two- and three-dimensional Mar-Stoles codes recently ddoped at NASA Lewis hae been
described, and resultsVeleen presented from some of the validation ca¥ession 1.0 of the tw-dimensional
code vas released in late 1989%0@Wne, Schwab, Benson, and Suresh, 1990), and version 2.0 was released in late
1991. \érsion 1.0 of the three-dimensional code was released in early D@@2mentation for version 2.0 of the
two-dimensional code and foefsion 1.0 of the three-dimensional codevailable, but has not yet been formally
published.

Current deelopment work on théroteus codes is being done to add a multiple-zone grid capalaliylti-
grid corvergence acceleration capabilignd additional turbulence modeling options.

A wide variety of \alidation cases wa keen run, including: (1) seral simplified flows for which xact
Navier-Stoles solutions exist; (2) laminar and turbulent flat plate boundary layer flows; (3) two- and three-
dimensional drien cavity flows; (4) flows with normal and oblique shoclawes; (5) steady and unsteadywi® past
a glinder; (6) deeloping laminar and turbulent flows in channels, pipes, and rectangular ducts; (7) steady and
unsteady flows in a transonic diffuser; (8) flows in eagnand S-shaped ducts; and (9) turbulent Ba a fat plate
with a glancing shock awe Current and future alidation cases will emphasize three-dimensional duct flows and
flows with heat transfer.
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