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SUMMARY

An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes,
calledProteus, for aerospace propulsion applications. The emphasis in the development ofProteus is not algorithm
development or research on numerical methods, but rather the development of the code itself. The objective is to
develop codes that are user-oriented, easily-modified, and well-documented.Well-proven, state-of-the-art solution
algorithms are being used. Code readability, documentation (both internal and external), and validation are being
emphasized. Thispaper is a status report on theProteus development effort. Theanalysis and solution procedure
are described briefly, and the various features in the code are summarized.The results from some of the validation
cases that have been run are presented for both the two- and three-dimensional codes.

1. INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program for
whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly all of the avail-
able non-proprietary programs were started as research projects with the emphasis on demonstrating the numerical
algorithm rather than ease of use or ease of modification. The developers usually intend to clean up and formally
document the program, but the immediate need to extend it to new geometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure.An exten-
sively modified program may not even perform as expected under certain combinations of operating options.Each
new user must invest considerable time and effort in attempting to understand the underlying structure of the pro-
gram if intending to do anything more than run standard test cases with it. The user’s subsequent modifications fur-
ther obscure the program structure and therefore make it even more difficult for others to understand.

The Proteus two- and three-dimensional Navier-Stokes computer codes are intended to be user-oriented and
easily-modifiable flow analysis programs, primarily for aerospace propulsion applications.Readability, modularity,
and documentation have been the primary objectives. Every subroutine contains an extensive comment section
describing the purpose, input variables, output variables, and calling sequence of the subroutine.With just three
clearly-defined exceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A mas-
ter version of the program is maintained and periodically updated with corrections, as well as extensions of general
interest, such as turbulence models.

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents the
equations and solution procedure used inProteus. It describes in detail the governing equations, the turbulence
models, the linearization of the equations and boundary conditions, the time and space differencing formulas, the
ADI solution procedure, and the artificial viscosity models.Volume 2 is the User’s Guide, and contains information
needed to run the program. It describes the program’s general features, the input and output, the procedure for set-
ting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the
job control language used to run the program, and several test cases.Volume 3 is the Programmer’s Reference, and
contains detailed information useful when modifying the program.It describes the program structure, the Fortran
variables stored in common blocks, and the details of each subprogram.
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In this paper, the analysis and solution procedure are described briefly, and the various features in the code are
summarized. Theresults from some of the validation cases that have been run are presented for both the two- and
three-dimensional codes.The paper concludes with a brief status report on theProteus development effort, includ-
ing the work currently underway and our future plans.

2. ANALYSIS DESCRIPTION

In this section, the governing equations, the numerical solution method, and the turbulence models are
described briefly. For a much more detailed description, see Volume 1 of the documentation (Towne, Schwab, Ben-
son, and Suresh, 1990).

2.1 GOVERNING EQUATIONS

The basic governing equations are the compressible Navier-Stokes equations. In Cartesian coordinates, the
two-dimensional planar equations can be written in strong conservation law form using vector notation as1

∂Q
∂t

+
∂E
∂x

+
∂F
∂y

=
∂EV

∂x
+

∂FV

∂y
(1)

where

Q = 


ρ ρu ρv ET



T

(2a)

E =







ρu

ρu2 + p

ρuv

(ET + p)u







(2b)

F =







ρv

ρuv

ρv2 + p

(ET + p)v







(2c)
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





(2d)

FV =
1

Rer










0

τ xy

τ yy

uτ xy + vτ yy −
1

Prr
qy










(2e)

The shear stresses and heat fluxes are given by

1. For brevity, in most instances this paper describes the two-dimensionalProteus code. Theextension to three dimensions is
relatively straightforward. Differences between the two-dimensional and three-dimensional codes are noted where relevant.
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τ xx = 2µ
∂u

∂x
+ λ


∂u

∂x
+

∂v

∂y



τ yy = 2µ
∂v

∂y
+ λ


∂u

∂x
+

∂v

∂y



τ xy = µ


∂u

∂y
+

∂v

∂x



(3)

qx = −k
∂T

∂x

qy = −k
∂T

∂y

In these equations,t represents time;x and y represent the Cartesian coordinate directions;u and v are the
velocities in thex and y directions; ρ, p, and T are the static density, pressure, and temperature;ET is the total
energy per unit volume; andµ, λ , and k are the coefficient of viscosity, the second coefficient of viscosity, and the
coefficient of thermal conductivity.

In addition to the equations presented above, an equation of state is required to relate pressure to the depen-
dent variables. Theequation currently built into theProteus code is the equation of state for thermally perfect gases,
p = ρ RT , whereR is the gas constant.For calorically perfect gases, this can be rewritten as

p = (γ − 1)



ET −

1

2
ρ(u2 + v2)





(4)

whereγ is the ratio of specific heats,c p/cv. Additional equations are also used to defineµ, λ , k, and c p in terms of
temperature for the fluid under consideration.

All of the equations have been nondimensionalized using appropriate normalizing conditions. Lengths have
been nondimensionalized byLr , velocities byur , density byρ r , temperature byTr , viscosity byµr , thermal conduc-
tivity by kr , pressure and total energy byρ r u2

r , time by Lr /ur , and gas constant and specific heat byu2
r /Tr . The ref-

erence Reynolds and Prandtl numbers are thus defined asRer = ρ r ur Lr /µr andPrr = µr u2
r /krTr .

Because the governing equations are written in Cartesian coordinates, they are not well suited for general geo-
metric configurations.For most applications a body-fitted coordinate system is desired.This greatly simplifies the
application of boundary conditions and the bookkeeping in the numerical method used to solve the equations.The
equations are thus transformed from physical (x, y, t) coordinates to rectangular orthogonal computational (ξ ,η,τ )
coordinates. Equation(1) becomes

∂Q̂
∂τ

+
∂Ê
∂ξ

+
∂F̂
∂η

=
∂ÊV

∂ξ
+

∂F̂V

∂η
(5)

where

Q̂ =
Q
J

Ê =
1

J
(Eξ x + Fξ y + Qξ t)
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F̂ =
1

J
(Eη x + Fη y + Qη t)

ÊV =
1

J
(EV ξ x + FV ξ y)

F̂V =
1

J
(EVη x + FVη y)

In these equations the derivatives ξ x , η x , etc., are the metric scale coefficients for the generalized nonorthogo-
nal grid transformation.J is the Jacobian of the transformation.

2.2 NUMERICAL METHOD

2.2.1 Time Differencing. The governing equations are solved by marching in time from some known set of initial
conditions using a finite difference technique. The time differencing scheme currently used is the generalized
method of Beam and Warming (1978).With this scheme, the time derivative term in equation (5) is written as

∂Q̂
∂τ

≈
∆Q̂

n

∆τ
=

θ1

1 + θ2

∂(∆Q̂
n
)

∂τ
+

1

1 + θ2

∂Q̂
n

∂τ
+

θ2

1 + θ2

∆Q̂
n−1

∆τ
+ O







θ1 −

1

2
− θ2



∆τ , (∆τ )2





(6)

where∆Q̂
n = Q̂

n+1 − Q̂
n
. The superscriptsn andn + 1 denote the known and unknown time levels, respectively. By

choosing appropriate values forθ1 andθ2, the solution procedure can be either first- or second-order accurate in
time.

Solving equation (5) for∂Q̂/∂τ , substituting the result into equation (6) for∂(∆Q̂
n
)/∂τ and∂Q̂

n
/∂τ , and multi-

plying by∆τ yields

∆Q̂
n = −

θ1∆τ
1 + θ2





∂(∆Ê
n
)

∂ξ
+

∂(∆F̂
n
)

∂η





−
∆τ

1 + θ2





∂Ê
n

∂ξ
+

∂F̂
n

∂η





+
θ1∆τ
1 + θ2





∂(∆Ê
n
V )

∂ξ
+

∂(∆F̂
n
V )

∂η





+
∆τ

1 + θ2





∂Ê
n
V

∂ξ
+

∂F̂
n
V

∂η





+
θ2

1 + θ2
∆Q̂

n−1 + O






θ1 −

1

2
− θ2



(∆τ )2, (∆τ )3





(7)

2.2.2 Linearization Procedure. Equation (7) is nonlinear, since, for example,∆Ê
n = Ê

n+1 − Ê
n

and the unknown

Ê
n+1

is a nonlinear function of the dependent variables and of the metric coefficients resulting from the generalized
grid transformation. The equations must therefore be linearized to be solved by the finite difference procedure.For
the inviscid terms, and for the non–cross-derivative viscous terms, this is done by expanding each nonlinear expres-
sion in a Taylor series in time about the known time level n. The cross-derivative viscous terms are simply lagged
(i.e., evaluated at the known time level n and treated as source terms.)

The linearized form of equation (7) may be written as
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∆Q̂
n +

θ1∆τ
1 + θ2





∂
∂ξ








∂Ê

∂Q̂



n

∆Q̂
n



+
∂

∂η








∂F̂

∂Q̂



n

∆Q̂
n







−
θ1∆τ
1 + θ2







∂
∂ξ










∂ÊV1

∂Q̂





n

∆Q̂
n





+
∂

∂η










∂F̂V1

∂Q̂





n

∆Q̂
n











=

−
∆τ

1 + θ2




∂Ê
∂ξ

+
∂F̂
∂η




n

+
∆τ

1 + θ2





∂ÊV1

∂ξ
+

∂F̂V1

∂η





n

+
(1 + θ3)∆τ

1 + θ2





∂ÊV2

∂ξ
+

∂F̂V2

∂η





n

−
θ3∆τ
1 + θ2





∂ÊV2

∂ξ
+

∂F̂V2

∂η





n−1

+
θ2

1 + θ2
∆Q̂

n−1 + O






θ1 −

1

2
− θ2



(∆τ )2, (θ3 − θ1)(∆τ )2, (∆τ )3





(8)

where ∂Ê/∂Q̂ and ∂F̂/∂Q̂ are the Jacobian coefficient matrices resulting from the linearization of the convective
terms, and∂ÊV1

/∂Q̂ and∂F̂V1
/∂Q̂ are the Jacobian coefficient matrices resulting from the linearization of the viscous

terms.

The boundary conditions are treated implicitly, and may be viewed simply as additional equations to be solved
by the ADI solution algorithm.In general, they also involve nonlinear functions of the dependent variables. They
are therefore linearized using the same procedure as for the governing equations.

2.2.3 SolutionProcedure. The governing equations, presented in linearized matrix form as equation (8), are solved
by an alternating direction implicit (ADI) method. The form of the ADI splitting is the same as used by Briley and
McDonald (1977), and by Beam and Warming (1978). Using approximate factorization, equation (8) can be split
into the following two-sweep sequence.

Sweep 1 (ξ direction)

∆Q̂
* +

θ1∆τ
1 + θ2

∂
∂ξ








∂Ê

∂Q̂



n

∆Q̂
* 



−
θ1∆τ
1 + θ2

∂
∂ξ










∂ÊV1

∂Q̂





n

∆Q̂
*





= −
∆τ

1 + θ2




∂Ê
∂ξ

+
∂F̂
∂η




n

+
∆τ

1 + θ2





∂ÊV1

∂ξ
+

∂F̂V1

∂η





n

+
(1 + θ3)∆τ

1 + θ2





∂ÊV2

∂ξ
+

∂F̂V2

∂η





n

−
θ3∆τ
1 + θ2





∂ÊV2

∂ξ
+

∂F̂V2

∂η





n−1

+
θ2

1 + θ2
∆Q̂

n−1
(9a)

Sweep 2 (η direction)

∆Q̂
n +

θ1∆τ
1 + θ2

∂
∂η








∂F̂

∂Q̂



n

∆Q̂
n



−
θ1∆τ
1 + θ2

∂
∂η










∂F̂V1

∂Q̂





n

∆Q̂
n





= ∆Q̂
*

(9b)

These equations represent the two-sweep alternating direction implicit (ADI) algorithm used to advance the solution

from time level n to n + 1. Q̂
*

is the intermediate solution.

Spatial derivatives in equations (9a) and (9b) are approximated using second-order central difference formu-
las. Theresulting set of algebraic equations can be written in matrix form with a block tri-diagonal coefficient
matrix. They are solved using the block matrix version of the Thomas algorithm (e.g., see Anderson, Tannehill, and
Pletcher, 1984).

2.2.4 Artificial Viscosity. With the numerical algorithm described above, high frequency nonlinear instabilities can
appear as the solution develops. For example, in high Reynolds number flows oscillations can result from the odd-
ev en decoupling inherent in the use of second-order central differencing for the inviscid terms. In addition, physical
phenomena such as shock wav es can cause instabilities when they are captured by the finite difference algorithm.
Artificial viscosity, or smoothing, is normally added to the solution algorithm to suppress these high frequency insta-
bilities. Two artificial viscosity models are currently available in theProteus computer code — a constant coeffi-
cient model used by Steger (1978), and the nonlinear coefficient model of Jameson, Schmidt, and Turkel (1981).
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The implementation of these models in generalized nonorthogonal coordinates is described by Pulliam (1986).

The constant coefficient model uses a combination of explicit and implicit artificial viscosity. The standard
explicit smoothing uses fourth-order differences, and damps the high frequency nonlinear instabilities.Second-order
explicit smoothing, while not used by Steger or Pulliam, is also available in Proteus. It provides more smoothing
than the fourth-order smoothing, but introduces a larger error, and is therefore not used as often. The implicit
smoothing is second order and is intended to extend the linear stability bound of the fourth-order explicit smoothing.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the following terms to the
right hand side of equation (9a) (i.e., the source term for the first ADI sweep.)

ε (2)
E ∆τ
J

(∇ξ ∆ξ Q + ∇η∆ηQ) −
ε (4)

E ∆τ
J



(∇ξ ∆ξ )2Q + (∇η∆η)2Q



ε (2)
E andε (4)

E are the second- and fourth-order explicit artificial viscosity coefficients. Thesymbols∇ and∆ are back-
ward and forward first difference operators.

The implicit artificial viscosity is implemented by adding the following terms to the left hand side of the equa-
tions specified.

−
ε I ∆τ

J


∇ξ ∆ξ (J∆Q̂

*
)


to equation (9a)

−
ε I ∆τ

J


∇η∆η(J∆Q̂

n
)


to equation (9b)

The nonlinear coefficient artificial viscosity model is strictly explicit. Using the model as described by Pul-
liam (1986), but in the current notation, the following terms are added to the right hand side of equation (9a).

∇ξ










ψ
J


i+1

+ 

ψ
J


i







ε (2)

ξ ∆ξ Q − ε (4)
ξ ∆ξ ∇ξ ∆ξ Q

i





+ ∇η










ψ
J


 j+1

+ 

ψ
J


 j







ε (2)

η ∆ηQ − ε (4)
η ∆η∇η∆ηQ

 j





The subscriptsi andj denote grid indices in theξ andη directions. Inthe above expression,ψ is defined as

ψ = ψ x + ψ y

whereψ x andψ y are spectral radii defined by

ψ x =
|U | + a√ ξ 2

x + ξ 2
y

∆ξ

ψ y =
|V | + a√ η2

x + η2
y

∆η

HereU andV are the contravariant velocities without metric normalization, defined by

U = ξ t + ξ xu + ξ yv

V = η t + η xu + η yv

anda = √ γ RT , the speed of sound.

The parametersε (2) andε (4) are the second- and fourth-order artificial viscosity coefficients. For the coeffi-
cients of theξ direction differences,
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

ε (2)

ξ

i

= κ2∆τ max(σ i+1,σ i,σ i−1)



ε (4)

ξ

i

= max



0,κ4∆τ − 


ε (2)

ξ

i





where

σ i =




pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1





and κ2 and κ4 are constants. Similar formulas are used for the coefficients of theη direction differences. The
parameterσ is a pressure gradient scaling parameter that increases the amount of second-order smoothing relative to
fourth-order smoothing near shock wav es. Thelogic used to computeε (4) switches off the fourth-order smoothing
when the second-order smoothing term is large.

2.3 TURBULENCE MODELS

Turbulence is modeled using either a generalized version of the Baldwin and Lomax (1978) algebraic eddy
viscosity model, or the Chien (1982) low Reynolds numberk-ε model.

2.3.1 Baldwin-Lomax Model. For wall-bounded flows, the Baldwin-Lomax turbulence model is a two-layer
model, with

µ t =




(µ t)inner

(µ t)outer

for yn ≤ yb

for yn > yb
(10)

whereyn is the normal distance from the wall, andyb is the smallest value ofyn at which the values ofµ t from the
inner and outer region formulas are equal.For free turbulent flows, only the outer region value is used.

The outer region turbulent viscosity at a given ξ or η station is computed from

(µ t)outer = KCcp ρ FKlebFwake Rer (11)

whereK is the Clauser constant, taken as 0.0168, andCcp is a constant taken as 1.6.

The parameterFwake is computed from

Fwake =







ymax Fmax

CwkV 2
diff

ymax

Fmax

for wall-bounded flows

for free turbulent flows
(12)

whereCwk is a constant taken as 0.25, and

Vdiff = |
→
V |max − |

→
V |min

where
→
V is the total velocity vector.

The parameterFmax in equation (12) is the maximum value of
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F(yn) =







yn|
→
Ω|


1 − e−y+/A+


yn|

→
Ω|

for wall-bounded flows

for free turbulent flows
(13)

andymax is the value ofyn corresponding toFmax .

For wall-bounded flows, yn is the normal distance from the wall. For free turbulent flows, two values ofFmax

and ymax are computed — one using the location of |
→
V |max as the origin foryn, and one using the location of |

→
V |min.

The origin giving the smaller value ofymax is the one finally used for computingyn, Fmax , and ymax .

In equation (13), |
→
Ω| is the magnitude of the total vorticity, defined for two-dimensional planar flow as

|
→
Ω| =





∂v

∂x
−

∂u

∂y





(14)

The parameterA+ is the Van Driest damping constant, taken as 26.0. The coordinatey+ is defined as

y+ =
ρ wuτ yn

µw
Rer = √ τ w ρ w Rer

µw
yn (15)

whereuτ = √ τ w/ρ w Rer is the friction velocity, τ is the shear stress, and the subscriptw indicates a wall value. In
Proteus, τ w is set equal toµw|

→
Ω|w.

The functionFKleb in equation (11) is the Klebanoff intermittency factor. For free turbulent flows, FKleb = 1.
For wall-bounded flows,

FKleb =



1 + B


CKleb yn

ymax




6



−1

(16)

In equation (16),B andCKleb are constants taken as 5.5 and 0.3, respectively.

The inner region turbulent viscosity in the Baldwin-Lomax model is

(µ t)inner = ρ l2|
→
Ω|Rer (17)

wherel is the mixing length, given by

l = κ yn


1 − e−y+/A+


(18)

andκ is the Von Karman constant, taken as 0.4.

If both boundaries in a given coordinate direction are solid surfaces, the turbulence model is applied separately
for each surface. Anav eraging procedure is used to combine the resulting twoµ t profiles into one.

The turbulent second coefficient of viscosity is simply defined as

λ t = −
2

3
µ t

The turbulent thermal conductivity coefficient is defined using Reynolds analogy as

kt =
c p µ t

Prt
Prr
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wherec p is the specific heat at constant pressure, andPrt is the turbulent Prandtl number.

2.3.2 Chienk-ε Model. The low Reynolds numberk-ε formulation of Chien (1982) was chosen because of its rea-
sonable approximation of the near wall region and because of its numerical stability. Herek andε are the turbulent
kinetic energy and the turbulent dissipation rate, respectively.

In Cartesian coordinates, the two-dimensional planar equations for the Chienk-ε model can be written using
vector notation as

∂W
∂t

+
∂F
∂x

+
∂G
∂y

= S+ T (19)

where

W =




ρk

ρε





F =







ρuk −
1

Rer
µ k

∂k

∂x

ρuε −
1

Rer
µε

∂ε
∂x







G =







ρvk −
1

Rer
µ k

∂k

∂y

ρvε −
1

Rer
µε

∂ε
∂y







S =





Pk − Rer ρε

C1Pk
ε
k

− RerC2ρ
ε 2

k






T =







−
2

Rer

µ
y2

n
k

−
2

Rer

µe−y+/2

y2
n

ε







and

µ k = µ +
µ t

σ k

µε = µ +
µ t

σ ε

C2 = C2r



1 −

2

9
e−R2

t /36


Rt =
ρk2

µε
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Pk =
µ t

Rer
P1 −

2

3
ρkP2

P1 = 2







∂u

∂x



2

+ 


∂v

∂y



2



−
2

3



∂u

∂x
+

∂v

∂y



2

+ 


∂u

∂y
+

∂v

∂x



2

P2 =
∂u

∂x
+

∂v

∂y

The turbulent viscosity is given by

µ t = Cµ ρ
k2

ε
(20)

Cµ = Cµr



1 − e−C3y+



In the above equations,C1, C2r
, C3, σ k , σ ε , and Cµr

are constants equal to 1.35, 1.8, 0.0115, 1.0, 1.3, and
0.09, respectively. The parameteryn is the minimum distance to the nearest solid surface, andy+ is computed from
yn. In the above equations the mean flow properties have been nondimensionalized as described in Section 2.1.The
turbulent kinetic energy k and the turbulent dissipation rateε have been nondimensionalized byu2

r and ρ r u4
r /µr ,

respectively.

After transforming from physical to rectangular orthogonal computational coordinates, equation (19) becomes

∂Ŵ
∂τ

+
∂F̂
∂ξ

+
∂Ĝ
∂η

= Ŝ+ T̂ (21)

where

Ŵ =
1

J





ρk

ρε





F̂ = F̂C − F̂D − F̂M

F̂C =
1

J





ξ x ρuk + ξ y ρvk

ξ x ρuε + ξ y ρvε





F̂D =
1

J

1

Rer





µ k(ξ 2
x + ξ 2

y)kξ

µε (ξ 2
x + ξ 2

y)εξ





F̂M =
1

J

1

Rer





µ k(ξ xη x + ξ yη y)kη

µε (ξ xη x + ξ yη y)εη





Ĝ = ĜC − ĜD − ĜM

10



ĜC =
1

J





η x ρuk + η y ρvk

η x ρuε + η y ρvε





ĜD =
1

J

1

Rer





µ k(η2
x + η2

y)kη

µε (η2
x + η2

y)εη





ĜM =
1

J

1

Rer





µ k(ξ xη x + ξ yη y)kξ

µε (ξ xη x + ξ yη y)εξ





Ŝ =
1

J






Pk − Rer ρε

C1Pk
ε
k

− RerC2ρ
ε 2

k






T̂ =
1

J







−
2

Rer

µ
y2

n
k

−
2

Rer

µe−y+/2

y2
n

ε







The time differencing scheme and linearization procedure described previously for the mean flow equations
are also applied to equation (21). The mean flow variables are evaluated at the known time level n. This allows the
k-ε equations to be uncoupled from the mean flow equations and solved separately. Spatial derivatives are approxi-
mated using first-order upwind differences for the convective terms, and second-order central differences for the vis-
cous terms. In the two-dimensionalProteus code, the equations are solved by the same ADI procedure as the mean
flow equations. Inthe three-dimensional code, they are solved by a two-sweep LU procedure, as described by Hoff-
mann (1989).

The turbulent second coefficient of viscosityλ t and the turbulent thermal conductivity coefficient kt are
defined as described in the previous section.

3. CODE FEATURES

In this section the basic characteristics and capabilities of the two- and three-dimensionalProteus codes are
summarized. For a much more detailed description, see Volumes 2 and 3 of the documentation (Towne, Schwab,
Benson, and Suresh, 1990).

3.1 ANALYSIS

TheProteus codes solve the unsteady compressible Navier-Stokes equations in either two or three dimensions.
The 2-D code can solve either the planar or axisymmetric form of the equations.Swirl is allowed in axisymmetric
flow. The 2-D planar equations and the 3-D equations are solved in fully conservative form. Assubsets of these
equations, options are available to solve the Euler equations or the thin-layer Navier-Stokes equations. An option is
also available to eliminate the energy equation by assuming constant total enthalpy.

The equations are solved by marching in time using the generalized time differencing of Beam and Warming
(1978). Themethod may be either first- or second-order accurate in time, depending on the choice of time differenc-
ing parameters. Second-order central differencing is used for all spatial derivatives. Nonlinearterms are linearized
using second-order Taylor series expansions in time.The resulting difference equations are solved using an alternat-
ing-direction implicit (ADI) technique, with Douglas-Gunn type splitting as written by Briley and McDonald
(1977). Theboundary conditions are also treated implicitly.

Artificial viscosity, or smoothing, is normally added to the solution algorithm to damp pre- and post-shock
oscillations in supersonic flow, and to prevent odd-even decoupling due to the use of central differences in convec-
tion-dominated regions of the flow. Implicit smoothing and two types of explicit smoothing are available inProteus.
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The implicit smoothing is second order with constant coefficients. For the explicit smoothing the user may choose a
constant coefficient second- and/or fourth-order model (Steger, 1978), or a nonlinear coefficient mixed second- and
fourth-order model (Jameson, Schmidt, and Turkel, 1981). The nonlinear coefficient model was designed specifi-
cally for flow with shock wav es.

The equations are fully coupled, leading to a system of equations with a block tridiagonal coefficient matrix
that can be solved using the block matrix version of the Thomas algorithm. Because this algorithm is recursive, the
source code cannot be vectorized in the ADI sweep direction.However, it is vectorized in the non-sweep direction,
leading to an efficient implementation of the algorithm.

3.2 GEOMETRY AND GRID SYSTEM

The equations solved inProteus were originally written in a Cartesian coordinate system, then transformed
into a general nonorthogonal computational coordinate system.The code is therefore not limited to any particular
type of geometry or coordinate system.The only requirement is that body-fitted coordinates must be used. In gen-
eral, the computational coordinate system for a particular geometry must be created by a separate coordinate genera-
tion code and stored in an unformatted file thatProteus can read.However, simple Cartesian and polar coordinate
systems are built in.

The equations are solved at grid points that form a computational mesh within this computational coordinate
system. Thenumber of grid points in each direction in the computational mesh is specified by the user. The loca-
tion of these grid points can be varied by packing them at either or both boundaries in any coordinate direction.The
transformation metrics and Jacobian are computed using finite differences in a manner consistent with the differenc-
ing of the governing equations.

3.3 FLOW AND REFERENCE CONDITIONS

As stated earlier, the equations solved byProteus are for compressible flow. Incompressible conditions can be
simulated by running at a Mach number of around 0.1.Lower Mach numbers may lead to numerical problems.The
flow can be laminar or turbulent. Thegas constantR is specified by the user, with the value for air as the default.
The specific heatsc p andcv, the molecular viscosityµ, and the thermal conductivity k can be treated as constants or
as functions of temperature. The empirical formulas used to relate these properties to temperature are contained in a
separate subroutine, and can easily be modified if necessary. The perfect gas equation of state is used to relate pres-
sure, density, and temperature. This equation is also contained in a separate subroutine, which could be easily modi-
fied if necessary. All equations and variables in the program are nondimensionalized by normalizing values derived
from reference conditions specified by the user, with values for sea level air as the default.

3.4 BOUNDARY CONDITIONS

The easiest way to specify boundary conditions inProteus is by specifying the type of boundary (e.g., no-slip
adiabatic wall, subsonic inflow, periodic, etc.).The program will then select an appropriate set of conditions for that
boundary. For many applications this method should be sufficient. If necessary, howev er, the user may instead set
the individual boundary conditions on any or all of the computational boundaries.

A variety of individual boundary conditions are built into theProteus code, including: (1) specified values
and/or gradients of Cartesian velocitiesu, v, and w, normal and tangential velocitiesVn andVt , pressurep, tempera-
ture T, and densityρ; (2) specified values of total pressurepT , total temperatureTT , and flow angle; and (3) linear
extrapolation. Anotheruseful boundary condition is a "no change from initial condition" option foru, v, w, p, T, ρ,
pT , and/orTT . Provision is also made for user-written boundary conditions.Specified gradient boundary conditions
may be in the direction of the coordinate line intersecting the boundary or normal to the boundary, and may be com-
puted using two-point or three-point difference formulas.For all of these conditions, the same type and value may
be applied over the entire boundary surface, or a point-by-point distribution may be specified. Unsteady and time-
periodic boundary conditions are allowed when applied over the entire boundary.

3.5 INITIAL CONDITIONS

Initial conditions are required throughout the flow field to start the time marching procedure.For unsteady
flows they should represent a real flow field. A converged steady-state solution from a previous run would be a good
choice. For steady flows, the ideal initial conditions would represent a real flow field that is close to the expected
final solution.
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The best choice for initial conditions, therefore, will vary from problem to problem.For this reasonProteus
does not include a general-purpose routine for setting up initial conditions. The user must supply a subroutine,
called INIT, that sets up the initial starting conditions for the time marching procedure.A version of INIT is, how-
ev er, built into Proteus that specifies uniform flow with constant flow properties everywhere in the flow field. These
conditions, of course, do represent a solution to the governing equations, and for many problems may help minimize
starting transients in the time marching procedure.However, realistic initial conditions that are closer to the
expected final solution should lead to quicker convergence.

3.6 TIME STEP SELECTION

Several different options are available for choosing the time step∆τ , and for modifying it as the solution pro-
ceeds.∆τ may be specified directly, or through a value of the Courant-Friedrichs-Lewy (CFL) number. When spec-
ifying a CFL number, the time step may be eitherglobal (i.e., constant in space) based on the minimum CFL limit,
or local (i.e., varying in space) based on the local CFL limit.For unsteady time-accurate flows global values should
be used, but for steady flows using local values may lead to faster convergence. Optionsare available to increase or
decrease∆τ as the solution proceeds based on the change in the dependent variables. Anoption is also available to
cycle ∆τ between two values in a logarithmic progression over a specified number of time steps.

3.7 CONVERGENCE

Five options are currently available for determining convergence. Theuser specifies a convergence criterionε
for each of the governing equations. Then, depending on the option chosen, convergence is based on: (1) the abso-
lute value of the maximum change in the conservation variables∆Qmax over a single time step; (2) the absolute value
of the maximum change∆Qmax av eraged over a specified number of time steps; (3) theL2 norm of the residual for
each equation; (4) the average residual for each equation; or (5) the maximum residual for each equation.

It should be noted, however, that convergence is in the eye of the beholder. The amount of decrease in the
residual necessary for convergence will vary from problem to problem.For some problems, it may be more appro-
priate to measure convergence by some flow-related parameter, such as the lift coefficient for an airfoil.Determin-
ing when a solution is sufficiently converged is, in some respects, a skill best acquired through experience.

3.8 INPUT/OUTPUT

Input toProteus is through a series of namelists and, in general, an unformatted file containing the computa-
tional coordinate system. All of the input parameters have default values and only need to be specified by the user if
a different value is desired.Reference conditions may be specified in either English or SI units.A restart option is
also available, in which the computational mesh and the initial flow field are read from unformatted restart files cre-
ated during an earlier run.

The standard printed output available inProteus includes an echo of the input, boundary conditions, normaliz-
ing and reference conditions, the computed flow field, and convergence information.The user controls exactly
which flow field parameters are printed, and at which time levels and grid points.Several debug options are also
available for detailed printout in various parts of the program.

In addition to the printed output, several unformatted files can be written for various purposes. The first is an
auxiliary file used for post-processing, usually called a plot file, that can be written at convergence or after the last
time step if the solution does not converge. Plotfiles can be written for the NASA Lewis plotting programCON-
TOUR or the NASA Ames plotting programPLOT3D. If PLOT3D is to be used, two unformatted files are created,
anxyz file containing the computational mesh and aq file containing the computed flow field. Anotherunformatted
file written byProteus contains detailed convergence information. This file is automatically incremented each time
the solution is checked for convergence, and is used to generate the convergence history printout and with Lewis-
developed post-processing plotting routines. And finally, two unformatted files may be written at the end of a calcu-
lation that may be used to restart the calculation in a later run. One of these contains the computational mesh, and
the other the computed flow field.

3.9 TURBULENCE MODELS

For turbulent flow, Proteus solves the Reynolds time-averaged Navier-Stokes equations, with turbulence mod-
eled using either the Baldwin and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation
model.
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3.9.1 Baldwin-Lomax Model. The Baldwin-Lomax model may be applied to either wall-bounded flows or to free
turbulent flows. For wall-bounded flows, the model is a two-layer model.For flows in which more than one bound-
ary is a solid surface, averaging procedures are used to determine a singleµ t profile. Theturbulent thermal conduc-
tivity coefficientkt is computed using Reynolds analogy.

3.9.2 Chienk-ε Model. With the Chien two-equation model, partial differential equations are solved for the turbu-
lent kinetic energy k and the turbulent dissipation rateε . These equations are lagged in time and solved separately
from the mean flow equations. Inthe 2-DProteus code, the equations are solved using the same solution algorithm
as for the mean flow equations, except that spatial derivatives for the convective terms are approximated using first-
order upwind differencing. Inthe 3-D code, they are solved by a two-sweep LU procedure, as described by Hoff-
mann (1989).

Since the Chien two-equation model is a low Reynolds number formulation, thek-ε equations are solved in
the near-wall region. Noadditional approximations are needed. Boundary conditions that may be used include: (1)
no change from initial or restart conditions fork andε ; (2) specified values and/or gradients ofk andε ; and (3) lin-
ear extrapolation. Specifiedgradient boundary conditions are in the direction of the coordinate line intersecting the
boundary, and may be computed using two-point or three-point difference formulas.For all of these conditions, the
same type and value may be applied over the entire boundary surface, or a point-by-point distribution may be speci-
fied. Spatiallyperiodic boundary conditions fork andε may also be used. Unsteady boundary conditions are not
available for thek-ε equations. However, unsteady flows can still be computed with the Chien model using the
unsteady boundary condition option for the mean flow quantities and appropriate boundary conditions fork andε ,
such as specified gradients or linear extrapolation.

Initial conditions fork andε are required throughout the flow field to start the time marching procedure.The
best choice for initial conditions will vary from problem to problem, and the user may supply a subroutine, called
KEINIT, that sets up the initial values ofk andε for the time marching procedure.A version of KEINIT is built into
Proteus that computes the initial values from a mean initial or restart flow field based on the assumption of local
equilibrium (i.e., production equals dissipation.)Variations of that scheme have been found to be useful in comput-
ing initial k andε values for a variety of turbulent flows.

The time step used in the solution of thek-ε equations is normally the same as the time step used for the mean
flow equations. However, the user can alter the time step, making it larger or smaller than the time step for the mean
flow equations, by specifying a multiplication factor. The user can also specify the number ofk-ε iterations per
mean flow iteration.

4. VERIFICATION CASES

Throughout theProteus development effort, verification of the code has been emphasized.A variety of cases
have been run, and the computed results have been compared with both experimental data and exact solutions.
Some cases are included in Volume 2 of theProteus documentation (Towne, Schwab, Benson, and Suresh, 1990).
Other cases have been reported by Conley and Zeman (1991), Saunders and Keith (1991), and Bui (1992).

Three cases are presented in this paper — flow past a circular cylinder, flow through a transonic diffuser, and
flow through a square–cross-sectioned S-duct.

4.1 FLOW PAST A CIRCULAR CYLINDER

In this test case, steady flow past a two-dimensional circular cylinder was investigated. BothEuler and lami-
nar viscous flow were computed.

4.1.1 Reference Conditions. In order to allow comparison of theProteus results with incompressible experimental
data and with potential flow results, this case was run with a low reference Mach number of 0.2. The cylinder radius
was used as the reference length, and was set equal to 1 ft.Standard sea level conditions of 519°R and 0.07645
lbm/ft3 were used for the reference temperature and density. The Reynolds number based on cylinder diameter was
40, matching the experimental value.
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4.1.2 Computational Coordinates. For this problem a polar computational coordinate system was the obvious
choice. Theradial coordinater varied from 1 at the cylinder surface to 30 at the outer boundary. Since the flow is
symmetric, only the top half of the flow field was computed. The circumferential coordinateθ thus varied from 0° at
the cylinder leading edge to 180° at the trailing edge.For the Euler flow case, a 21 (circumferential)× 51 (radial)
mesh was used, with the radial grid packed moderately tightly near the cylinder surface. For the viscous flow case, a
51× 51 mesh was used, with the radial grid packed more tightly near the cylinder surface.

4.1.3 Initial Conditions. Constant stagnation enthalpy was assumed, so only three initial conditions were required.
For the Euler flow case, uniform flow with u = 1, v = 0, andp = 1 was used.

For the viscous flow case, the exact potential flow solution was used to set the initial conditions at all the non-
wall points. Thus, with nondimensional free stream conditions ofρ∞ = u∞ = T∞ = p∞ = 1, the initial conditions
were2

u = 1 −
1

r2
cos(2θ )

v = −
1

r2
sin(2θ )

p = (pT )∞ −
1

2

ρ∞(u2 + v2)

R

where

(pT )∞ = p∞ +
1

2

ρ∞u2
∞

R

At the cylinder surface, the initial velocitiesu andv were set equal to zero, and the pressurep was set equal to the
pressure at the grid point adjacent to the surface. Thus,with two-point one-sided differencing,∂p/∂n = 0 at the sur-
face.

4.1.4 BoundaryConditions. Again, since we assumed constant stagnation enthalpy, only three boundary condi-
tions were required at each computational boundary. For the Euler flow case, symmetry conditions were used along
the symmetry line ahead of and behind the cylinder. At the cylinder surface, the radial velocity and the radial gradi-
ent of the circumferential velocity were set equal to zero. The radial gradient of pressure was computed from the
polar coordinate form of the incompressible radial momentum equation written at the wall. Theequation is (Hughes
and Gaylord, 1964)

ρvr
∂vr

∂r
+

ρvθ

r

∂vr

∂θ
− ρ

v2
θ

r
= −

∂p

∂r

wherevr andvθ are the radial and circumferential velocities, respectively. At the cylinder surface,vr = 0. Thus,

∂p

∂r
= ρ

v2
θ

r
= ρ

u2 + v2

r

And finally, at the outer boundary the free stream conditions were specified as boundary conditions.

For the viscous flow case, symmetry conditions were again used along the symmetry line ahead of and behind
the cylinder. At the cylinder surface, no-slip conditions were used for the velocity, and the radial pressure gradient
was set equal to zero. The outer boundary was split into an inlet region and wake region. Thesplit was made,

2. Note that the nondimensional gas constantR appears in these equations. This is because, in theProteus input and output, the

pressure is nondimensionalized byρr RTr . Internal to the code, pressure is nondimensionalized byρr u2
r , as described in

Section 2.1.
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somewhat arbitrarily, at θ = 135°. In the inlet region, the boundary values ofu, v, and p were kept at their initial val-
ues, which were the potential flow values. Inthe wake region, the boundary values ofp were kept at their initial val-
ues, and the radial gradients ofu andv were set equal to zero.

4.1.5 Numerics. Both the Euler and viscous flow cases were run using a spatially varying time step, with a local
CFL number of 10. The constant coefficient artificial viscosity model was used, withε I = 2 and ε (4)

E = 1.

The Euler flow case converged in 210 time steps, and the viscous flow case converged in 360 time steps.The
convergence criterion for both cases was that theL2 norm of the residual for each equation drop below 0.001.

4.1.6 ComputedResults. In Figure 1 the computed static pressure coefficient, defined as (p − pr )/(ρ r u2
r /2gc) is

plotted as a function ofθ for both the Euler and viscous flow cases. Alsoshown are the experimental data of Grove,
Shair, Petersen, and Acrivos (1964), and the exact solution for potential flow. The Proteus results agree well with
the data for the viscous flow case, and with the exact potential flow solution for the Euler flow case.
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Figure 1. Pressure coefficient for flow past a circular cylinder.

4.2 TRANSONIC DIFFUSER FLOW

In this test case, two-dimensional transonic turbulent flow was computed in a converging-diverging duct. Tur-
bulence was modeled using the Baldwin-Lomax model.The flow entered the duct subsonically, accelerated through
the throat to supersonic speed, then decelerated through a normal shock and exited the duct subsonically. The com-
putational domain is shown in Figure 2.

x

y

ξ

η

Figure 2. Computational domain for transonic diffuser flow.
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4.2.1 Reference Conditions. The throat height of 0.14435 ft. was used as the reference lengthLr . The reference
velocity ur was 100 ft/sec. The reference temperature and density were 525.602°R and 0.1005 lbm/ft3, respectively.
These values match the inlet total temperature and total pressure used in other numerical simulations of this flow
(Hsieh, Bogar, and Coakley, 1987).

4.2.2 ComputationalCoordinates. Thex coordinate for this duct runs from−4.04 to+8.65. TheCartesian coordi-
nates of the bottom wall are simplyy = 0 for all x. For the top wall, they coordinate is given by (Bogar, Sajben, and
Kroutil, 1983)

y =







1. 4144

α coshζ /(α − 1 + coshζ )

1. 5

for x ≤ −2. 598

for − 2. 598< x < 7. 216

for x ≥ 7. 216

where the parameterζ is defined as

ζ =
C1(x/xl)[1 + C2x/xl ]

C3

(1 − x/xl)C4

The various constants used in the formula for the top wall height in the converging (−2. 598≤ x ≤ 0) and diverging
(0 ≤ x ≤ 7. 216)parts of the duct are given in the following table.

Constant Converging Diverging

α 1.4114 1.5
xl −2.598 7.216
C1 0.81 2.25
C2 1.0 0.0
C3 0.5 0.0
C4 0.6 0.0

A body-fitted coordinate system was generated for the duct, with 81 points in thex direction and 51 points in
they direction. Thecoordinate system is shown in Figure 2.For clarity, the grid points are thinned by factors of 2
and 10 in thex andy directions, respectively. Note that for good resolution of the flow near the normal shock, the
grid defining the computational coordinate system is denser in thex direction in the region just downstream of the
throat. Inthey direction, the actual computational mesh was tightly packed near both walls to resolve the turbulent
boundary layers.

4.2.3 Initial Conditions. The initial conditions were simply zero velocity and constant pressure and temperature.
Thus,u = v = 0 and p = T = 1 everywhere in the flow field.

4.2.4 BoundaryConditions. This calculation was performed in three separate runs. In the first run, the exit static
pressure was gradually lowered to a value low enough to establish supersonic flow throughout the diverging portion
of the duct. The pressure was lowered as follows:

p(t) =







0. 99

−2. 1405× 10−3n + 1. 20405

0. 1338

for 1 < n ≤ 100

for 101≤ n ≤ 500

for 501≤ n ≤ 3001

wheren is the time level. The equation forp for 101≤ n ≤ 500 is simply a linear interpolation betweenp = 0. 99
and p = 0. 1338. In the second run, the exit pressure was gradually raised to a value consistent with the formation of
a normal shock just downstream of the throat. Thus,

p(t) =




3. 4327× 10−4n − 0. 89636

0. 82

for 3001 <n ≤ 5000

for 5001≤ n ≤ 6001
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Again, the equation forp for 3001< n ≤ 5000 is simply a linear interpolation betweenp = 0. 1338and p = 0. 82. In
the third run, the exit pressure was kept constant at 0.82 for 6001 <n ≤ 9000.

The remaining boundary conditions were the same for all runs. At the inlet, the total pressure and total tem-
perature were set equal to 1, and they-velocity and the normal gradient of thex-velocity were both set equal to zero.
At the exit, the normal gradients of temperature and both velocity components were set equal to zero. At both walls,
no-slip adiabatic conditions were used, and the normal pressure gradient was set equal to zero.

4.2.5 Numerics. The case was run using a spatially varying time step.The local CFL number was 0.5 for the first
two runs, and 5.0 for the third run. The nonlinear coefficient artificial viscosity model was used.For the first two
runs, the coefficientsε (2) andε (4) were 0.1 and 0.005, respectively. For the third run,ε (4) was lowered to 0.0004.

The convergence criterion was that the absolute value of the maximum change in the conservation variables
∆Qmax be less than 10−6. At the end of the third run, the solution had not yet converged to this level. However, close
examination of several parameters near the end of the calculation indicates that the solution is no longer changing
appreciably with time, but oscillates slightly about some mean steady level. This type of result appears to be fairly
common, especially for flows with shock wav es. Thereason is not entirely clear, but may be related to inadequate
mesh resolution, discontinuities in metric information, etc.For this particular case, the cause may also be inherent
unsteadiness in the flow. The experimental data for this duct show a self-sustained oscillation of the normal shock at
Mach numbers greater than about 1.3 (Bogar, Sajben, and Kroutil, 1983).

4.2.6 ComputedResults. The computed flow field is shown in Figure 3 in the form of constant Mach number con-
tours.

Figure 3. Computed Mach number contours for transonic diffuser flow.

The flow enters the duct at aboutM = 0. 46,accelerates to just underM = 1. 3 slightly downstream of the
throat, shocks down to aboutM = 0. 78,then decelerates and leaves the duct at aboutM = 0. 51. The normal shock
in the throat region and the growing boundary layers in the diverging section can be seen clearly. Because this is a
shock capturing analysis, the normal shock is smeared in the streamwise direction.

The computed distribution of the static pressure ratio along the top and bottom walls is compared with experi-
mental data (Hsieh, Wardlaw, Collins, and Coakley, 1987) in Figure 4.The static pressure ratio is here defined as
p/(pT )0, where (pT )0 is the inlet core total pressure.
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Figure 4. Computed and experimental static pressure distribution for transonic diffuser flow.

The computed results generally agree well with the experimental data, including the jump conditions across
the normal shock.The predicted shock position, however, is slightly downstream of the experimentally measured
position. Thepressure change, of course, is also smeared over a  finite distance. There is also some disagreement
between analysis and experiment along the top wall near the inlet.This may be due to rapid changes in the wall
contour in this region without sufficient mesh resolution.

4.3 TURBULENT S-DUCT FLOW

In this test case, three-dimensional turbulent flow in an S-duct was computed using first the Baldwin-Lomax
algebraic turbulence model and then the Chienk-ε turbulence model.The S-duct consisted of two 22.5° bends with
a constant area square cross section.The geometry and experimental data were obtained from a test conducted by
Taylor, Whitelaw, and Yianneskis (1982).

4.3.1 Reference Conditions. The default standard sea level conditions for air of 519°R and 0.07645 lbm/ft3 were
used for the reference temperature and density. The specific heat ratioγ r was set to 1.4. Since the experiment was
incompressible, the reference Mach numberMr was set equal to 0.2 to minimize compressibility effects and, at the
same time, achieve a reasonable convergence rate with theProteus code. Inthe experiment, the Reynolds number
based on the bulk velocity and the hydraulic diameter was 40,000. This value was therefore used as the reference
Reynolds numberRer in the calculation.The reference lengthLr was set equal to 0.028658 ft. This value was com-
puted from the definition ofRer , whereMr and Sutherland’s law were used to computeur andµr , respectively.

4.3.2 ComputationalCoordinates. Figure 5 illustrates the computational grid for the S-duct, created using the
GRIDGEN codes (Steinbrenner, Chawner, and Fouts, 1991).For clarity, the grid is shown only on three of the com-
putational boundaries, and the points have been thinned by a factor of two in each direction. The boundary grids
were first created using the GRIDGEN 2D program.The 3-D volumetric grid was then generated from the boundary
grids using GRIDGEN 3D.
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Figure 5. S-duct computational grid.

The computational grid extended from 7.5 hydraulic diameters upstream of the start of the first bend, to 7.5
hydraulic diameters downstream of the end of the second bend. The grid consisted of 81× 31× 61 points in theξ , η,
andζ directions, respectively. Since the S-duct is symmetric with respect to theη = 1 plane, only half of the duct
was computed. To resolve the viscous layers, grid points were tightly packed near the solid walls using the default
packing option in GRIDGEN 2D. At the grid point nearest the wall, the value ofy+ was about 0.5.

4.3.3 Initial Conditions. The computations were done in two separate major steps: a calculation using the Bald-
win-Lomax turbulence model and a calculation using the Chienk-ε model. To start the Baldwin-Lomax calcula-
tions, the default initial profiles specified in subroutine INIT were used.Thus, the static pressurep was set equal to
1.0, and the velocity componentsu, v, and w were set equal to 0.0 everywhere in the duct.To start the Chienk-ε cal-
culations, the initial values ofu, v, w, p, and the turbulent viscosityµ t were obtained from the Baldwin-Lomax solu-
tion. Theinitial values ofk andε were obtained using the default KEINIT subroutine inProteus.

4.3.4 Boundary Conditions. For both calculations, constant stagnation enthalpy was assumed, eliminating the
need for solving the energy equation.Therefore, only four boundary conditions were required for the mean flow at
each computational boundary. In addition, for the Chien calculation, boundary conditions were required fork andε
at each computational boundary.

For the Baldwin-Lomax calculation, at the duct inlet the total pressure was specified as 1.02828, the gradient
of u was set equal to zero, and the velocitiesv andw were set equal to zero. The inlet total pressure was calculated
from the freestream static pressure and the reference Mach number using isentropic relations.At the duct exit, the
static pressure was specified as 0.98416, and the gradients ofu, v, and w were set equal to zero.The exit static pres-
sure was found by trial and error in order to match the experimental mass flow rate. Atthe walls of the duct no-slip
conditions were used for the velocities, and the normal pressure gradient was set to zero. Symmetry conditions were
used in the symmetry plane.

For the Chien calculation, the boundary conditions for the mean flow were the same as for the Baldwin-
Lomax calculation, with one exception. Atthe duct exit, the value of the static pressure was changed slightly, from
0.98416 to 0.98474, again in order to match the experimental mass flow rate. For thek-ε equations, at the upstream
boundary the gradients of the turbulent kinetic energy k and the turbulent dissipation rateε were set equal to zero for
the first 20 time steps.After that time, the values ofk andε were kept constant. At the downstream boundary, the
gradients ofk and ε were set equal to zero.No-slip conditions were used at the solid boundaries, and symmetry
conditions were used at the symmetry boundary.

4.3.5 Numerics. Both the Baldwin-Lomax and Chien calculations were run using a spatially varying time step.
Since the flow field for the Baldwin-Lomax calculation was impulsively started from zero velocity everywhere, large
CFL numbers specified at the very beginning of the calculation might result in an unphysical flow field and cause the
calculation to blow up. Therefore,the calculations were run with a CFL number of 1 for the first 100 iterations, 5
for the next 200 iterations, and 10 for the remaining iterations.A total of 4,000 iterations was used for the Baldwin-
Lomax calculation.

For the Chien case, a small CFL number was again used at the beginning of the calculation. The calculations
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were run with a CFL number of 1 for the first 120 iterations, 5 for the next 500 iterations, and 10 for the remaining
iterations. Atotal of 2,520 iterations was used for the Chien calculation.

The constant coefficient artificial viscosity model was used for both cases, withε I = 2 and ε (4)
E = 1.

The convergence criterion was that the average residual for each equation be less than 10−6. Howev er, both
calculations were stopped before reaching this level of convergence when examination of several flow-related
parameters indicated that the solution was no longer changing appreciably with time. The average residual at the
end of the Baldwin-Lomax calculation ranged from 10−3 for thex-momentum equation to 3× 10−5 for the continuity
equation. For the Chien calculation the values were 3× 10−4 for thex-momentum equation and 5× 10−6 for the con-
tinuity equation.For both cases the residuals were continuing to drop when the calculations were stopped.

4.3.6 ComputedResults. In Figure 6, the computed flow field from the Chien calculation is shown in the form of
total pressure contours at five stations through the duct. (The upstream and downstream straight sections are not
shown.) As the flow enters the first bend, the boundary layer at the bottom of the duct initially thickens due to the
locally adverse pressure gradient in that region. In an S-duct, the high pressure at the outside (bottom) of the first
bend drives the low energy boundary layer toward the inside (top) of the bend, while the core flow responds to cen-
trifugal effects and moves tow ard the outside (bottom) of the bend.The result is a pair of counter-rotating secondary
flow vortices in the upper half of the cross-section. These secondary flows cause a significant amount of flow distor-
tion, as shown by the total pressure contours.

In the second bend, the direction of the cross-flow pressure gradients reverses, making the pressure higher in
the upper half of the cross-section.However, the flow enters the second bend with a vortex pattern already estab-
lished. Thenet effect is to tighten and concentrate the existing vortices near the top of the duct, in agreement with
classical secondary flow theory. The resulting horseshoe-shaped distortion pattern at the exit of the second bend is
typical of S-duct flows.

Figure 6. Computed total pressure contours for turbulent S-duct flow.

In Figure 7, the calculated wall pressure distribution is compared with the experimental data of Taylor,
Whitelaw, and Yianneskis (1982). The agreement is very good. Both turbulence models correctly predicted the
pressure trend and the pressure loss along the duct.The r and z coordinates noted in the legend are the same as
those defined by Taylor, Whitelaw, and Yianneskis.
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Figure 7. Computed surface static pressure distribution for turbulent S-duct flow.

In Figure 8, the experimental and computed velocity profiles in the symmetry plane are shown for the five
streamwise stations that were surveyed in the experiment. Thesesurvey stations are at the same locations as the
total pressure contours shown in Figure 6. The agreement between computation and experiment is excellent for both
turbulence models. The asymmetry in the velocity profiles due to the pressure induced secondary motion is cor-
rectly predicted.
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5. CONCLUDING REMARKS

The Proteus two- and three-dimensional Navier-Stokes codes recently developed at NASA Lewis have been
described, and results have been presented from some of the validation cases.Version 1.0 of the two-dimensional
code was released in late 1989 (Towne, Schwab, Benson, and Suresh, 1990), and version 2.0 was released in late
1991. Version 1.0 of the three-dimensional code was released in early 1992.Documentation for version 2.0 of the
two-dimensional code and for version 1.0 of the three-dimensional code is available, but has not yet been formally
published.

Current development work on theProteus codes is being done to add a multiple-zone grid capability, a multi-
grid convergence acceleration capability, and additional turbulence modeling options.

A wide variety of validation cases have been run, including: (1) several simplified flows for which exact
Navier-Stokes solutions exist; (2) laminar and turbulent flat plate boundary layer flows; (3) two- and three-
dimensional driven cavity flows; (4) flows with normal and oblique shock wav es; (5) steady and unsteady flows past
a cylinder; (6) developing laminar and turbulent flows in channels, pipes, and rectangular ducts; (7) steady and
unsteady flows in a transonic diffuser; (8) flows in curved and S-shaped ducts; and (9) turbulent flow on a flat plate
with a glancing shock wav e. Current and future validation cases will emphasize three-dimensional duct flows and
flows with heat transfer.
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