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1. INTRODUCTION

Interest in the use of computational fluid dynamics (CFD) for the design and analysis of propulsion system
components has increased greatly in the past few years. Several factors have contributed to this growth, including:
(1) complex geometric design requirements for many modern propulsion systems, leading to flow phenomena that
may not be intuitively predictable; (2) increasing fuel costs, leading to potentially large cost savings for even small
performance improvements; (3) the high cost and/or lack of facilities for extensive experimental testing; (4) the con-
tinued development and improvement of sophisticated numerical algorithms for solving the complex equations gov-
erning fluid flow; and (5) the increasing availability of supercomputers.

Many different computational methods have been and continue to be used for studying internal flow. To effec-
tively utilize these computational tools, today’s designer must be aware of the types of methods that are applicable to
a specific problem, and of their capabilities and limitations.

The object of this presentation, therefore, is to remove some of the mystery from CFD by systematically dis-
cussing the various types of analyses commonly used for internal flows. (It should be noted that much of the mate-
rial in this presentation also applies to external flows.) Thefundamental equations governing fluid flow will be pre-
sented first, followed by a brief introduction to solution methods used in CFD.Then, each analysis method, from
potential flow to time-averaged Navier-Stokes, will be discussed.For each analysis, the emphasis will be on the
simplifying assumptions made in deriving the governing equations, the resulting features and limitations of the anal-
ysis, and the types of geometries and flow situations it can successfully compute. Examples of computed results will
be shown. Thetalk will conclude with a summary of the current overall status of CFD in propulsion research, and
the problem areas limiting their use in a design environment.

2. FUNDAMENTAL EQ UATIONS

The fundamental governing equations for fluid flow are presented below. The basic conservation laws, in dif-
ferential form, for mass, momentum, and energy, may be written as follows:
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In order, these equations are commonly called the continuity, x-momentum,y-momentum, and energy equations.
For simplicity, they hav ebeen written in a 2-D Cartesian coordinate system.Several different versions of the energy
equation appear in the literature. One often seen uses total enthalpy as the dependent variable, and may be written as
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The shear stresses and heat fluxes are given by
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qx = −k
∂T

∂x
(2-9)

qy = −k
∂T

∂y
(2-10)

An equation of state is also needed to relate pressure, temperature, and density. Typically, a perfect gas is
assumed, and the equation is simply

p = ρ RT (2-11)

For calorically perfect gases, this can be rewritten as

p = (γ − 1)



ET −

1

2
ρ(u2 + v2)





(2-12)

In the above equations, the independent variables are the timet, and the Cartesian coordinatesx andy. The
four primary dependent variables are the densityρ, the velocitiesu andv in the x andy directions, and either the
total energy per unit volumeET or the total enthalpy H. The total energy and total enthalpy may be defined in terms
of more familiar parameters as follows:

ET = ρcvT +
1

2
ρ(u2 + v2) (2-13)
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H = cpT +
1

2
(u2 + v2) (2-14)

Additional variables appearing in these equations are the pressurep, the temperatureT, the coefficient of viscosityµ,
the second coefficient of viscosityλ (usually defined asλ = −2µ/3), the coefficient of thermal conductivity k, the
specific heat coefficientscp andcv, the ratio of specific heatsγ = cp/cv, and the gas constantR. Additional equa-
tions may be needed to defineµ, k, and cp in terms of temperature for the gas under consideration.

All of the equations have been nondimensionalized using appropriate normalizing conditions.Lengths have
been nondimensionalized byLr , velocities byur , density byρ r , temperature byTr , viscosity byµ r , thermal conduc-
tivity by kr , pressure and total energy byρ r u

2
r , time by Lr /ur , and gas constant and specific heat byu2

r /Tr . The ref-
erence Reynolds and Prandtl numbers are thus defined asRer = ρ r ur Lr /µ r and Prr = µ r u

2
r /kr Tr . Note that this

Prandtl number does not have a physically meaningful value, but is merely defined by a combination of the normal-
izing conditions forcp, µ, andk that appear when the equations are nondimensionalized.

These fundamental equations have been written in what is called conservation, or divergence, form. This
means that the coefficients are either constant or, if variable, that their derivatives do not appear. In vector form, the
divergence of a physical quantity can be easily identified in these equations.For example, equation (2-1), the conti-
nuity equation, may be written as

∂ρ
∂t

+ ∇ ⋅ ρ
→
V = 0 (2-15)

The nonconservative form of the continuity equation would be

∂ρ
∂t

+ ρ
∂u

∂x
+ u

∂ρ
∂x

+ ρ
∂v

∂y
+ v

∂ρ
∂y

= 0 (2-16)

Writing the equations in conservation form helps avoid some numerical problems that can occur when solving prob-
lems with discontinuities, such as shock wav es. It also simplifies the task of developing a numerical solution proce-
dure that conserves mass, momentum, and energy. This second point is discussed further in the next section.

Although, strictly speaking, the term ‘‘Navier-Stokes’’ applies only to the two momentum equations, all four
equations as a set are generally referred to as the Navier-Stokes equations.They completely describe the motion of
any continuum flow of a Newtonian fluid. Body forces and internal heat addition have been assumed negligible.
However, these terms could also be included.

Turbulence can also be computed with these equations.With current and foreseeable computers, however, it’s
not feasible to resolve the small time and length scales required to actually compute turbulence for realistic propul-
sion system problems.Turbulence is therefore modeled using various assumptions.With the turbulence models
used for practical engineering problems, the viscosity and thermal conductivity coefficients µ and k are locally
increased to account for the increased diffusion due to turbulence. They are then known as ‘‘effective’’ v iscosity and
thermal conductivity coefficients. Theresult is that the Navier-Stokes equations normally used for turbulent flow
look exactly like the ones shown here.

These equations are a coupled set of nonlinear second-order partial differential equations, and are therefore
very difficult to solve. Closedform solutions exist only for a few very simplified cases.To solve more realistic fluid
flow problems, assumptions are usually made about the flow that allow these equations to be simplified.

3. NUMERICAL METHODS

Before presenting the various types of analyses that may be derived from the fundamental equations, a short
discussion on the types of numerical methods used in CFD may be useful. It should be noted that the material in
this section is only a basic introduction. There are many different solution procedures being used today. For more
detailed information see the books by Anderson, Tannehill, and Pletcher (1984), Baker (1983), Fletcher (1988), and
Hoffmann (1989).
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3.1 FiniteDifference Methods

The most common solution procedures being used today in CFD are finite difference methods.In a finite dif-
ference method, the derivatives in the governing equations are approximated by finite difference formulas.The
resulting finite difference equations are algebraic, and can be solved on a digital computer.

3.1.1 ComputationalMesh

The first step in using a finite difference method is to construct a finite difference mesh in the flow domain of
interest, as shown in the following figure for a simple two-dimensional square domain.

x

y

∆x

∆y

i−1 i i+1

j−1

j

j+1

Computational mesh.

In this mesh, the Cartesian coordinatesx andy both vary from 0 to 1, and the mesh is evenly spaced in both
directions, although∆x need not be equal to∆y. The grid points are labeled with the indicesi and j in thex andy
directions, respectively.

Of course, in real-world applications the flow domain is not normally square. And it’s usually desirable to
cluster grid points in certain regions of the flow. For example, in a viscous analysis grid points should be concen-
trated near solid boundaries for proper resolution of the steep gradients in the boundary layers. Therefore, the gov-
erning differential equations are typically transformed from an unevenly spacedx, y coordinate system in physical
space to an evenly spacedξ ,η coordinate system in computational space. The transformed equations are then actu-
ally solved on an evenly spaced square grid in computational space. In this discussion, we can thus use the simple
mesh shown in the figure, with no loss in generality.

3.1.2 Finite Difference Formulas

The finite difference formulas used to approximate the derivatives in the governing differential equations may
be derived using Taylor series expansions. For example, given a function f (x, y), the value off at the point
(x + ∆x, y) may be found by expandingf in a Taylor series about the point (x, y) as follows:

f (x + ∆x, y) = f (x, y) + ∆x
∂ f

∂x
+

(∆x)2

2!

∂2 f

∂x2
+

(∆x)3

3!

∂3 f

∂x3
+ . . . (3-1)

Solving for∂ f /∂x,
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∂ f

∂x
=

f (x + ∆x, y) − f (x, y)

∆x
−

∆x

2!

∂2 f

∂x2
−

(∆x)2

3!

∂3 f

∂x3
+ . . .

or,

∂ f

∂x
=

f (x + ∆x, y) − f (x, y)

∆x
+ O(∆x)

where the notationO(∆x) is used to represent the sum of all the terms of order∆x and higher. This can be written
somewhat more compactly using subscripts to represent locations in the finite difference mesh, as follows:




∂ f

∂x

i , j

=
fi+1, j − fi , j

∆x
+ O(∆x) (3-2)

This is the first-order forward difference formula for approximating∂ f /∂x. The termO(∆x) is the truncation error.

A first-order backward difference formula may be derived by using a Taylor series expansion for at the point
(x − ∆x, y).

f (x − ∆x, y) = f (x, y) − ∆x
∂ f

∂x
+

(∆x)2

2!

∂2 f

∂x2
−

(∆x)3

3!

∂3 f

∂x3
+ . . . (3-3)

Solving for∂ f /∂x, and using index notation,




∂ f

∂x

i , j

=
fi , j − fi−1, j

∆x
+ O(∆x) (3-4)

By subtracting equation (3-3) from (3-1), we get

f (x + ∆x, y) − f (x − ∆x, y) = 2∆x
∂ f

∂x
+ 2

(∆x)3

3!

∂3 f

∂x3
+ . . . (3-5)

Solving for∂ f /∂x, and using index notation,




∂ f

∂x

i , j

=
fi+1, j − fi−1, j

2∆x
+ O(∆x)2 (3-6)

This is the second-order centered difference formula for∂ f /∂x.

Adding equations (3-1) and (3-3) gives

f (x + ∆x, y) + f (x − ∆x, y) = 2 f (x, y) + 2
(∆x)2

2!

∂2 f

∂x2
+ . . . (3-7)

This can be solved for∂2 f /∂x2. Using index notation,




∂2 f

∂x2

i , j

=
fi+1, j − 2 fi , j + fi−1, j

(∆x)2
+ O(∆x)2 (3-8)

This is a second-order centered difference formula for∂2 f /∂x2.

A second-order centered difference formula for mixed partial derivatives may be derived by first noting that
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∂2 f

∂x∂y
=

∂
∂x




∂ f

∂y



Using equation (3-6) for∂ f /∂y,




∂2 f

∂x∂y

i , j

=
∂

∂x



fi , j+1 − fi , j−1

2∆y



+ O(∆y)2

Using equation (3-6) again, for the∂/∂x terms, we get




∂2 f

∂x∂y

i , j

=
fi+1, j+1 − fi−1, j+1 − fi+1, j−1 + fi−1, j−1

4∆x∆y
+ O[(∆x)2, (∆y)2] (3-9)

3.1.3 ExplicitSolution Procedures

To actually solve a partial differential equation, the finite difference formulas derived in the previous section
are used to approximate each derivative in the differential equation. As a simple example, consider the one-
dimensional unsteady heat conduction equation.

∂T

∂t
= α

∂2T

∂x2
(3-10)

HereT is the temperature andα = k/ρcp is the thermal diffusivity.

To solve this equation, we could evaluate equation (3-10) at time level n, where the temperature is assumed
known. Usingfirst-order forward differencing for the time derivative, and second-order central differencing for the
diffusion term, equation (3-10) may be approximated by the following finite difference equation:

Tn+1
i − Tn

i

∆t
= α

Tn
i+1 − 2Tn

i + Tn
i−1

(∆x)2
(3-11)

Note that the time level is denoted by a superscript, and the spatial location is denoted by a subscript. This seems to
be a standard convention for finite difference methods.

The only unknown in this equation isTn+1
i . This is called anexplicit method. Thesolution can be advanced

in time by writing equation (3-11) at each grid pointi, and solving each of the resulting equations forTn+1
i indepen-

dently.

Explicit methods have successfully been used in a wide variety of CFD applications. The biggest advantage
of explicit methods is simplicity. They are relatively easy to understand and to program.They do hav eone big dis-
advantage, however. It can be shown that, for a stable solution, the time step∆t must be less than some limiting
value that depends on the spatial grid spacing.The smaller the grid spacing, the smaller∆t must be. This is the
well-known Courant-Friedrichs-Lewy (CFL) condition.

3.1.4 ImplicitSolution Procedures

Instead of evaluating equation (3-10) at time level n, suppose we evaluate it at time level n + 1, where the tem-
perature is unknown. Usingfirst-order backward differencing for the time derivative, and second-order central dif-
ferencing for the diffusion term, we get

Tn+1
i − Tn

i

∆t
= α

Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

(∆x)2
(3-12)

There are three unknowns in this equation —Tn+1
i−1 , Tn+1

i , and Tn+1
i+1 . This is called animplicit method. We can rear-

range equation (3-12) in the following form:
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aiT
n+1
i−1 + biT

n+1
i + ciT

n+1
i+1 = Sn

i (3-13)

where the coefficients of the unknowns have been collected intoai , bi , and ci , and known terms have been collected
into the source termSn

i . When equation (3-13) is written at each grid pointi, the result is a set of coupled algebraic
equations that must be solved simultaneously. In matrix form, these equations have a tridiagonal coefficient matrix,
which is very common in finite difference CFD methods.Fortunately, there are very efficient solution procedures
for tridiagonal systems of equations.

Like explicit methods, implicit methods have also successfully been used in a wide variety of CFD applica-
tions. Implicit methods are more difficult to program and require more computer time per time step than explicit
methods, but do not have a stability limit on the size of the time step. (At least in theory, for simple equations.
There is no exact stability theory for more complicated equations, like the compressible Navier-Stokes equations.In
practice, it’s often found through experience that there is a limit on the time step size, even for implicit methods.It’s
typically larger than the limit for explicit methods, however.) The trend today seems to be toward implicit methods.

3.1.5 Extensionto Systems of Equations and Multiple Dimensions

The above discussion is for a single governing equation in one dimension. The extension to systems of equa-
tions is straightforward for explicit methods.For implicit methods, the situation is more complicated.For systems
of coupled governing equations, which are common in CFD, the equivalent to equation (3-13) is a matrix equation.
For a system of four equations, the coefficientsa, b, and c are 4× 4 matrices, and the unknown dependent variableT
and the source termS are 4-element vectors. Whenwritten for all the grid points, the result is a block tridiagonal
system, instead of a scalar tridiagonal system.

The extension to two- or three-dimensional problems is again fairly straightforward for explicit methods.For
implicit methods, each time step is usually split into sub-steps, one in each of the coordinate directions.These solu-
tion algorithms are called alternating-direction-implicit (ADI) methods.

3.1.6 ConservativeProperty of a Solution Procedure

In CFD, the governing differential equations express the basic conservation laws at a point in space. If these
equations could be solved by integrating over all points in space (‘‘all’ ’ being infinite), mass, momentum, and energy
would be automatically conserved. Unfortunately, when the equations are solved numerically, we can’t use an infi-
nite number of points.We therefore have to worry about whether or not mass, momentum, and energy are conserved
in the numerical solution.

Suppose we applied the integral form of the conservation laws to the entire flow field. Byintegrating numeri-
cally using the grid points on the boundaries of the flow domain, we could develop a discretized form of the integral
conservation laws. Supposewe then write the finite difference representation of the governing differential equations
at every grid point in the flow domain, and sum them all up.If the terms at the interior grid points all cancel, and the
remaining terms are exactly the same as those in the discretized form of the integral conservation laws, the numeri-
cal procedure is said to be conservative.

Note the distinction between the conservative property of the numerical procedure, and the conservation form
for the governing differential equations, discussed in the previous section.Writing the differential equations in con-
servation form is important for flows with discontinuities, like shock wav es. It does not, by itself, imply that the
numerical solution will automatically conserve mass, momentum, and energy. It does, however, make it relatively
easy to construct numerical procedures that do have the conservative property.

3.2 OtherMethods

Besides finite difference methods, many other methods have been used in CFD.Some of these, like panel
methods, the method of characteristics, or integral methods, are specialized methods used in a particular type of
CFD analysis, and will be mentioned in subsequent sections.There are a couple of other general solution methods
that will be mentioned very briefly here, however. These are newer and not as widely used in CFD as finite differ-
ence methods, but they do hav esome strong advocates.

Computational Techniques I Numerical Methods 7



3.2.1 Finite Volume Methods

In finite difference methods, the starting point is a set of partial differential equations that represent the basic
conservation laws indifferential form. Thealgebraic equations that are ultimately solved are derived by using finite
difference formulas to approximate the derivatives in the differential equations.

Finite volume methods, on the other hand, start with the basic conservation laws inintegral form. Theselaws
are applied to a control volume surrounding a grid point in the computational mesh. By doing this for every grid
point, and summing, a set of algebraic equations is derived that can be solved for the unknown flow variables.

It can be seen that finite volume methods take the discrete nature of the numerical problem into account from
the very beginning. They are conservative by their very nature.They also allow complicated flow domains to be
discretized relatively easily, without the need for a transformation between physical and computational space.

3.2.2 Finite Element Methods

Finite element methods are part of a more general class called weighted residual methods.(Finite volume
methods can also be classified as weighted residual methods, but they actually resemble finite difference methods
when implemented.)A weighted residual method assumes that the solution may be represented analytically.

To illustrate, we again use the one-dimensional heat conduction equation, equation (3-10), as an example.
Following the discussion in Volume 1 of Fletcher (1988), in a weighted residual method an approximate, or trial,
solution of equation (3-10) would be represented as

T =
J

j=1
Σ a j (t)φ j (x) (3-14)

wherea j (t) are unknown coefficients, andφ j (x) are known analytic functions called trial functions. The largerJ is,
the more accurate the solution will be.

Substituting equation (3-14) into (3-10) and rearranging yields

∂T

∂t
− α

∂2T

∂x2
=

∂
∂t





J

j=1
Σ a j (t)φ j (x)





− α
∂2

∂x2





J

j=1
Σ a j (t)φ j (x)





= R (3-15)

SinceT is an approximate solution, it does not exactly satisfy equation (3-10).R is called the residual.

The unknownsa j (t) are found by requiring that

∫ Wm(x)Rdx= 0 (3-16)

where the integral is over the computational domain, andm = 1, 2,. . . , M . This represents a system ofM equations
for theJ unknownsa j . For a well-posed problem, of course, we must chooseM = J. The choice of the weighting
functionsWm determines which method in the class of weighted residual methods is being used. If the weighting
functions are the same as the trial functions, i.e., ifWm(x) = φ m(x), this is called a Galerkin method. Most finite ele-
ment CFD methods are Galerkin methods.

Up to now, this discussion has been about weighted residual methods in general.Finite element methods have
two particular additional features. First, the unknown coefficients a j (t) are taken as the unknown values of the
dependent variableT at a set of nodes in the flow domain. Thus,equation (3-14) becomes

T =
J

j=1
Σ T j (t)φ j (x) (3-17)

The second feature of a finite element method is that the trial functionsφ j (x) are simply interpolating functions to
represent values between node points. These interpolating functions are usually linear, but quadratic functions are
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also used.

To summarize, in a finite element method the unknown dependent variables are represented by a continuous
analytical function.This function is constructed using the unknowns at discrete nodes in the flow domain, with
interpolating functions to represent the values of the dependent variables between node points.You end up with a
system ofJ algebraic equations to solve for theJ unknown dependent variables, whereJ is the number of nodes in
the flow domain. Finiteelement methods have traditionally been particularly good for complicated flow domains,
since the nodes need not be based on a uniform rectangular grid.

4. POTENTIAL FLO W ANALY SES

4.1 AssumptionsMade

Potential flow analyses are among the oldest and most well established methods currently being used for inter-
nal flow. The flow must be irrotational (i.e., the vorticity ∇ ×

→
V is assumed to be zero). Except for a few very spe-

cialized flow situations, viscosity introduces vorticity into the flow. The flow is therefore assumed to be inviscid.
The flow is also assumed to be steady and isentropic.

The following equations relate the assumptions made for potential flow to the terms in the Navier-Stokes
equations, showing the terms that are eliminated. (Note that, since the flow is steady, the time derivatives hav ealso
been eliminated.)

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (4-1)

∂(ρu2)

∂x
+

∂(ρuv)

∂y
= −

∂p

∂x
+

1

Rer




∂τ xx

∂x
+

∂τ xy

∂y



(4-2)

∂(ρuv)

∂x
+

∂(ρv2)

∂y
= −

∂p

∂y
+

1

Rer




∂τ xy

∂x
+

∂τ yy

∂y



(4-3)

∂(uET )

∂x
+

∂(vET )

∂y
= −

∂(up)

∂x
−

∂(vp)

∂y
−

1

Rer Prr




∂qx

∂x
+

∂qy

∂y



+
1

Rer





∂
∂x

(uτ xx + vτ xy) +
∂

∂y
(uτ xy + vτ yy)





(4-4)

∇ ×
→
V = 0 → ∇φ =

→
V (4-5)

Since the flow is assumed to be inviscid, all the viscous and heat conduction terms are eliminated.Potential
flow methods are thus most valid at high Reynolds numbers. The key assumption, however, is irrotationality. Since
∇ ×

→
V = 0, the velocity can be expressed as the gradient of a scalar,

→
V = ∇φ . This is because mathematically,

∇ × (∇φ ) is identically equal to zero for any scalar quantityφ . In the current context, the scalarφ is called the veloc-
ity potential. The reason for the last assumption, isentropic flow, will be given in the next section.

4.2 Govern ing Equations

The irrotationality condition allows the velocity field to be described by a single equation for the velocity
potentialφ . To derive this equation, we start with the continuity equation. Settingu = φ x andv = φ y,

∂
∂x

(ρφ x) +
∂

∂y
(ρφ y) = 0
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Expanding the derivatives, continuity may be written as

ρ(φ xx + φ yy) + φ x
∂ρ
∂x

+ φ y
∂ρ
∂y

= 0 (4-6)

Using thex-momentum and continuity equations we can write

∂p

∂x
= −ρu

∂u

∂x
− ρv

∂u

∂y

But ∇ ×
→
V = 0 giv es ∂u/∂y = ∂v/∂x. Therefore

∂p

∂x
= −ρu

∂u

∂x
− ρv

∂v

∂x

= −ρ
∂

∂x


u2 + v2

2



(4-7)

Similarly, using they-momentum and continuity equations we can write

∂p

∂y
= −ρ

∂
∂y



u2 + v2

2



(4-8)

Combining equations (4-7) and (4-8), we get

dp = −ρd

u2 + v2

2



= −ρd




φ2
x + φ2

y

2





(4-9)

Now, since we assumed isentropic flow, the speed of sounda is defined bya2 = dp/dρ. Thus

dρ =
dp

a2
= −

ρ
a2

d




φ2
x + φ2

y

2





Therefore,

∂ρ
∂x

= −
ρ
a2

(φ xφ xx + φ yφ xy) (4-10)

∂ρ
∂y

= −
ρ
a2

(φ xφ yx + φ yφ yy) (4-11)

Substituting these expressions into equation (4-6) gives



1 −

φ2
x

a2


φ xx +




1 −

φ2
y

a2




φ yy − 2

φ xφ y

a2
φ xy = 0 (4-12)
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This equation, which is valid for compressible potential flow, is called the full potential equation. It is a non-
linear second-order partial differential equation, and is in non-conservation form.If the speed of sounda → ∞,
implying incompressible flow, this equation reduces to Laplace’s equation.

φ xx + φ yy = 0 (4-13)

This equation is still second-order, but linear, and therefore easier to solve.

Once the velocity potentialφ , and hence the velocity field itself, is known, the pressure, temperature, etc., can
be computed from the momentum and energy equations.

A few words should be said about the mathematical character of the potential flow equation. (Thisalso
applies to the Euler equations to be discussed later).For subsonic flow, the equation is elliptic. This means that the
solution at a point depends on the conditions at all the boundaries of the flow domain, including the downstream
boundary. For supersonic flow howev er, the equation is hyperbolic, and the solution at a point depends only on the
upstream conditions.

4.3 SolutionMethods

For incompressible flows, since the governing equation is linear, complex flows can be described by superpo-
sition of solutions for simpler flows. A common procedure is to distribute a series of point sources and sinks, of
properly varying strengths, along the surface of the duct.In three dimensions these procedures are called panel
methods. Theincompressible equation can also be solved using complex variable methods, in which a complex
geometry is transformed into a simple geometry using conformal mapping.However, this procedure is limited to
two-dimensional flows. Thereare also several iterative numerical techniques that have been used.

Compressible flows are sometimes computed by solving the incompressible problem and applying a com-
pressibility correction.For slender geometries that only ‘‘slightly’ ’ perturb the uniform external flow, small pertur-
bation methods can be used. This assumption allows the full potential equation to be linearized, and therefore more
easily solved.

And finally, the potential flow equations may also be solved using finite difference, finite volume, and finite
element methods.

4.4 +’s and −’s

Potential flow methods have been around for many years. Themathematical theory is well understood, and
the potential equation is relatively easy to solve, especially for incompressible flow. There are many computer codes
available, and they are generally easy to use.

One of the limitations of using potential flow methods for internal flow is that viscous effects are often impor-
tant and potential flow is, of course, inviscid. Theassumption of isentropic flow means that these methods are,
strictly speaking, not valid across shock wav es. However, if the Mach number normal to the shock is near one the
flow is nearly isentropic. In addition, methods that solve the potential equation in non-conservation form, as pre-
sented earlier, often have trouble conserving mass (the so-called ‘‘leakage’’ problem).

Potential flow methods are most useful in subsonic or transonic flows in which the pressure distribution is of
primary interest and in which viscous effects are relatively minor. They are generally cheap to use and are therefore
often used in preliminary design studies that require many cases to be run.They also can be used to determine a
pressure distribution for boundary layer or parabolized Navier-Stokes analyses. The full potential equation is the
basis for many transonic flow analyses.

4.5 Example1

In the following figure, potential flow results are presented and compared with experimental data for a three-
dimensional ‘‘scoop’’ i nlet. Theextended lower lip, or scoop, extends the angle of attack range for the inlet by influ-
encing the incoming flow in such a way as to inhibit flow separation just inside the lower lip. The flow was com-
puted by Kao (1981) using the 3-D incompressible panel method of Hess, Mack, and Stockman (1979).For an arbi-
trary inlet, this analysis first computes four fundamental solutions — uniform free-stream flow parallel to each of the
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three coordinate axes, plus static operation of the inlet. Superposition of these four solutions is used to obtain the
final result. Compressibility is modeled using the compressibility correction of Lieblein and Stockman (1972).
Approximately 700 panels were used to model the geometry, which included a centerbody and downstream exten-
sion not shown in the figure.

The inlet was run at an angle of attack of 50°. The free stream velocity was 41 m/sec, resulting in a throat
Mach number of 0.63. The static to total pressure ratiop/pT is plotted as a function of axial distance at four circum-
ferential locations. The experimental data were taken by Abbott (1977). The agreement between the potential flow
results and the experimental data is generally very good. The poorest agreement is along the lower internal surface,
and is probably due to boundary blockage effects and possible flow separation. Theseeffects, of course, are not
modeled by the potential flow analysis.

12 Potential Flow Analyses ComputationalTechniques I
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4.6 Example2

The second potential flow example was computed by Reyhner (1982). He studied the transonic flow through a
typical turbofan inlet with an asymmetric lip, as shown in the following figure. The tilt of the inlet centerline with
respect to the engine centerline is intended to reduce drag by aligning the inlet with the local incoming flow at cruise
conditions. Dimensionsin the figure are in meters for the full-scale inlet.

Reyhner’s method solves the full 3-D potential equation using an iterative successive line over-relaxation
(SLOR) finite difference method. The computational grid near the inlet is shown in the figure.

In the next figure, computed and experimental surface Mach numbers are plotted as a function of axial dis-
tance at three circumferential locations. The experimental data are unpublished results from a 0.16-scale model test
in the Boeing 9× 9 foot low speed propulsion wind tunnel.The angle of attack was 20° and the free stream velocity
was 90 m/sec.

The agreement is generally very good except along the bottom (windward) surface. Asin the previous exam-
ple, this disagreement is believed due to blockage effects of the thickening boundary layer, which is close to separa-
tion, just inside the lower lip.It should be noted that three other cases, with lower peak Mach numbers, were also
computed and agreed more closely with experiment.
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5. EULER ANALYSES

5.1 AssumptionsMade

Like potential flow analyses, Euler analyses are inviscid. However, unlike potential flow analyses, that is the
only assumption that is made. The flow can be rotational, non-isentropic, and even unsteady.

The following equations relate the assumptions made for Euler flow to the terms in the Navier-Stokes equa-
tions, showing the terms that are eliminated. These equations are written for steady flow, but that is not required.

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (5-1)

∂(ρu2)

∂x
+

∂(ρuv)

∂y
= −

∂p

∂x
+

1

Rer




∂τ xx

∂x
+

∂τ xy

∂y



(5-2)

∂(ρuv)

∂x
+

∂(ρv2)

∂y
= −

∂p

∂y
+

1

Rer




∂τ xy

∂x
+

∂τ yy

∂y



(5-3)

∂(uET )

∂x
+

∂(vET )

∂y
= −

∂(up)

∂x
−

∂(vp)

∂y
−

1

Rer Prr




∂qx

∂x
+

∂qy

∂y



+
1

Rer





∂
∂x

(uτ xx + vτ xy) +
∂

∂y
(uτ xy + vτ yy)





(5-4)

5.2 Govern ing Equations

The Euler equations are thus simply the Navier-Stokes equations with all the viscous and heat conduction
terms eliminated.For steady flow, the resulting equations are:

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (5-5)

∂(ρu2)

∂x
+

∂(ρuv)

∂y
= −

∂p

∂x
(5-6)

∂(ρuv)

∂x
+

∂(ρv2)

∂y
= −

∂p

∂y
(5-7)

∂(uET )

∂x
+

∂(vET )

∂y
= −

∂(up)

∂x
−

∂(vp)

∂y
(5-8)

As in potential flow, these equations are therefore most valid at high Reynolds numbers.Like the Navier-
Stokes equations, the Euler equations are a set of coupled nonlinear partial differential equations, but first-order
instead of second-order. For steady flow, their mathematical character is the same as the potential equation — ellip-
tic in space for subsonic flow and hyperbolic in space for supersonic flow. For unsteady flow they are hyperbolic in
time.
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5.3 SolutionMethods

The Euler equations are most commonly solved using finite difference techniques.For supersonic flow, the
equations are hyperbolic in space and can be solved by forward marching in the streamwise direction.For subsonic
flow they are elliptic in space, but hyperbolic in time. Steady subsonic (or even supersonic) flows are therefore often
solved by marching the unsteady equations in time until a steady state is reached.Both explicit and implicit meth-
ods have been used. The trend seems to be toward implicit methods. If only the steady-state solution is of interest,
various techniques are often used to accelerate convergence, and the results may not be time-accurate.Some
researchers are using multi-grid techniques, in which a series of grids from coarse to fine are used to speed conver-
gence to steady state. Finite volume and finite element methods have also been used.

The method of characteristics is the most nearly exact method for numerically solving hyperbolic partial dif-
ferential equations. It can be used to solve the Euler equations for steady supersonic flow, or unsteady subsonic or
supersonic flow. With this method the partial differential equations reduce to ordinary differential equations along
characteristic directions. The trend today, howev er, seems to be toward the more easily implemented finite differ-
ence methods.

5.4 +’s and −’s

The Euler equations include rotational effects. For instance, if the flow entering a duct has a boundary layer-
like profile, secondary flow dev elopment and even flow separation can be computed with the Euler equations.They
are also valid across shock wav es. With finite difference methods, shock wav es are generally ‘‘captured’’ by the
solution and smeared over a few grid points. Some form of smoothing, or artificial viscosity, is usually required for
stability or to eliminate oscillations. Because the flow is inviscid, there are no shear layers with large gradients to
resolve and therefore fewer grid points are needed than for a Navier-Stokes solution.

For many internal flows, however, viscous effects are important and their omission may be a limitation.These
codes can also be difficult to run because of the need to select time step size to optimize convergence, parameters
controlling artificial viscosity, etc. Time dependent methods can be long running, although still faster than Navier-
Stokes methods because fewer grid points are needed.

Like potential flow analyses, Euler analyses are most useful for flows in which the pressure distribution is of
primary interest and in which viscous effects are relatively minor. They can be used to investigate candidate designs
of propulsion system components, and to compute a pressure distribution for use by a boundary layer or parabolized
Navier-Stokes analysis.

5.5 Example

The following figure shows Mach number contours for an oblique shock wav ereflecting off a flat plate. The
free stream Mach number was 2.4, and the shock was generated by a 10° wedge.

These results were computed using Proteus, a user-oriented Navier-Stokes code developed at NASA Lewis,
run in Euler mode (Towne, Schwab, and Bui, 1993a,b).With this code, the unsteady governing equations are solved
by marching in time using an implicit finite difference technique. Artificial viscosity terms were used to minimize
the odd-even decoupling resulting from the use of central differencing, and to control pre- and post-shock oscilla-
tions. A 51× 51 grid was used, equally spaced in both directions, and convergence to steady state was obtained in
about 400 time steps.

Since Euler methods are rotational and non-isentropic, the Rankine-Hugoniot relations are satisfied across the
shock wav es. Note,however, that the shocks are not sharp discontinuities but are smeared over a few grid points.
They could be sharpened by using more grid points, or by packing grid points more tightly in the location of the
shocks. Itshould also be noted that because Euler methods are inviscid, no boundary layer buildup occurs on the flat
plate. Theactual flow, with a shock - boundary layer interaction, would look quite different near the surface of the
plate.
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6. BOUNDARY L AYER ANALYSES

6.1 AssumptionsMade

Potential flow and Euler analyses are inviscid. At high Reynolds numbers these analyses can yield good
results for pressure distributions, but they cannot predict viscous or heat transfer effects. Thislimits their usefulness
for internal flows, where these effects are usually important.

The oldest generalized methods to include these effects are called boundary layer methods, first developed by
Prandtl in 1904. He noted that in many applications at high Reynolds numbers, viscous effects are confined to a rel-
atively thin region near solid boundaries called the boundary layer. In deriving the boundary layer equations, the
thickness of this region is assumed small relative to the size of the geometry being analyzed, and is said to be of
O(δ ). The density, temperature, streamwise velocity, and total enthalpy, along with derivatives in the streamwise
direction, are assumed to be ofO(1). Gradientsnormal to the surface are expected to be much larger than gradients
along the surface, and are therefore assumed to be of ofO(1/δ ). And, since the Reynolds number must be high for
the boundary layer approximation to be valid, Re is assumed to be ofO(1/δ 2). Theseassumed orders of magnitude
are to be applied to each term in the fundamental Navier-Stokes equations, and terms ofO(1) are to be retained.For
simplicity we will restrict the order of magnitude analysis to steady flow.

In the fundamental continuity equation,∂(ρu)/∂x = O(1). Thisimplies that∂(ρv)/∂y must also beO(1), and
thereforev = O(δ ).

In the x-momentum equation, then,∂(ρu2)/∂x and ∂(ρuv)/∂y are bothO(1). Sincethe viscous terms must
approach zero at the edge of the boundary layer, ∂p/∂x must also beO(1). Examiningthe shear stress definitions, it
can be seen thatτ xx = O(1), whileτ xy is made up of anO(δ ) and anO(1/δ ) term. Therefore,

1

Rer

∂τ xx

∂x
= O(δ 2)

1

Rer

∂τ xy

∂y
= O(δ 2) + O(1)

In they-momentum equation,∂(ρuv)/∂x and∂(ρv2)/∂y are bothO(δ ). Again examining the shear stress defi-
nitions, it can be seen thatτ yy = O(1). Therefore,

1

Rer

∂τ xy

∂x
= O(δ 3) + O(δ )

1

Rer

∂τ yy

∂y
= O(δ )

The ∂p/∂y term is the only one left to be examined in they-momentum equation. Since the largest of the other
terms in the equation isO(δ ), ∂p/∂y must be at mostO(δ ).

In the total enthalpy form of the energy equation, both∂(ρuH)/∂x and∂(ρvH)/∂y areO(1). Notethat thev
term in the definition ofH may be eliminated. The heat fluxqx = O(1) andqy = O(1/δ ). Therefore,

1

Rer Prr

∂qx

∂x
= O(δ 2)

1

Rer Prr

∂qy

∂y
= O(1)

Examining the shear stress terms in the energy equation, we get
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1

Rer

∂(uτ xx)

∂x
= O(δ 2)

1

Rer

∂(vτ xy)

∂x
= O(δ 4) + O(δ 2)

1

Rer

∂(uτ xy)

∂y
= O(δ 2) + O(1)

1

Rer

∂(vτ yy)

∂y
= O(δ 2)

The following equations summarize which terms in the fundamental equations are eliminated in deriving the
boundary layer equations.

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (6-1)

∂(ρu2)

∂x
+

∂(ρuv)

∂y
= −

∂p

∂x
+

1

Rer




∂τ xx

∂x
+

∂τ xy

∂y



(6-2)

∂(ρuv)

∂x
+

∂(ρv2)

∂y
= −

∂p

∂y
+

1

Rer




∂τ xy

∂x
+

∂τ yy

∂y



(6-3)

∂(ρuH)

∂x
+

∂(ρvH)

∂y
= −

1

Rer Prr




∂qx

∂x
+

∂qy

∂y



+
1

Rer





∂
∂x

(uτ xx + vτ xy) +
∂

∂y
(uτ xy + vτ yy)





(6-4)

With the boundary layer assumptions, the shear stressτ xy and heat fluxqy are given by

τ xy = µ


∂v

∂x
+

∂u

∂y



(6-5)

qy = −k
∂T

∂y
(6-6)

Pressure is usually defined by the perfect gas equation of state,

p = ρ RT (6-7)

The definition of total enthalpy becomes

H = cpT +
1

2
(u2 + v2) (6-8)

In the boundary layer equations, all second derivatives in thex, or streamwise, direction are eliminated, as are
mixed second derivatives. Secondderivatives in the y, or cross-flow, direction are retained. In addition, the entire
cross-flow momentum equation is eliminated.
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6.2 Govern ing Equations

The resulting boundary layer equations, with the viscous and heat conduction terms expanded, are as follows:

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (6-9)

∂(ρu2)

∂x
+

∂(ρuv)

∂y
= −

dpe

dx
+

1

Rer

∂
∂y




µ
∂u

∂y



(6-10)

∂(ρuH)

∂x
+

∂(ρvH)

∂y
= −

1

Rer Prr

∂
∂y



k

∂T

∂y



+
1

Rer

∂
∂y




µu
∂u

∂y



(6-11)

Note that the pressure gradient term is written as an ordinary derivative, since with the boundary layer approx-
imation,∂p/∂y = 0. Thepressurepe(x) is generally assumed to be known, typically from a potential flow or Euler
analysis, or from experiment. Insome internal flow applications, the pressure is computed as part of the boundary
layer solution using conservation of total mass flow rate as a basis.The boundary layer equations are parabolic in
the streamwise direction, and can therefore be solved by forward marching inx.

6.3 SolutionMethods

The earliest solution methods developed for the boundary layer equations were integral methods.Many dif-
ferent integral methods have been proposed.Typically, they are derived by assuming a functional form for the
velocity profile, for instance a power law like u/ue = (y/δ )1/7, plugging it into thex-momentum equation, and analyt-
ically integrating over y. The result is an ordinary differential equation, or in some cases equations, inx for some
boundary layer parameter such as displacement thickness, momentum thickness, etc.

Most of the more recent boundary layer methods solve the partial differential boundary layer equations them-
selves, by forward marching in the streamwise direction using explicit or implicit finite difference, finite volume, or
finite element techniques.

6.4 +’s and −’s

Boundary layer methods are the simplest methods that can be used that include viscous and heat transfer
effects. Like potential flow methods, they hav ebeen around for a long time.Working computer codes are widely
available, and they are generally fairly fast and easy to use.

Although the boundary layer equations include viscous effects, the streamwise viscous diffusion terms have
been eliminated. This restricts them to attached flow, so that the streamwise velocity is always positive. There are,
however, various numerical approximations like the ‘‘FLARE’’ approximation (Reyhner and Flugge-Lotz, 1968)
that allow the equations to be marched through small regions of separated flow. Boundary layer methods are valid
only for thin shear layers, and cannot be used to compute completely viscous internal flows. Anotherlimitation is
the need for a known pressure distribution, requiring an initial potential flow or Euler analysis.

Boundary layer methods are most useful in high Reynolds number flows with thin viscous regions, where the
boundary layer has negligible effect on the pressure field.They are generally cheap to use and are therefore often
used in preliminary design studies that require many cases to be run.They are sometimes used in conjunction with a
potential flow or Euler analysis in an interactive mode. Inthese cases, typically, the inviscid analysis is used to get
an initial pressure distribution, the boundary layer analysis is used to get a displacement thickness distribution, a new
‘‘ effective’’ body shape is determined, the inviscid analysis is rerun, etc.

6.5 Example1

As an example of a boundary layer analysis for internal flow, the method of Vadyak, Hoffman, and Bishop
(1984) for flow through supersonic inlets will be used. The following figure is a schematic of a typical mixed-
compression supersonic inlet.Turbulent boundary layers develop along both the cowl and centerbody. Since there
are shock wav es in the inlet, shock - boundary layer interactions occur. Vadyak, et. al., used a second-order method
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of characteristics algorithm with discrete shock wav efitting to compute the inviscid flow through the inlet.The
boundary layer was then computed using a second-order implicit finite difference technique.Turbulence was mod-
eled by the two-layer eddy viscosity model of Cebeci, Kaups, Mosinskis, and Rehn (1973).An integral control vol-
ume analysis was used for the shock - boundary layer interactions.

The analysis was applied to a Boeing Mach 3.5 mixed-compression axisymmetric inlet. In this inlet, the cen-
terbody is translated forward at off-design (lower) Mach numbers in order to maintain supersonic flow through the
throat. Theamount of translation is given by the value of∆x/Rc, whereRc is the cowl lip radius.

In the next figure, computed total pressure profiles are compared with experimental data (Syberg and Koncsek,
1975; Koncsek, 1975).Profiles are presented on the cowl and centerbody at the axial stations specified are presented
for off-design free stream Mach numbers of 2.1 and 2.3.The effect of viscosity is obvious in the total pressure loss
through the boundary layer as the wall is approached. The boundary layer is thicker on the centerbody than the cowl
because of its longer development length.
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6.6 Example2

Results from a coupled Euler/boundary layer analysis for a three-dimensional transonic fan rotor are shown in
the following figure. The calculations were done by Pierzga and Wood (1985), using the Euler code developed by
Denton (1982), and later modified by Denton (1983) to include a simple boundary layer correction procedure.The
Euler equations were solved by marching in time using a finite-volume technique.A multi-grid procedure was used
to speed convergence. Thecomputational grid consisted of 21 points from blade to blade, 95 points in the stream-
wise direction (50 on the blade, 45 upstream and downstream), and 11 points from hub to shroud. The effect of the
boundary layers was modeled by allowing flow to pass through the walls at a rate proportional to the boundary layer
displacement thickness. This displacement thickness was computed from the von Karman integral boundary layer
equation, with a constant shape factor of 1.5 and a constant skin friction coefficient of 0.005. Depending on the flow
conditions, the calculation required 1300 to 2486 time steps, corresponding to 9 to 17 minutes of CPU time on a
Cray-1 computer.

In the figure computed Mach number contours are shown at the 10 per cent span location, measured from the
rotor tip, for three slightly different cases.For all cases the inlet Mach number at the rotor tip was approximately
1.38. Incase 1, the code was run without the boundary layer correction.The flow accelerates slightly through the
blade passage, with a normal shock at the exit. The shock, of course, is smeared over a few grid points by the
numerical procedure. In case 3, the flow was recomputed with the boundary layer correction added. One effect of
the boundary layer is to decrease the effective flow area, causing the normal shock position to shift upstream.Note,
however, that it also reduces the mass flow through the passage. In case 2, the code was again run without the
boundary layer correction, but with the back pressure artificially raised to a level that yields the same mass flow as in
case 3. This also caused the normal shock position to shift upstream, to approximately the same position as in case
3.
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7. PARABOLIZED N AVIER-STOKES ANALYSES

7.1 AssumptionsMade

There are many cases where viscous effects are important, but boundary layer methods are not sufficient.
Examples include diffusing internal flows in which boundary layers on opposite walls merge, so that there is no
inviscid region, and corner flows, where viscous derivatives in two directions are important. The Navier-Stokes
equations could of course be solved for these flows, but they are expensive and often difficult to solve.

Fortunately, for many cases there is an alternative. A reduced set of equations can be derived that are easier to
solve than the Navier-Stokes equations, but contain more physics than the boundary layer equations.These are the
so-called ‘‘parabolized’’ Navier-Stokes, or PNS, equations, and they are becoming more and more popular. They
apply throughout the flow field, which is not split into inviscid and viscous regions. ‘‘Parabolized’’ is actually bad
terminology, but it has caught on. The steady flow equations are actually of mixed hyperbolic-parabolic type.The
key point, however, is that they can be solved by forward marching in the streamwise direction.

The derivation of the PNS equations is not as rigorous as the boundary layer equations, and several different
versions appear in the literature.With some exceptions, the derivation is roughly equivalent to keeping both the
O(1) andO(δ ) terms in the order of magnitude analysis used in deriving the boundary layer equations. All methods
neglect second derivatives in the streamwise direction. In addition, special treatment is required for the pressure gra-
dient term in the streamwise momentum equation. (More on this later.)

The following equations indicate which terms in the fundamental equations are eliminated in deriving one ver-
sion of the PNS equations.

∂(ρu)
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With the PNS assumptions, the shear stressesτ xy andτ yy, and the heat fluxqy, are given by

τ xy = µ

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(7-5)

τ yy = 2µ
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(7-6)

qy = −k
∂T

∂y
(7-7)

Pressure is again usually defined by the perfect gas equation of state,
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p = ρ RT (7-8)

And the definition of total enthalpy is

H = cpT +
1

2
(u2 + v2) (7-9)

In the PNS equations, derivatives in the streamwise direction in the viscous and heat conduction terms are
eliminated. Notethat, unlike in the boundary layer equations, the cross-flow momentum equation is retained in the
PNS equations.

7.2 Govern ing Equations

The resulting PNS equations, with the viscous and heat conduction terms expanded, are as follows:
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Except for the pressure gradient term in thex-momentum equation, the PNS equations are of mixed hyper-
bolic-parabolic type in thex, or streamwise, direction, and could be solved by forward marching inx. Howev er, the
∂p/∂x term allows information to propagate upstream in subsonic flow. Note that this situation occurs not only in
completely subsonic flow, but also in the subsonic region near the wall in primarily supersonic flow. This makes a
streamwise marching procedure ill-posed.Without special treatment of the streamwise pressure gradient, exponen-
tially growing solutions called branching solutions can occur. Various procedures have been used to eliminate this
problem and allow a streamwise marching solution procedure to be used. The way the streamwise pressure gradient
is treated is often what distinguishes one PNS method from another.

For primarily supersonic flow, with embedded subsonic regions, one procedure that has been used is to either
neglect∂p/∂x, or to specify it as in a boundary layer analysis and treat it as a source term. In general, though,∂p/∂x
is not negligible, or known a priori. Another solution is to simply lag the∂p/∂x term, evaluating it from the previ-
ous marching step.However, this leads to an undesirable restriction on the minimum marching step size that may be
taken. Anotherprocedure that has been used is to set the pressure in the subsonic region equal to its value at the first
supersonic location for eachx marching station. Under some conditions, however, this still allows branching solu-
tions to occur. A somewhat different procedure, for flows with thin subsonic regions near walls, is to use approxi-
mate forms of the continuity andy-momentum equations in the subsonic region. Thishas been shown to suppress
branching solutions without any special treatment of the∂p/∂x term.

For fully subsonic flow, p in thex-momentum equation is typically treated as a function ofx only, and com-
puted iteratively using conservation of total mass flow as a basis. An improvement on this is to let
p(x, y) = p′(x) + P(x, y) in the x-momentum equation, whereP(x, y) is a known estimate for the pressure field,
from a potential flow solution for example, andp′(x) is computed during the marching solution.

So-called ‘‘partially parabolized’’ methods, in which an initial known two-dimensional pressure field is
updated iteratively using multiple streamwise marching sweeps, have been used for both primarily supersonic and
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fully subsonic flow.

As presented here, the PNS equations are for two-dimensional flow. Howev er, PNS analyses are also used,
perhaps even more often, for three-dimensional flow.

7.3 SolutionMethods

In solving the PNS equations, finite difference methods dominate, although finite volume and finite element
methods have also been used. As mentioned previously for Euler analyses, the trend is towards the use of implicit
instead of explicit methods.

7.4 +’s and −’s

Since the PNS equations include the cross-flow momentum equations, and retain viscous derivatives in both
cross-flow directions (in 3-D), they apply to flow situations that boundary layer methods can’t handle. They are used
throughout the flow field, so a separate inviscid solution may not be needed.And, since the equations are solved by
spatial marching, PNS methods are faster and use less storage than Navier-Stokes methods.

As in boundary layer analyses, however, neglecting the streamwise viscous diffusion terms means the flow
must remain attached, except for small separation bubbles that can be computed using the ‘‘FLARE’’ approximation.
A final problem with PNS methods is that they are still somewhat ‘‘researchy’’ and can be difficult to use, especially
for complex geometries.

PNS methods are most applicable to relatively high Reynolds number flows without reverse flow. They are at
the stage where they can be used in design, but are generally used more for verification and problem investigation
than for large parametric studies.

7.5 Example1

This example will show results from PEPSIG, a three-dimensional parabolized Navier-Stokes analysis for sub-
sonic flow (Briley and McDonald, 1979; Levy, McDonald, Briley, and Kreskovsky, 1980; Levy, Briley, and McDon-
ald, 1983). In this analysis, the pressure in the streamwise momentum equation is represented as
p(x, y, z) = p′(x) + P(x, y, z), whereP(x, y, z) is computed from a three-dimensional potential flow analysis, and
p′(x) is computed during the marching solution using conservation of total mass flow as a basis. Thecomputations
were done by Towne and Flitcroft as part of a joint NASA/RAE research program on intake duct flows (Towne and
Flitcroft, 1986).

Calculations were made for flow through two generic S-shaped intake ducts with offset/length ratios of 0.30
and 0.45, as shown in the following figure. Each intake duct had a circular cross-section, and an area ratio of 1.4.
Inlet Mach numbers ranged from 0.395 to 0.794, and Reynolds numbers from 3.9× 106 to 6.6× 106, based on the
inlet diameter and flow conditions. Theflow was turbulent, modeled using the model of McDonald and Camarata
(1969).

In the next figure, the development of pressure-driven secondary flow is shown for the 0.45 offset S-duct.
Computed secondary velocity vectors (i.e., the velocity in planes normal to the duct centerline) are presented at three
streamwise stations. In the first bend, the high pressure at the outside (top) of the bend drives the low energy bound-
ary layer toward the inside (bottom) of the bend, while the core flow responds to centrifugal effects and moves
toward the outside (top) of the bend. The result is a pair of counter-rotating secondary flow vortices in the lower half
of the cross-section.

In the second bend, the direction of the cross-flow pressure gradients reverses. Thepressure is now higher in
the bottom half of the cross-section.However, the flow enters the second bend with a vortex pattern already estab-
lished. Thenet effect is to tighten and concentrate the existing vortices near the bottom of the duct, in agreement
with classical secondary flow theory.

These secondary flows cause a significant amount of flow distortion. Inthe next figure, contours of constant
streamwise velocity (i.e., the velocity in the direction of the duct centerline) are shown at several stations for the
0.30 offset S-duct. As the flow enters the first bend, the boundary layer at the top of the duct initially thickens due to
the locally adverse pressure gradient in that region. Theeffects of the secondary flow soon dominate, however, and
by the end of the duct most of the low-energy flow has moved to the bottom of the duct. The horseshoe-shaped
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distortion pattern at the exit is typical of S-bend flows.

In the final figure, computed total pressure contours at the exit of the 0.30 offset S-duct are compared with
experimental data of Willmer, Brown, and Goldsmith (1981) for the same duct.It should be noted that a compressor
face hub was present in the actual duct, but was not modeled in the computations.Despite this, the agreement
between the computational and experimental results is generally very good.This case was run using a 50× 50 mesh
in the cross-plane, packed near the wall to resolve the boundary layer, with 67 evenly spaced streamwise marching
stations. Seven minutes of CPU time were required on a Cray X-MP computer.

Computational Techniques I Parabolized Navier-Stokes Analyses 31



32 Parabolized Navier-Stokes Analyses Computational Techniques I



Computational Techniques I Parabolized Navier-Stokes Analyses 33



34 Parabolized Navier-Stokes Analyses Computational Techniques I



Computational Techniques I Parabolized Navier-Stokes Analyses 35



7.6 Example2

In the following figure, computed results are presented from PEPSIS, a three-dimensional parabolized Navier-
Stokes analysis for primarily supersonic flow (Buggeln, McDonald, Kreskovsky, and Levy, 1979; Buggeln, McDon-
ald, and Kim, 1983). In this analysis, branching solutions are suppressed by using approximate forms of the conti-
nuity andy-momentum equations in the subsonic region. Nospecial treatment was required for the∂p/∂x term in
the streamwise momentum equation. The computations were done by Anderson and Benson (1983).

The problem is a three-dimensional sidewall shock - boundary layer interaction.Complex flows like this can
occur in ‘‘two-dimensional’’ mixed-compression supersonic inlets when the oblique shock generated by the ramp
interacts with the sidewall boundary layer. In this problem, the shock was generated by a 10° wedge mounted in a
wind tunnel, flush with the sidewall. The incoming Mach number was 2.94, and the Reynolds number was
1. 28× 106, based on a reference length of 0.667 ft. The flow was turbulent, computed using the model of McDonald
and Camarata (1968).

Shown in the figure are the secondary velocity vectors (i.e., the velocity vectors in the cross-flow directions,
without the streamwise component) at selected streamwise stations. The shock position as it cuts through the cross-
plane is indicated by the change in direction of the secondary velocity vectors. Thehigh pressure downstream of the
shock (which is the region nearest the wedge surface) forces the low-energy boundary layer flow to migrate upward
along the sidewall. The flow on the wedge is then drawn in toward the sidewall and the flow moving up the sidewall
turns over, forming a complex secondary flow vortex in the corner. The low energy flow thus accumulates in the
corner region, and is probably the cause of the high heating rates detected experimentally (Oskam, Vas, and Bog-
donoff, 1976). This case was run using a 40× 60 mesh in the cross-plane, packed near the walls to resolve the
boundary layers, with 90 streamwise marching stations.The calculation required 36 minutes of CPU time on an
IBM 370/3033 computer.
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8. TIME-AVERAGED NAVIER-STOKES ANALYSES

8.1 Govern ing Equations

The time-averaged Navier-Stokes equations are
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The shear stresses and heat fluxes are given by
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Pressure is again usually defined by the perfect gas equation of state,

p = ρ RT (8-10)

And the total energy is defined as

ET = ρcvT +
1

2
ρ(u2 + v2) (8-11)

The above equations are the same as the fundamental equations shown at the beginning of this presentation.
The term ‘‘time-averaged’’ refers to the procedure used to develop equations for turbulent flow that can be solved for
practical problems with today’s computer systems.They can still be used for unsteady turbulent flow, as long as the
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time scale of the unsteadiness is long compared to the time scale of the turbulent fluctuations.

For laminar flow, the only assumptions made in deriving the governing differential equations are that the fluid
is Newtonian, that it can be treated as a continuum, and that body forces and internal heat addition are negligible.
For turbulent flow the only additional assumption, and depending on the complexity of the flow it could be a big one,
is in the choice of turbulence model.Of course, further assumptions are usually made in choosing an equation of
state. Typically, a perfect gas is assumed.

For unsteady flow, the Navier-Stokes equations are of mixed hyperbolic-parabolic type.

8.2 SolutionMethods

The Navier-Stokes equations are usually solved by marching in time. Finite difference methods are the most
common, although finite volume and finite element methods have also been used. Both explicit and implicit meth-
ods have been used, with the trend today toward implicit methods. As with the unsteady Euler equations, if only the
steady state solution is of interest, acceleration techniques are often used to speed convergence, and the results may
not be time accurate.

8.3 +’s and −’s

Except for the need to model instead of actually compute turbulence, the Navier-Stokes equations are the most
complete mathematical model possible for the continuum flow of a Newtonian fluid. No other assumptions or
approximations are built into the governing equations.However, various assumptions, such as a perfect gas law, are
often used in the auxiliary equations.

Unfortunately, using a Navier-Stokes method is expensive. They require large amounts of computer time and
memory. They are also newer and less mature than simpler methods.Developing and/or using a Navier-Stokes
analysis is not necessarily straightforward, and is basically still a research area itself.

The Navier-Stokes equations can be applied to any type of flow. The expense and difficulty involved in using
them currently limits their practical application.They can be used in design problems where the potential payoff is
high enough to offset their cost, and in research into complex flow physics problems.

8.4 Example1

In this example, transonic turbulent flow was computed in a converging-diverging duct. The calculations were
made using Proteus, a user-oriented Navier-Stokes code being developed at NASA Lewis (Towne, Schwab, and Bui,
1993a,b). Turbulence was modeled using the eddy viscosity model of Baldwin and Lomax (1978). The flow
entered the duct subsonically, accelerated through the throat to supersonic speed, then decelerated through a normal
shock and exited the duct subsonically.

The initial conditions were simply zero velocity and constant pressure and temperature.Thus,u = v = 0 and
p = T = 1 everywhere in the flow field.

This calculation was performed in three separate runs. In the first run, the exit static pressure was gradually
lowered to a value low enough to establish supersonic flow throughout the diverging portion of the duct. The pres-
sure was lowered as follows:

p(t) =







0. 99

−2. 1405× 10−3n + 1. 20405

0. 1338

for 1 < n ≤ 100

for 101≤ n ≤ 500

for 501≤ n ≤ 3001

wheren is the time level. The equation forp for 101≤ n ≤ 500 is simply a linear interpolation betweenp = 0. 99
and p = 0. 1338. In the second run, the exit pressure was gradually raised to a value consistent with the formation of
a normal shock just downstream of the throat. Thus,
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p(t) =




3. 4327× 10−4n − 0. 89636

0. 82

for 3001 <n ≤ 5000

for 5001≤ n ≤ 6001

Again, the equation forp for 3001< n ≤ 5000 is simply a linear interpolation betweenp = 0. 1338and p = 0. 82. In
the third run, the exit pressure was kept constant at 0.82.

The remaining boundary conditions were the same for all runs. At the inlet, constant total pressure and tem-
perature were specified, and they-velocity and the normal gradient of thex-velocity were both set equal to zero.At
the exit, the normal gradients of temperature and both velocity components were set equal to zero. At both walls,
no-slip adiabatic conditions were used, and the normal pressure gradient was set equal to zero.

The computed flow field is shown in the following figure in the form of constant Mach number contours.
Contours are plotted at Mach numbers ranging from 0.0 to 1.2 in increments of 0.1.

Computed Mach number contours for transonic diffuser flow.

The flow enters the duct at aboutM = 0. 46,accelerates to just underM = 1. 3 slightly downstream of the
throat, shocks down to aboutM = 0. 78,then decelerates and leaves the duct at aboutM = 0. 51. The normal shock
in the throat region and the growing boundary layers in the diverging section can be seen clearly. Because this is a
shock capturing analysis, the normal shock is smeared in the streamwise direction.
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Computed and experimental static pressure distribution
for t ransonic diffuser flow

The computed distribution of the static pressure ratio along the top and bottom walls is compared with experi-
mental data (Hsieh, Wardlaw, Collins, and Coakley, 1987) in the above figure. Thestatic pressure ratio is here
defined asp/(pT )0, where (pT )0 is the inlet core total pressure. The computed results generally agree well with the
experimental data, including the jump conditions across the normal shock.The predicted shock position, however,
is slightly downstream of the experimentally measured position, probably due to turbulence model effects. Thepres-
sure change, of course, is also smeared over a finite distance.There is also some disagreement between analysis and
experiment along the top wall near the inlet. This may be due to rapid changes in the wall contour in this region
without sufficient mesh resolution.
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The three runs for this case required 709.2, 679.3, and 694.4 seconds of CPU time, respectively, for execution
on a Cray X-MP computer.

8.5 Example2

In this example, computed results are presented for unsteady flow through the same diffuser used in Example
1. Extensive experimental measurements have been made by Sajben, Bogar, and Kroutil (1984) for a variety of
unsteady flows through this diffuser. The results presented here are for an oscillating normal shock driven by an
oscillating back pressure. The computations were again made using the Proteus Navier-Stokes code.

For this case, flow enters a converging-diverging duct at a Mach number of 0.47. It accelerates to supersonic
conditions, then shocks down to subsonic conditions in the diverging part of the duct. The Mach number at the nor-
mal shock was about 1.25. The Reynolds number based on inlet height and velocity was 8.22× 105. An 81 (stream-
wise) by 51 (cross-flow) mesh was used, packed in the streamwise direction near the expected location of the normal
shock, and in the cross-flow direction near both walls. Theinlet boundary conditions were specified total pressure
pT and total temperatureTT , zero cross-flow velocity v, and extrapolation ofu. At the exit, the static pressurepe

was specified, andu, v, and the static temperatureT were extrapolated. Atthe walls, no-slip adiabatic conditions
were used, and the normal derivative of p was set equal to zero.

In the calculation, the exit pressure was first set at a low value to establish supersonic flow throughout the
duct. Startingwith zero velocity everywhere in the duct, steady conditions were obtained after 3000 time steps at a
CFL number of 5.0. The exit pressure was then raised tope/pT = 0. 82,where pT is the inlet total pressure.This
was done gradually, taking 2000 time steps at a CFL number of 0.5.The CFL number was then raised to 5.0, and
the calculation was continued until steady conditions were obtained after 16,000 additional time steps.

An oscillating exit pressure was then specified, using

pe

pT
=

(pe)0

pT
+ a sin(2π ω t)

where (pe)0/pT = 0. 82is the exit pressure at the start of the oscillation,a = 0. 01andω = 100 Hz are the amplitude
and frequency of the oscillation, andt is the time from the start of the oscillation. The exit pressurepe/pT thus var-
ied from 0.81 to 0.83. The calculation was continued for nine cycles, with 4000 time steps per cycle. Theresults for
the last five cycles were examined closely and found to be essentially identical, indicating that periodic conditions
have been achieved. Theunsteady flow field will be presented in movie form. This calculation was run on a Cray
X-MP computer, and used 6.7× 10−5 seconds of CPU time per grid point per time step. The entire calculation thus
required about 4.4 hours.

8.6 Example3

In this example, computed results using Proteus are presented for viscous laminar flow past a circular cylinder.
Although this is not an internal flow, it dramatically illustrates the complexity of flows that may be computed using a
full time-averaged Navier-Stokes analysis.

In potential flow, the streamlines for flow past a circular cylinder are perfectly symmetric. The flow over the
back half of the cylinder is a mirror image of the flow over the front half, with stagnation points at 0° and 180°. In
real life, however, at Reynolds numbers ReD larger than around 5, the flow separates from the surface, forming a
wake. For ReD between about 5 and 50, the flow is steady, with a pair of counter-rotating vortices in the wake near
the cylinder. At Reynolds numbers larger than about 5000, the wake becomes fully turbulent. For Reynolds num-
bers between about 50 and 5000, however, the flow is laminar but unsteady. Vortices are alternately shed from the
upper and lower surface, forming a Karman vortex street. Thisasymmetric flow is triggered by asymmetric pertur-
bations inherent in any physical experiment.

The flow was run at ReD = 100. Incompressibleconditions were approximated by using a free stream Mach
number of 0.2.A polar grid was used, centered on the cylinder and extending to 30 cylinder radii.A 50 (radial) by
99 (circumferential) mesh was used, packed near the cylinder surface and the wake centerline.

The exact potential flow solution for flow over a cylinder was used for the initial flow field. At the cylinder
surface, no-slip boundary conditions were used for the velocitiesu andv, and the derivative ∂p/∂r was set equal to
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zero. At the outer boundaryu, v, and p were set to vary smoothly from the fixed initial conditions to zero radial
derivative conditions in the wake. Becausethe flow was expected to be asymmetric, implicit spatially periodic
boundary conditions were used along the cut at the wake centerline.

As noted earlier, the asymmetric flow at this Reynolds number occurs in nature because of the asymmetries
inherent in any physical experiment. However, in the computations the geometry, initial conditions, and boundary
conditions are all symmetric. The Navier-Stokes equations should therefore lead to a symmetric flow at any
Reynolds number. Round-off and truncation errors are, of course, asymmetric perturbations in a computation which
could eventually lead to an asymmetric flow. Previous work has shown, however, that steady symmetric flow may
be computed at Reynolds numbers as high as 1000. In the current calculation, therefore, an asymmetric perturbation
was introduced using the following procedure.

From the initial flow field, 1000 time steps were taken at a CFL number, based on the minimum allowable
time step, of 10.Second-order time differencing was used. The computed flow field at this point is symmetric.
Asymmetry was introduced into the flow field at this time by temporarily rotating the cylinder first one direction,
then the other. The solution was then continued at a CFL number of 5. The unsteady flow field will be presented in
movie form.
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