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1. INTRODUCTION

Interest in the use of computational fluid dynamics (CFD) for the design and analysis of propulsion system
components has increased greatly in the pastéars. Seeral factors hae @ntributed to this growth, including:
(1) complex geometric design requirements for nrgamodern propulsion systems, leading toMlphenomena that
may not be intuitiely predictable; (2) increasing fuel costs, leading to potentially large cost savingsfiomell
performance impneements; (3) the high cost and/or lack atilities for extensive experimental testing; (4) the con-
tinued deelopment and impreement of sophisticated numerical algorithms for solving the coxrgajeations ge-
erning fluid flow; and (5) the increasingadability of supercomputers.

Marny different computational methodsveabeen and continue to be used for studying internal flto dfec-
tively utilize these computational tools, todagkesigner must beware of the types of methods that are applicable to
a ecific problem, and of their capabilities and limitations.

The object of this presentation, therefore, is to nem®me of the mystery from CFD by systematically dis-
cussing the various types of analyses commonly used for interwal figt should be noted that much of the mate-
rial in this presentation also applies tdeznal flavs.) Thefundamental equations gerning fluid flov will be pre-
sented first, followed by a brief introduction to solution methods used in @RBn, each analysis method, from
potential flav to time-averaged Naier-Stoles, will be discussedFor each analysis, the emphasis will be on the
simplifying assumptions made in deriving thevgming equations, the resulting features and limitations of the anal-
ysis, and the types of geometries and/fiiuations it can successfully compute. Examples of computed results will
be shavn. Thetalk will conclude with a summary of the curreverll status of CFD in propulsion research, and
the problem areas limiting their use in a design environment.

2. FUNDAMENTAL EQ UATIONS
The fundamental g@rning equations for fluid flo are presented belo The basic conservation laws, in dif-

ferential form, for mass, momentum, and enenggy be written as follows:

dp , 0(pu) . 9(pv)

ot ox oy

=0 (2-1)

9(pu) + a(pUZ) + d(puv) - _ap + 1 [Py + arxy[|

ot 0x dy 0x Re Odox oy O (2-2)

o(pv) , d(puy) , A(pV?) _

_op, 1 Dy 01y
ot 0X oy oy Re Oox oy U

(2-3)
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O(Er) , O(UEy) L O(VEr) _ _O(up _o(vp 1 [P0y 990

ot ax dy  Ox dy  RePr, 0dx ay 0
+i 9 (Uryy +vr )+i(ur +Vr )D (2-4)
RQ- % XX Xy. ay Xy yy. E

In order these equations are commonly called the continditpomentum,y-momentum, and engy equations.
For smplicity, they havebeen written in a 2-D Cartesian coordinate syst&averal different versions of the ergr
equation appear in the literature. One often seen uses total grabhdlp dependentariable, and may be written as

oot , o) a(g\;H) _ RelPrr 70, a(_;qyyg qu %TX(U,XXWW;/(urxymyy)é (2-5)
The shear stresses and heat fluxes aen &y

=2 AT @)

=2 dy A% g;g &)

R

G=k o (2-9)

ay= K5 (2-10)

An equation of state is also needed to relate pressure, temperature, and dgpgiglly, a perfect gas is
assumed, and the equation is simply

p=pRT (2-11)
For calorically perfect gases, this can be rewritten as

0o 1, O
p=(-1Er -5 pu"+v)QO (2-12)
o 2 0

In the abee euations, the independent variables are the tiraed the Cartesian coordinatesandy. The
four primary dependent variables are the dengitthe \elocitiesu andv in the x andy directions, and either the
total energy per unitolume E; or the total enthalpH. The total enagy and total enthalpmay be defined in terms
of more familiar parameters as follows:

1
Er = pc,T + 5 p(u* +V7) (2-13)
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1
H=c,T+ > (u2 + VZ) (2-14)

Additional variables appearing in these equations are the prgssheetemperaturg, the coefficient of viscosity,

the second coefficient of viscosity (usually defined ad = -2u/3), the coefficient of thermal condudty k, the
specific heat coétientsc, andc,, the ratio of specific heats= cy/c,, and the gas constaRt Additional equa-
tions may be needed to defipgk, and c,, in terms of temperature for the gas under consideration.

All of the equations ha keen nondimensionalized using appropriate normalizing conditibesgths hae
been nondimensionalized ly, velocities byu,, density byp,, temperature by, viscosity by, , thermal conduc-
tivity by k,, pressure and total energy yu?, time by L,/u,, and gas constant and specific heaup§T,. The ref-
erence Reynolds and Prandtl numbers are thus defin®b asp,u,L,/u, and Pr, = i, u?/k, T,. Note that this
Prandtl number does notyea fhysically meaningful value, but is merely defined by a combination of the normal-
izing conditions forc,, 4, andk that appear when the equations are nondimensionalized.

These fundamental equationsvéaeen written in what is called conservation, ovedience, form. This
means that the cdedients are either constant, drvariable, that their derétives do rot appear In vector form, the
divergence of a physical quantity can be easily identified in these equakionexample, equation (2-1), the conti-
nuity equation, may be written as

dp

5 t00V =0 (2-15)

The nonconservate form of the continuity equation would be

dp du dp ov dp
—tp—tUu—+p—+v—=0 2-16

ot Pox Yox Pay oy (2-16)
Writing the equations in conservation form helgsid some numerical problems that can occur when solving prob-
lems with discontinuities, such as shockwes. Italso simplifies the task of ddoping a numerical solution proce-
dure that conserves mass, momentum, and eng&tgy second point is discussed further in the next section.

Although, strictly speaking, the terriiNavier-Stokes’ applies only to the t@ momentum equations, all four
equations as a set are generally referred to as thiemgtoles equationsThey completely describe the motion of
ary continuum flaov of a Newtonian fluid. Body forces and internal heat additionehbeen assumed gkgible.
However, these terms could also be included.

Turbulence can also be computed with these equatidfith current and foreseeable computersydey, it's
not feasible to resobvthe small time and length scales required to actually computeleéndz for realistic propul-
sion system problemsTurbulence is therefore modeled using various assumptigyish the turbulence models
used for practical engineering problems, the viscosity and thermal castyuctieficients ¢ and k are locally
increased to account for the increased diffusion due tolembe. Theg are then known aséffective” v iscosity and
thermal conductivity coéitients. Theresult is that the Néer-Stoles equations normally used for turbulentvlo
look exactly lile the ones shown here.

These equations are a coupled set of nonlinear second-order partial differential equations, and are therefore
very difficult to sohe. Closedorm solutions exist only for afevery simplified casesTo lve nore realistic fluid
flow problems, assumptions are usually made about thetffiat allav these equations to be simplified.

3. NUMERICAL METHODS

Before presenting the various types of analyses that may hediéfom the fundamental equations, a short
discussion on the types of numerical methods used in CFD may be useful. It should be noted that the material in
this section is only a basic introduction. There are yrdififerent solution procedures being used todey more
detailed information see the books by Anders@mriehill, and Pletcher (1984), Baker (1983), Fletcher (1988), and
Hoffmann (1989).
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3.1 Finite Difference Methods

The most common solution procedures being used today in CFD are finite difference mitleofisite dif-
ference method, the dedlives in the gaerning equations are approximated by finitefetiénce formulas.The
resulting finite difference equations are algebraic, and can be solved on a digital computer.

3.1.1 Computationdlesh
The first step in using a finite thfence method is to construct a finite difference mesh in tivedfimain of
interest, as shown in the following figure for a simple two-dimensional square domain.

y

Ay

AX

i-1 i i+1 X
Computational mesh.

In this mesh, the Cartesian coordinateendy both vary from 0 to 1, and the mesh &y spaced in both
directions, althouglix need not be equal ®y. The grid points are labeled with the indideendj in thex andy
directions, respeactély.

Of course, in real-world applications thewil@omain is not normally square. Andstisually desirable to
cluster grid points in certain regions of thewfloFor example, in a viscous analysis grid points should be concen-
trated near solid boundaries for proper resolution of the steep gradients in the boundary layers. Therefore, the go
erning differential equations are typically transformed from arvemyg spacedx, y coordinate system in phical
space to anvenly spacedf, n coordinate system in computational space. The transformed equations are then actu-
ally solved on anwenly spaced square grid in computational space. In this discussion, we can thus use the simple
mesh shown in the figure, with no loss in generality.

3.1.2 Fnite Difference Formulas

The finite difference formulas used to approximate thevaéres in the gaerning differential equations may
be dewed using Taylor seriesx@ansions. Br example, gien a function f(x,y), the value off at the point
(x +Ax, y) may be found by expandirfgn a Taylor series about the poim, §) as bllows:

_ af  (Ax)? °f  (Ax)® 0°f
f(x+Ax,y)—f(x,y)+Ax&+ o W+ 3 ﬁ+

(3-1)
Solving foro f/0x,
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of _ f(x+Axy)- f(x,y) Ax0*f (Ax)? aif+

X AX 21 9x2 31 ax3

or,

of _ f(x+Ax,y)-f(x,y)
ax Ax + O(AX)

where the notatio®(AX) is used to represent the sum of all the terms of afdeand higher This can be written
somewhat more compactly using subscripts to represent locations in the finite difference mesh, as follows:

Pfo _ fiej— i
R TR (3-2)

This is the first-order forward difference formula for approximafifigox. The termO(AXx) is the truncation error.

A first-order backward difference formula may be #tiby using a Rylor series expansion for at the point
(X = AX,y).

of  (Ax)? 0°f  (AX)® 0°f .

f(x—Ax,y):f(x,y)—Ax&+ TR 3 od (3-3)
Solving ford f/0x, and using inde notation,
ofo _ fij—fig
—_ = ——+0(A 3-4
Bx0, = ax O (3-4)
By subtracting equation (3-3) from (3-1), we get
_ of (Ax)® 03 f
f(x+Ax,y)—f(x—Ax,y)—ZAx&+2 3 ﬁ-k (3-5)
Solving ford f/dx, and using inde notation,
Pfo _ s = ficg 2
. = ___ ) @ 7 A -
Bxn, T ox O (3-6)
This is the second-order centered difference formul@ fdd x.
Adding equations (3-1) and (3-3)vgs
Ax)? 0°f
f(x+Ax,y)+f(x—Ax,y):Zf(x,y)+2(2)? ot 3-7)
This can be solved fod? f/dx?. Using inde notation,
D°f0 _ fiaj—2fi )+ fig +O(AX)? (3-8)

Bx2[]; (AX)2

This is a second-order centered difference formul@%6tdx.

A second-order centered difference formula for mixed partiavetivies may be desied by first noting that
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1 _ om0
axdy ox yDO

Using equation (3-6) fad f/dy,

0o%f O :ini,jﬂ_fi,j—lD_'_o(Ay)z
Loxoyll; oxd 2Ay 0

Using equation (3-6) again, for tB®x terms, we get

Dazf o _ fi+1,j+1‘ fi—l,j+l_ fi+1,J'-l+ f

i-1,j-1
Dxay; 4DxDy = +0[(Ax)%, ()] (3-9)

3.1.3 ExplicitSolution Procedures

To actually sohe a rtial differential equation, the finite difference formulas kgtiin the previous section
are used to approximate each dative in the differential equation. As a simple example, consider the one-
dimensional unsteady heat conduction equation.

aT 9T

E =-a W (3'10)

HereT is the temperature and= k/pc,, is the thermal diffusivity.

To lve this equation, we couldvaluate equation (3-10) at timevig n, where the temperature is assumed
known. Usingfirst-order forward differencing for the time degiive, and second-order central differencing for the
diffusion term, equation (3-10) may be approximated by the following finite difference equation:

=T - i~ 2T+ T
At (Ax)?

(3-11)

Note that the time &l is denoted by a superscript, and the spatial location is denoted by a subscript. This seems to
be a standard cwantion for finite difference methods.

The only unknown in this equation T, This is called amexplicit method. Thesolution can be adwced
in time by writing equation (3-11) at each grid pdirgnd solving each of the resulting equations T8t indepen-
dently.

Explicit methods hee successfully been used in a widariety of CFD applications. The biggest adtage
of explicit methods is simplicityThey are relatvely easy to understand and to prograithey do haveone big dis-
adwantage, havever. It can be shown that, for a stable solution, the time Atemust be less than some limiting
value that depends on the spatial grid spacihfe smaller the grid spacing, the smalidrmust be. This is the
well-known Courant-Friedrichs-Lewy (CFL) condition.

3.1.4 ImplicitSolution Procedures

Instead of ealuating equation (3-10) at timeuvid n, suppose we\&luate it at time leel n + 1, where the tem-
perature is unknen. Usingfirst-order backward differencing for the time detive, and second-order central dif-
ferencing for the diffusion term, we get

Tin+1 _ -I—in y Tirril _ 2Tin+l + Tin_‘*il
At (Ax)?

(3-12)

There are three unknowns in this equatiomZ}, T and T\, This is called aimplicit method. W& can rear
range equation (3-12) in the following form:
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aT X +b T+ T =S (3-13)

where the coefficients of the unknownsd&een collected inta;, b;, and ¢;, and known terms hae been collected
into the source terr§. When equation (3-13) is written at each grid pajttihe result is a set of coupled algebraic
equations that must be solved simultaneouBiymatrix form, these equationsvyea tidiagonal coefficient matrix,
which is very common in finite difference CFD method&rtunately there are very efficient solution procedures
for tridiagonal systems of equations.

Like explicit methods, implicit methods ti@ dso successfully been used in a widgiety of CFD applica-
tions. Implicit methods are more di€ult to program and require more computer time per time step ttaitie
methods, but do not i@ a $ability limit on the size of the time step. (At least in thedor simple equations.
There is no exact stability theory for more complicated equatiorshikcompressible Néer-Stolkes equationsin
practice, its dten found through experience that there is a limit on the time step &imefpe implicit methods.It’s
typically larger than the limit for explicit methods,vever.) The trend today seems to beveod implicit methods.

3.1.5 Extensioto Systems of Equations and Multiple Dimensions

The abwe dscussion is for a single gerning equation in one dimension. The extension to systems of equa-
tions is straightforward for explicit method&or implicit methods, the situation is more complicat&éadr systems
of coupled gwerning equations, which are common in CFD, the eaent to equation (3-13) is a matrix equation.
For a g/stem of four equations, the ctiefentsa, b, and c are 4x 4 matrices, and the unknown dependemtableT
and the source teri@are 4-elementectors. Wherwritten for all the grid points, the result is a block tridiagonal
system, instead of a scalar tridiagonal system.

The extension to two- or three-dimensional problems is again fairly straightforward for explicit mefioods.
implicit methods, each time step is usually split into sub-steps, one in each of the coordinate difEleésaesolu-
tion algorithms are called alternating-direction-implicit (ADI) methods.

3.1.6 ConservativBroperty of a Solution Procedure

In CFD, the gueerning differential equations express the basic conservation laws at a point in space. If these
equations could be solved by integratirnvgraall points in space ‘@ll’’ being infinite), mass, momentum, and eyer
would be automatically conserd. Unfortunatelywhen the equations are solved numerically an't use an infi-
nite number of pointsWe therefore hae  worry about whether or not mass, momentum, andggrese consered
in the numerical solution.

Suppose we applied the integral form of the conservation laws to the entiféefth By integrating numeri-
cally using the grid points on the boundaries of the lomain, we could deslop a discretized form of the irgeal
consenration lavs. Suppose&ve then write the finite difference representation of thesgning differential equations
at every grid point in the flav domain, and sum them all ugif. the terms at the interior grid points all cancel, and the
remaining terms arexactly the same as those in the discretized form of the integral conservation laws, the numeri-
cal procedure is said to be consemnati

Note the distinction between the consgie poperty of the numerical procedure, and the conservation form
for the gwerning differential equations, discussed in the previous sectdriting the differential equations in con-
senation form is important for flows with discontinuities, dikhock waves. It does not, by itself, imply that the
numerical solution will automatically conservass, momentum, and eggr It does, havever, make it relatively
easy to construct numerical procedures that de ke conservate poperty.

3.2 OtherMethods

Besides finite difference methods, masther methods hee been used in CFDSome of these, l&k panel
methods, the method of characteristics, orgrdemethods, are specialized methods used in a particular type of
CFD analysis, and will be mentioned in subsequent sectibmste are a couple of other general solution methods
that will be mentioned very briefly here,wever. These are neer and not as widely used in CFD as finitdeutif
ence methods, but thelo havesome strong advocates.
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3.2.1 Fknite Volume Methods

In finite difference methods, the starting point is a set of partial differential equations that represent the basic
conseration laws indifferentialform. Thealgebraic equations that are ultimately solved arevelby wsing finite
difference formulas to approximate the detives in the differential equations.

Finite wlume methods, on the other hand, start with the basic conservation lisegal form. Thesdaws
are applied to a control volume surrounding a grid point in the computational mesh. By doing thiefayriel
point, and summing, a set of algebraic equations isatkttiat can be solved for the unknownsfleariables.

It can be seen that finitolume methods takthe discrete nature of the numerical problem into account from
the very bginning. The are conserative by their very nature.They dso allov complicated flav domains to be
discretized relatiely easily without the need for a transformation between physical and computational space.

3.2.2 Hknite Element Methods

Finite element methods are part of a more general class called weighted residual mgtimiteswvolume
methods can also be classified as weighted residual methadsgbactually resemble finite difference methods
when implemented. A weighted residual method assumes that the solution may be represented analytically.

To illustrate, we agin use the one-dimensional heat conduction equation, equation (3-10), xsnqiee
Fdlowing the discussion in Volume 1 of Fletcher (1988), in a weighted residual method an approximate, or trial,
solution of equation (3-10) would be represented as

J
T=3a0e(9 (3-14)
]:

wherea,(t) are unknown coefficients, angl(x) are known analytic functions called trial functions. Theyéad is,
the more accurate the solution will be.

Substituting equation (3-14) into (3-10) and rearranging yields
oT T _ o D3 092 O .
- o = [ a0 (N0 55 [ 3¢ (0= R (3-15)
ot ax2 at%’ ™ angél ™
SinceT is an approximate solution, it does not exactly satisfy equation (3Rli8)called the residual.

The unknownsa (t) are found by requiring that
J'Wm(x)Rdx: 0 (3-16)

where the integral isvaer the computational domain, ami= 1, 2,---, M. This represents a systemMfequations

for the J unknownsa;. For a well-posed problem, of course, we must chddse J. The choice of the weighting
functionsW,, determines which method in the class of weighted residual methods is being used. If the weighting
functions are the same as the trial functions, i.8V{{x) = ¢,(X), this is called a Galerkin method. Most finite ele-
ment CFD methods are Galerkin methods.

Up to naw, this discussion has been about weighted residual methods in géf¥iaitd.element methods Y&
two particular additional features. First, the unknown Goints a;(t) are talen as the unknown values of the
dependent variabl€ at a set of nodes in theflalomain. Thusequation (3-14) becomes

J
J:

The second feature of a finite element method is that the trial fungtjoxisare simply interpolating functions to
represent values between node points. These interpolating functions are usualljolingaadratic functions are
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also used.

To summarize, in a finite element method the unknalependent variables are represented by a continuous
analytical function. This function is constructed using the unknowns at discrete nodes in whdoftoain, with
interpolating functions to represent the values of the dependent variables between nodérpoiats. up with a
system of] algebraic equations to sehfor theJ unknovn dependent variables, whetés the number of nodes in
the flov domain. Finiteelement methods ke traditionally been particularly good for complicatedwfldomains,
since the nodes need not be based on a uniform rectangular grid.

4. POTENTIAL FLO W ANALY SES
4.1 AssumptionsMade

Potential flov analyses are among the oldest and most well established methods currently being used for inter
nal flov. The flav must be irrotational (i.e., theorticity [0 xV is assumed to be zero). Except for & feery spe-
cialized flav situations, viscosity introduces vorticity into thewvilo The flav is therefore assumed to beviscid.

The flaw is dso assumed to be steady and isentropic.

The following equations relate the assumptions made for potentialtdldhe terms in the Naer-Stokes
equations, showing the terms that are eliminated. (Note that, sincewtie #ieady the time denatives havealso
been eliminated.)

o(pu) , A(pv) _
0X oy

2
d(pu°) N d(puv) __ @ + i D7y 0Ty [ 4-2)
ox  ay  ox X oyD
Aowy) o) __0p 1 Phy 0T (4-3)
ax oy  dy x oy
O(UEr) , O(VEr) _ _d(up) _o(vp) 1 [Pgy AT
ox  dy ox 0y rHox - ay
1 0o 0 J
+R7e( (Uryy + VTgy a/ (uryy + VTW)B (4-4)

OxV=0 - Op=V (4-5)

0 (4-1)

Since the flw is assumed to be inviscid, all the viscous and heat conduction terms are elimiRatedtial
flow methods are thus most valid at high Reynolds numbers. @heskumption, havever, is irrotationality Snce
OxV =0, the \elocity can be expressed as the gradient of a séalarle. This is because mathematically
Ox (Og) is identically equal to zero for grscalar quantityp. In the current context, the scalais called the gloc-
ity potential. The reason for the last assumption, isentropig ¥ldl be given in the next section.

4.2 Governing Equations

The irrotationality condition allows the velocity field to be described by a single equation foeltioityw
potentialy. To derive tis equation, we start with the continuity equation. Setlirgp, andv = ¢,

d d
ax (ooy) + 3y (opy) =0
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Expanding the derétives, continuity may be written as

0 dp
p((”xx + ¢yy) T @4 & y ay =0 (4'6)
Using thex-momentum and continuity equations we can write
op__ 0u_ o
ax - Ploax PVay
But O xV =0 givesdu/dy = ov/ox. Therefore
0P 0u_ v
ox 7 ox ox
__0orf+vO
Poxd 2 O (@-7)

Similarly, using they-momentum and continuity equations we can write

ap 9 W’ +v2Q
=-p— 4-8
ay - Poyd 2 O (4-8)
Combining equations (4-7) and (4-8), we get
2 2
__ Jou+veg
dp=-pdg——p
W+ N
= —pdDTD (4-9)
O O
Now, dnce we assumed isentropicvilahe speed of souralis defined bya” = dp/dp. Thus
dp_ _»p D¢’2
do=— = Di
Prae ™ & O 2
Therefore,
0 __»p + 4-10
67 - ? ((”x(”xx wy(pxy) ( - )
o __r + 4-11
ay ? (¢x¢yx ¢7y¢7yy) (4-11)
Substituting these expressions into equation (4\@&sgi
&0 D A,
Q‘ PR G E‘I"W ;zy Poy =0 (4-12)
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This equation, which is valid for compressible potentiakflis called the full potential equation. It is a non-
linear second-order partial differential equation, and is in non-conservation fobrime speed of sound - oo,
implying incompressible flg, this equation reduces to Laplasejuation.

Pux T+ Pyy = 0 (4'13)

This equation is still second-ordéut linear and therefore easier to solve.

Once the velocity potential, and hence the velocity field itself, is known, the pressure, temperature, etc., can
be computed from the momentum and energy equations.

A few words should be said about the mathematical character of the potentigdgfiation. (Thisalso
applies to the Euler equations to be discussed lat@r)subsonic flav, the equation is elliptic. This means that the
solution at a point depends on the conditions at all the boundaries ofwhdoftmain, including the denstream
boundary For supersonic fl@ howeve, the equation is hyperbolic, and the solution at a point depends only on the
upstream conditions.

4.3 SolutionMethods

For incompressible flows, since thevgming equation is lineacomplex flows can be described by superpo-
sition of solutions for simpler fles. A common procedure is to distribute a series of point sources and sinks, of
properly varying strengths, along the surface of the durctthree dimensions these procedures are called panel
methods. Thencompressible equation can also be solved using canvaléable methods, in which a comple
geometry is transformed into a simple geometry using conformal mappliogever, this procedure is limited to
two-dimensional fls. Thereare also seeral iterative rumerical techniques thatVebeen used.

Compressible flows are sometimes computed by solving the incompressible problem and applying a com-
pressibility correction.For dender geometries that onliglightly’’ perturb the uniform external flg amall pertur
bation methods can be used. This assumption allows the full potential equation to be linearized, and therefore more
easily solved.

And finally, the potential flav equations may also be sel¢ using finite difference, finite volume, and finite
element methods.

4.4 +'s and —'s

Potential flav methods hee been around for manyears. Themathematical theory is well understood, and
the potential equation is refedly easy to solve, especially for incompressiblevfldrhere are mancomputer codes
awailable, and theare generally easy to use.

One of the limitations of using potential\ilanethods for internal fl@ is that viscous effects are often impor
tant and potential fle is, of course, wiscid. Theassumption of isentropic flo means that these methods are,
strictly speaking, not valid across shockwss. However, if the Mach number normal to the shock is near one the
flow is nearly isentropic. In addition, methods that sofite potential equation in non-conservation form, as pre-
sented earlieoften hare rouble conserving mass (the so-called “leakagesblem).

Potential flev methods are most useful in subsonic or transonic flows in which the pressure distribution is of
primary interest and in which viscoudegdts are relatiely minor. They are generally cheap to use and are therefore
often used in preliminary design studies that requireyntases to be runThey aso can be used to determine a
pressure distribution for boundary layer or parabolizedgi®ieStoles analyses. The full potential equation is the
basis for may transonic flav analyses.

4.5 Examplel

In the following figure, potential flo results are presented and compared with experimental data for a three-
dimensional‘scoop’ inlet. Theextended lower lip, or scoopx&nds the angle of attack range for the inlet by influ-
encing the incoming fie in such a way as to inhibit fle separation just inside the lower lip. Thevilavas com-
puted by Kao (1981) using the 3-D incompressible panel method of Hess, Mack, and Stockmari(t @#0%bi-
trary inlet, this analysis first computes four fundamental solutions — uniform free-streapafiilel to each of the
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three coordinate axes, plus static operation of the inlet. Superposition of these four solutions is used to obtain the
final result. Compressibility is modeled using the compressibility correction of Lieblein and Stockman (1972).
Approximately 700 panels were used to model the geomelrigh included a centerbody and downstreater-

sion not shown in the figure.

The inlet was run at an angle of attack of.5The free stream velocity was 41 m/sec, resulting in a throat
Mach number of 0.63. The static to total pressure naftp is plotted as a function of axial distance at four circum-
ferential locations. The experimental data weresiteky Abbott (1977). The agreement between the potental flo
results and the experimental data is generally very good. The poorest agreement is alavgy ivelmal suiice,
and is probably due to boundary blockageas and possible flo separation. Theseffects, of course, are not
modeled by the potential floanalysis.

12 Potential Flow Analyses ComputationalTechniques |
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4.6 Example2

The second potential floexample vas computed by Reyhner (1982). He studied the transomni¢Htough a
typical turbofan inlet with an asymmetric lip, as wimoin the following figure. The tilt of the inlet centerline with
respect to the engine centerline is intended to reduce drag by aligning the inlet with the local incenahgdise
conditions. Dimensionin the figure are in meters for the full-scale inlet.

Reyhners method solves the full 3-D potential equation using an iteraticcessie line over-relaxation
(SLOR) finite difference method. The computational grid near the inlet is shown in the figure.

In the nat figure, computed and experimental surface Mach numbers are plotted as a function of axial dis-
tance at three circumferential locations. The experimental data are unpublished results from a 0.16-scale model test
in the Boeing % 9 foot low speed propulsion wind tunnellhe angle of attack was 28nd the free streanrelocity
was 90 nisec.

The agreement is generally very good except along the bottom (aidiisurfice. Asin the previous >eam-
ple, this disagreement is belésl due to blockage effects of the thickening boundary laykich is close to separa-
tion, just inside the lower liplt should be noted that three other cases, with lower peak Mach numbers, were also
computed and agreed more closely with experiment.

14 Potential Flow Analyses ComputationalTechniques |
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5. EULER ANALYSES
5.1 AssumptionsMade

Like potential flav analyses, Euler analyses areigtid. Havever, unlike potential flav analyses, that is the
only assumption that is made. Theafloan be rotational, non-isentropic, ange unsteady.

The following equations relate the assumptions made for Eulertdldhe terms in the Naer-Stoles equa-
tions, showing the terms that are eliminated. These equations are written for steabiytftbat is not required.

o(py) , 9(pv) _ 0
0Xx oy

2
apu’) , d(pwy) _ _9p , 1 D1y 9750 (5-2)
0X oy 0X X oy O
dpwy) , Apv’) __3p, 1 Py BT (5-3)
ax dy dy x oyl

O(UEr) , OVEr) __3(up) d(vp) 1 [P 0G0
0X oy 0x oy rUox oyO

(5-1)

1 0o

a
+— UTyy + — (Uryy + V1) 5-4
Re{ ( X; y. ay ( Xy yy)[| ( )

5.2 Governing Equations

The Euler equations are thus simply thevidaStokes equations with all the viscous and heat conduction
terms eliminated For steady flav, the resulting equations are:

Ay , A(pv) _

x oy =0 (5-5)
d(pu?) d(pw) _ adp

ax dy X (5-6)
a(puv) 0(pv?) __dp

ox " ay - aiy S

0(uEr) + o(vEr) _ _o(up) _a(vp) (5-8)

0x ay 0x ay

As in potential flay, these equations are therefore most valid at high Reynolds numbkesie Naier-
Stokes equations, the Euler equations are a set of coupled nonlinear paeiantidl equations, but first-order
instead of second-ordeFor steady fla, their mathematical character is the same as the potential equation — ellip-
tic in space for subsonic floand hyperbolic in space for supersonic\lo For unsteady fiar they are hyperbolic in
time.
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5.3 SolutionMethods

The Euler equations are most commonly solved using finitereiifce techniquest-or supersonic flav, the
equations are hyperbolic in space and can be solved by forward marching in the streamwise di@ctidosonic
flow they are elliptic in space, but hyperbolic in time. Steady subsonicy@r gipersonic) flows are therefore often
solved by marching the unsteady equations in time until a steady state is reBoltieexplicit and implicit meth-
ods hae leen used. The trend seems to lveatd implicit methods. If only the steady-state solution is of interest,
various techniques are often used to accelerat@epgence, and the results may not be time-accur&eme
researchers are using multi-grid techniques, in which a series of grids from coarse to fine are used tovgpeed con
gence to steady state. Finite volume and finite element metheglsi$mbeen used.

The method of characteristics is the most nearly exact method for numerically solving hyperbolic partial dif-
ferential equations. It can be used to sedhe Euler equations for steady supersoniw,flar unsteady subsonic or
supersonic fla. With this method the partial differential equations reduce to ordinary differential equations along
characteristic directions. The trend todbgweve, seems to be tward the more easily implemented finitefdif
ence methods.

5.4 +'s and —'s

The Euler equations include rotationdleets. For instance, if the flo entering a duct has a boundary layer
like profile, secondary flw devdopment and een flow sparation can be computed with the Euler equatidirey
are also valid across shoclkaves. WIth finite difference methods, shockavwes ae generally ‘taptured’ by the
solution and smeared/er a few gid points. Some form of smoothing, or artificial viscosisyusually required for
stability or to eliminate oscillations. Because thevfie inviscid, there are no shear layers with large gradients to
resole and therefore fewer grid points are needed than for a Navier-Stokes solution.

For mary internal flows, havever, viscous effects are important and their omission may be a limitafibase
codes can also be difficult to run because of the need to select time step size to optiveigeramy parameters
controlling artificial viscosityetc. Time dependent methods can be long running, although still faster tivéar-Na
Stokes methods because fewer grid points are needed.

Like potential flav analyses, Euler analyses are most useful for flows in which the pressureutistrib of
primary interest and in which viscous effects are neditiminor. They can be used to uestigate candidate designs
of propulsion system components, and to compute a pressureutiisirifor use by a boundary layer or parabolized
Navier-Stokes analysis.

5.5 Example

The following figure shows Mach number contours for an oblique shawkr&flecting of a flat plate. The
free stream Mach number was 2.4, and the shock was generated byedde.

These results were computed using Proteus, a user-orienwer-Stoles code desloped at NASA Lwvis,
run in Euler mode (@wne, Schvab, and Bui, 1993a,b)with this code, the unsteadywgming equations are sad
by marching in time using an implicit finite difference technique. Artificial viscosity terms were used to minimize
the odd-gen decoupling resulting from the use of centraff@liéncing, and to control pre- and post-shock oscilla-
tions. A51x51 grid was used, equally spaced in both directions, ancergemce to steady state was obtained in
about 400 time steps.

Since Euler methods are rotational and non-isentropic, the Rankine-Hugoniot relations are satisfied across the
shock vaves. Note,however, that the shocks are not sharp discontinuitiesare smearedver a few gid points.
They could be sharpened by using more grid points, or by packing grid points more tightly in the location of the
shocks. Ishould also be noted that because Euler methodsvaseiih no boundary layer buildup occurs on the flat
plate. Theactual flav, with a shock - boundary layer interaction, would look quite different near thecsuof the
plate.
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6. BOUNDARY LAY ER ANALYSES
6.1 AssumptionsMade

Potential flev and Euler analyses areviscid. At high Reynolds numbers these analyses can yield good
results for pressure distributions, butytieannot predict viscous or heat transfdeefs. Thidimits their usefulness
for internal flows, where these effects are usually important.

The oldest generalized methods to include thefeetsfare called boundary layer methods, firseldped by
Prandtl in 1904. He noted that in nyaapplications at high Reynolds numbers, viscous effects are confined to a rel-
atively thin region near solid boundaries called the boundary lajrederiving the boundary layer equations, the
thickness of this gon is assumed small reblai 0 the size of the geometry being analyzed, and is said to be of
0O(9). Thedensity temperature, streamwiselocity, and total enthalp dong with dervatives in the streamwise
direction, are assumed to be@fl). Gradientsrormal to the surface are expected to be mugetahan gradients
along the surface, and are therefore assumed to beQfflef). And, since the Reynolds number must be high for
the boundary layer approximation to balig, Reis assumed to be @(1/5%). Theseassumed orders of magnitude
are to be applied to each term in the fundamentaiek&toles equations, and terms@€1) are to be retained-or
simplicity we will restrict the order of magnitude analysis to steady. flo

In the fundamental continuity equatiad{pu)/ox = O(1). Thisimplies thatd(pv)/dy must also b&(1), and
thereforev = O(9).

In the x-momentum equation, thed(pu?)/dx and d(puv)/dy are bothO(1). Sincethe viscous terms must
approach zero at the edge of the boundary Jay#dx must also b&(1). Examiningthe shear stress definitions, it
can be seen thag, = O(1), whiler,, is made up of a®(d) and anO(1/3) term. Therefore,

1 Ory 5
Re 0x =0()
1 01y 2
— =0(o o1
Re 3y =06)+0W)

In they-momentum equatiod( puv)/dx andd(pv?)/dy are bothO(J). Again examining the shear stress defi-
nitions, it can be seen that, = O(1). Therefore,

1 0ny

— 3
Re ox =0(5°) +O(0)
1 dryy
Re oy O

The 0p/dy term is the only one left to be examined in thmomentum equation. Since the largest of the other
terms in the equation {3(J), d p/dy must be at mosd(J).

In the total enthalpform of the energy equation, badfiouH)/0x andd(pvH)/0y areO(1). Notethat thev
term in the definition oH may be eliminated. The heat flax = O(1) andq, = O(1/5). Therefore,

1 Ogy _ 5

Re,PrrW_O(J)
1 0qy

—2 =0(1

Re Pr, oy (@)

Examining the shear stress terms in the energy equation, we get
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i a(uTXX) —_

Rg 0x 0)
R—lq % = 0(5% +0O(6?)
qu a(l;;xy) =0(s%) +0(1)

The folloving equations summarize which terms in the fundamental equations are eliminated in deriving the
boundary layer equations.

o(py) , 9(pv) _
0X oy

0 (6-1)

opu) , Apw) __0p, 1 g

0X oy o0x Re Dox oy O

Apwy ) _ 0p 1 @ry om0 .
ax y Zg+m ©-3)

(6-2)

d(puH) d(pvH) _ 1 g, 09yD
0X oy RePr, Dox oy U
1 Uo 0 O
+ Ria XX VTxy) + @ (urxy +%)g (6-4)

With the boundary layer assumptions, the shear stygasid heat fluxy, are gven by

_ @y oug
Ty = H x + @D (6-5)
oT
dy =K dy (6-6)

Pressure is usually defined by the perfect gas equation of state,
p=pRT (6-7)

The definition of total enthaypbecomes

H = c,T+ 2 (12 ) (6-8)

In the boundary layer equations, all secondvaévies in the x, or Sreamwise, direction are eliminated, as are
mixed second deratives. Secondlerivatives in they, or aoss-flav, direction are retained. In addition, the entire
cross-flav momentum equation is eliminated.
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6.2 Governing Equations

The resulting boundary layer equations, with the viscous and heat conduction terms expanded, are as follows:

o(py) , 9(pv) _

0 6-9
0Xx oy (6-9)
d(pu’) d(pw) _ dp. . 1 4 O dun

=__re, - 477 6-10
0Xx ¥ oy dx+Rq ayEfjayD ( )

0(puH)  d(pvH) 1 ogoadrTg 1 0[O odug
=- — Kk — — — u— -11
0X ¥ oy RePr, oy O dy D+ Re dy i oyQ (6-11)

Note that the pressure gradient term is written as an ordinamgiiegj Snce with the boundary layer approx-
imation,dp/dy = 0. Thepressurep,(x) is generally assumed to be kmo, typically from a potential flw or Euler
analysis, or fromperiment. Insome internal flo gpplications, the pressure is computed as part of the boundary
layer solution using conservation of total mass/ftate as a basisThe boundary layer equations are parabolic in
the streamwise direction, and can therefore be solved by forward marcking in

6.3 SolutionMethods

The earliest solution methodswvioped for the boundary layer equations weregraemethods.Many dif-
ferent integral methods ta keen proposed.Typically, they are derved by assuming a functional form for the
velocity profile, for instance a powenidike u/u, = (y/6)Y7, plugging it into thex-momentum equation, and analyt-
ically integrating @er y. The result is an ordinary dérential equation, or in some cases equationg,far some
boundary layer parameter such as displacement thickness, momentum thickness, etc.

Most of the more recent boundary layer methodsesthle partial differential boundary layer equations them-
seles, by forward marching in the streamwise direction uskpdjat or implicit finite difference, finite volume, or
finite element techniques.

6.4 +'s and —'s

Boundary layer methods are the simplest methods that can be used that include viscous and heat transfer
effects. Like potential flav methods, the havebeen around for a long timéMorking computer codes are widely
awailable, and theare generally fairly fast and easy to use.

Although the boundary layer equations include viscofects, the streamwise viscous diffusion termgeha
been eliminated. This restricts them to attached, fto that the streamwise velocity isnalys positve. There are,
however, various numerical approximations dikhe ‘FLARE’’ approximation (Reyhner and Flugge-Lotz, 1968)
that allav the equations to be marched through smajiores of separated fdo Boundary layer methods aralid
only for thin shear layers, and cannot be used to compute completely viscous intemalAtetherlimitation is
the need for a known pressure distribution, requiring an initial potentrabfi&uler analysis.

Boundary layer methods are most useful in high Reynolds number flows with thin viscous regions, where the
boundary layer has negligible effect on the pressure fielty are generally cheap to use and are therefore often
used in preliminary design studies that require yra@ses to be runThey are sometimes used in conjunction with a
potential flav or Euler analysis in an interagg node. Inthese cases, typicallthe inviscid analysis is used to get
an initial pressure distriliion, the boundary layer analysis is used to get a displacement thickness distribution, a ne
“ effective” b ody shape is determined, the inviscid analysis is rerun, etc.

6.5 Examplel

As an example of a boundary layer analysis for internal, floe method of ®dyak, Hoffman, and Bishop
(1984) for flav through supersonic inlets will be used. The following figure is a schematic of a typicad-mix
compression supersonic inleturbulent boundary layers deop along both the cowl and centerbodynce there
are shock aves in the inlet, shock - boundary layer interactions ocdadyak, et. al., used a second-order method
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of characteristics algorithm with discrete shocavefitting to compute the inviscid filo through the inlet. The
boundary layer w&s then computed using a second-order implicit finite difference techniguaulence was mod-
eled by the two-layer eddy viscosity model of Cebeci, Kaups, Mosinskis, and Rehn (A@78)egral control ol-
ume analysis was used for the shock - boundary layer interactions.

The analysis was applied to a Boeing Mach 3.5 mixed-compression axisymmetric inlet. In this inlet, the cen-
terbody is translated forward at off-designwigy) Mach numbers in order to maintain supersoniwv floough the
throat. Theamount of translation isggn by the value ofAX/R., whereR; is the cowl lip radius.

In the net figure, computed total pressure profiles are compared with experimental datay @ybi€wncsek,
1975; Koncsek, 1975)Profiles are presented on the cowl and centerbody at the axial stations specified are presented
for off-design free stream Mach numbers of 2.1 and ZI# effect of viscosity is obvious in the total pressure loss
through the boundary layer as thallws approached. The boundary layer is thicker on the centerbody thamthe co
because of its longer dgopment length.
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6.6 Example2

Results from a coupled Euler/boundary layer analysis for a three-dimensional transonic fan rotor are shown in
the following figure. The calculations were done by Piaragl Wobod (1985), using the Euler codevdeped by
Denton (1982), and later modified by Denton (1983) to include a simple boundary layer correction proCeelure.
Euler equations were s@d by marching in time using a finite-volume technigAanulti-grid procedure was used
to speed corergence. Thecomputational grid consisted of 21 points from blade to blade, 95 points in the stream-
wise direction (50 on the blade, 45 upstream amandtream), and 11 points from hub to shroud. The effect of the
boundary layers was modeled by allowingilm pass through the walls at a rate proportional to the boundary layer
displacement thickness. This displacement thickness was computed froontKamwnan integral boundary layer
equation, with a constant shape factor of 1.5 and a constant skin frictificienebf 0.005. Depending on thewlo
conditions, the calculation required 1300 to 2486 time steps, corresponding to 9 to 17 minutes of CPU time on a
Cray-1 computer.

In the figure computed Mach number contours are shown at the 10 per cent span location, measured from the
rotor tip, for three slightly different case&or dl cases the inlet Mach number at the rotor tip was approximately
1.38. Incase 1, the code was run without the boundary layer correclioa.flov accelerates slightly through the
blade passage, with a normal shock at tkie elhe shock, of course, is smearedepa few gid points by the
numerical procedure. In case 3, thenflwas recomputed with the boundary layer correction added. One effect of
the boundary layer is to decrease tHective flow aea, causing the normal shock position to shift upstreidate,
however, that it also reduces the masswithrough the passage. In case 2, the code was again run without the
boundary layer correction, but with the back pressure artificially raised veldhat yields the same masswilas n
case 3. This also caused the normal shock position to shift upstream, to approximately the same position as in case
3.
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7. PARABOLIZED N AVIER-STOKES ANALYSES
7.1 AssumptionsMade

There are mancases where viscous effects are important, loundary layer methods are notfmignt.
Examples include diffusing internal flows in which boundary layers on oppoasite merge, so that there is no
inviscid region, and corner fles, where viscous demtives in wo drections are important. The Miar-Stokes
equations could of course be solved for these flows, byttheexpensie and often difficult to solve.

Fortunately for mary cases there is an alternati A reduced set of equations can be \detithat are easier to
solve than the Nuier-Stokes equations, but contain more physics than the boundary layer equati@se are the
so-called ‘parabolized’ Navier-Stoles, or PNS, equations, and yhae becoming more and more populdihey
apply throughout the fie field, which is not split into wiscid and viscous ggons. ‘Parabolized’is actually bad
terminology but it has caught on. The steadywlequations are actually of mixed/erbolic-parabolic typeThe
key point, however, is that theg can be solved by forward marching in the streamwise direction.

The denvation of the PNS equations is not as rigorous as the boundary layer equationsjesaiddgfterent
versions appear in the literaturdVith some exceptions, the detion is roughly equialent to lkeeping both the
0O(1) andO(9) terms in the order of magnitude analysis used in deriving the boundary layer equations. All methods
neglect second derétives in the streamwise direction. In addition, special treatment is required for the pressure gra-
dient term in the streamwise momentum equation. (More on this later.)

The following equations indicate which terms in the fundamental equations are eliminated in derivieg-one v
sion of the PNS equations.
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With the PNS assumptions, the shear stresgesdry,, and the heat flux,, are given by
_ Yy  dupg
Iy = H x + @D (7-5)
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oT

=-k — 7-7

Pressure is again usually defined by the perfect gas equation of state,
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p=pRT (7-8)

And the definition of total enthalps

1
H=cpT+2 (U? +Vv?) (7-9)

In the PNS equations, destives in the streamwise direction in the viscous and heat conduction terms are
eliminated. Notehat, unlile in the boundary layer equations, the cross+ftoomentum equation is retained in the
PNS equations.

7.2 Governing Equations

The resulting PNS equations, with the viscous and heat conduction terms expanded, are as follows:

(pu) , 9(pv)

_ 7-1
0X oy 0 (710
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ox oy  ox Re oyl ayD v
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Except for the pressure gradient term in ta@omentum equation, the PNS equations are obdtyper-
bolic-parabolic type in th&, or gareamwise, direction, and could be solved by forward marchimxg Howeve, the
dp/ox term allows information to propagate upstream in subsonic fidote that this situation occurs not only in
completely subsonic fl@ but also in the subsonicg®mn near the wall in primarily supersonicvilo This makes a
streamwise marching procedure ill-posedfithout special treatment of the streamwise pressure gradigonen-
tially growing solutions called branching solutions can acaarious procedures fia been used to eliminate this
problem and allw a sreamwise marching solution procedure to be used. The way the streamwise pressure gradient
is treated is often what distinguishes one PNS method from another.

For primarily supersonic fiw, with embedded subsonic regions, one procedure that has been used is to either
neglectd p/ox, or to gecify it as in a boundary layer analysis and treat it as a source term. In general, dipdaigh,
is not negligible, or known a priori. Another solution is to simply lagap®x term, evaluating it from the prei-
ous marching stepHowever, this leads to an undesirable restriction on the minimum marching step size that may be
taken. Anothemprocedure that has been used is to set the pressure in the subsonic region equal to its value at the first
supersonic location for eachmarching station. Under some conditionswieer, this still allows branching solu-
tions to occur A somavhat different procedure, for flows with thin subsonic regions nedlswis to use approxi-
mate forms of the continuity andmomentum equations in the subsonigioa. Thishas been shown to suppress
branching solutions without grspecial treatment of thép/ox term.

For fully subsonic fla, p in thex-momentum equation is typically treated as a functior afly, and com-
puted iterattely using conservation of total mass Wiloas a lasis. An improvement on this is to let
p(x,y) = p'(x) + P(X,y) in the xxmomentum equation, whei(x, y) is a known estimate for the pressure field,
from a potential flov solution for example, ang’(x) is computed during the marching solution.

So-called “partially parabolized’methods, in which an initial kwen two-dimensional pressure field is
updated iteratiely using multiple streamwise marching sweepsjehbeen used for both primarily supersonic and
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fully subsonic flav.

As presented here, the PNS equations are fordiwensional floe. Howeve, PNS analyses are also used,
perhaps wen more often, for three-dimensional flo

7.3 SolutionMethods

In solving the PNS equations, finite difference methods dominate, although €hiteevand finite element
methods hee dso been used. As mentioned yoeisly for Euler analyses, the trend isvods the use of implicit
instead of explicit methods.

7.4 +'s and —'s

Since the PNS equations include the cross-fllomentum equations, and retain viscous\ad#ries in both
cross-flav directions (in 3-D), the apply to flow situations that boundary layer methods tdmndle. Thg are used
throughout the flev field, so a separate inviscid solution may not be needlad, since the equations are solved by
spatial marching, PNS methods are faster and use less storage than Navier-Stokes methods.

As in boundary layer analyses,wver, nedecting the streamwise viscous diffusion terms means the flo
must remain attached, except for small separation bubbles that can be computed usihgREe ‘approximation.
A final problem with PNS methods is thatyttaee still somewhattesearchy’and can be difficult to use, especially
for complex geometries.

PNS methods are most applicable to re&tihigh Reynolds number flows withoutveese flav. They are at
the stage where tiiecan be used in design, but are generally used more for verification and prostigation
than for large parametric studies.

7.5 Examplel

This example will she results from PEPSIG, a three-dimensional parabolizedeN&toles analysis for sub-
sonic flav (Briley and McDonald, 1979; Ly, McDonald, Brilg/, and Kreslovsky, 1980; Levy, Briley, and McDon-
ald, 1983). In this analysis, the pressure in the streamwise momentum equation is represented as
p(x,y,2) = p'(x) + P(x,y, 2), whereP(x, y, z) is computed from a three-dimensional potentialvflanalysis, and
p'(x) is computed during the marching solution using coreston of total mass fle as a lasis. Thecomputations
were done by dwne and Flitcroft as part of a jointASA/RAE research program on ineklct flows (bwne and
Flitcroft, 1986).

Calculations were made for ¥lothrough tw generic S-shaped intakducts with offset/length ratios of 0.30
and 0.45, as shown in the following figure. Each iatekct had a circular cross-section, and an area ratio of 1.4.
Inlet Mach numbers ranged from 0.395 to 0.794, and Reynolds numbers o ®.to 6.6x 10°, based on the
inlet diameter and flw conditions. Theflow was turbulent, modeled using the model of McDonald and Camarata
(1969).

In the next figure, the delopment of pressure-den scondary flar is shown for the 0.45 déet S-duct.
Computed secondary velocity vectors (i.e., the velocity in planes normal to the duct centerline) are presented at three
streamwise stations. In the first bend, the high pressure at the outside (top) of thevesriteddwv energy bound-
ary layer tovard the inside (bottom) of the bend, while the corevflesponds to centrifugal effects and ve®
toward the outside (top) of the bend. The result is a pair of couotating secondary fle vortices in the lower half
of the cross-section.

In the second bend, the direction of the cross-firessure gradientsverses. Theressure is n@ higher in
the bottom half of the cross-sectioHowever, the flov enters the second bend with artex pattern already estab-
lished. Thenet efect is to tighten and concentrate the existing vortices near the bottom of the duct, in agreement
with classical secondary fiotheory.

These secondary flows cause a significant amountwfdiltortion. Inthe next figure, contours of constant
streamwise &locity (i.e., the velocity in the direction of the duct centerline) are showrvatakstations for the
0.30 offset S-duct. As the floenters the first bend, the boundary layer at the top of the duct initially thickens due to
the locally aderse pressure gradient in thagjimm. Theeffects of the secondary flosoon dominate, heever, and
by the end of the duct most of thevienepgy flow has meed to the bottom of the duct. The horseshoe-shaped
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distortion pattern at the exit is typical of S-bend flows.

In the final figure, computed total pressure contours at the exit of the 0.30 offset S-duct are compared with
experimental data of Wimer, Brown, and Goldsmith (1981) for the same duttshould be noted that a compressor
face hub was present in the actual duct, but was not modeled in the computBéspite this, the agreement
between the computational and experimental results is generally very ghisdcase was run using a %80 mesh
in the cross-plane, packed near the wall to restile boundary layemith 67 evenly spaced streamwise marching
stations. Seen minutes of CPU time were required on a Cray X-MP computer.
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7.6 Example2

In the following figure, computed results are presented from PEPSIS, a three-dimensional parabakzed Na
Stokes analysis for primarily supersonicldBuggeln, McDonald, Kresksky, and Levy, 1979; Buggeln, McDon-
ald, and Kim, 1983). In this analysis, branching solutions are suppressed by using approximate forms of the conti-
nuity andy-momentum equations in the subsonigioa. Nospecial treatment was required for thg/dx term in
the streamwise momentum equation. The computations were done by Anderson and Benson (1983).

The problem is a three-dimensional sid# shock - boundary layer interactiofComplex flows like this can
occur in ‘two-dimensional’ mixed-compression supersonic inlets when the oblique shock generated by the ramp
interacts with the sideall boundary layer In this problem, the shock was generated by awi€dge mounted in a
wind tunnel, flush with the sigell. The incoming Mach number was 2.94, and the Reynolds numlasr w
1.28x10°, based on a reference length of 0.667 ft. The fl@s turbulent, computed using the model of McDonald
and Camarata (1968).

Shaown in the figure are the secondary velocity vectors (i.e., the velocity vectors in the onodseftdions,
without the streamwise component) at selected streamwise stations. The shock position as it cuts through the cross-
plane is indicated by the change in direction of the secondary velecityrs. Thenhigh pressure downstream of the
shock (which is the region nearest the wedge surface) forcesatrenkyy boundary layer flo to migrate upvard
along the sideal. Theflow on the wedge is then drawn inwerd the sidevall and the flov moving up the sideall
turns wver, forming a comple secondary flav vortex in the corner The lov enegy flow thus accumulates in the
corner rgion, and is probably the cause of the high heating rates detected experimentally (Oskam, Vas, and Bog-
donof, 1976). This case was run using a ¥680 mesh in the cross-plane, packed near the walls to eetalv
boundary layers, with 90 streamwise marching statidifse calculation required 36 minutes of CPU time on an
IBM 370/3033 computer.

36 Parabolized Navier-Stokes Analyses Computational Techniques |



Computational Techniques | Parabolized Navier-Stokes Analyses 37



8. TIME-AVERAGED NAVIER-STOKES ANALYSES
8.1 Governing Equations

The time-&eraged Navier-Stokes equations are

dp  9(pu)  0(pv) _

ot ox oy

0 (8-1)

d(pu) + a(pUZ) + d(puv) - _ap + 1 [Py + arxy[|

—+— 8-2
ot ox oy ox Re0Odx oy O (8-2)
opv) , apwy) , A(pv?) _ 0p, 1 Dy 0D -3
ot 0X oy oy Re Oox oy U
O(Er) , (UEr) , O(VEr) _ _o(up) _owp) _ 1 P4, 990
ot 0X oy 0X oy RePr, Oox oyUQO
1 Uo 0 O
+ @ % (UTyx + VIyy) + a—y (Uryy + Vryy)g (8-4)
The shear stresses and heat fluxes aen &y
_ . du [(Pu Ov[]
Txx-ZH&"'/‘m"‘@D (8-5)
_ ov Pu OV[]
Tyy—Z/JO—y +/\@+a—ym (8-6)
_ [Pu  dvQ
Dy = Mgy ¥ axD (®7)
oT
0=k (8-8)
oT
dy = -k 3y (8-9)
Pressure is again usually defined by the perfect gas equation of state,
p=pRT (8-10)
And the total energy is defined as
1 2 2
Er = pc, T+ 5 p(u” +Vv°) (8-11)

The aboe guations are the same as the fundamental equations shown agitiréngeof this presentation.
The term ‘time-averaged’ refers to the procedure used towelep equations for turbulent flothat can be solved for
practical problems with today'@mputer systemsThey can still be used for unsteady turbulentil@s long as the
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time scale of the unsteadiness is long compared to the time scale of the turbulent fluctuations.

For laminar flav, the only assumptions made in deriving theegning differential equations are that the fluid
is Newtonian, that it can be treated as a continuum, and that body forces and internal heat additigiigénle.ne
For turbulent flov the only additional assumption, and depending on the caityptd the flow it could be a big one,
is in the choice of turbulence modedf course, further assumptions are usually made in choosing an equation of
state. Vpically, a perfect gas is assumed.

For unsteady flay, the Navier-Stokes equations are of mixed hyperbolic-parabolic type.
8.2 SolutionMethods

The Navier-Stoles equations are usually solved by marching in time. Finite difference methods are the most
common, although finite volume and finite element methods Hso been used. Bothxplicit and implicit meth-
ods hae keen used, with the trend todayawd implicit methods. As with the unsteady Euler equations, if only the
steady state solution is of interest, acceleration techniques are often used to sp&gdrma; and the results may
not be time accurate.

8.3 +'s and —'s

Except for the need to model instead of actually compute turbulence, tler-Stoles equations are the most
complete mathematical model possible for the continuum @iba Newtonian fluid. No other assumptions or
approximations are built into the y®mning equations.However, various assumptions, such as a perfestlgv, ae
often used in the auxiliary equations.

Unfortunately using a Naier-Stokes method is)@ensve. They require large amounts of computer time and
memory They are also neer and less mature than simpler methoB®veloping and/or using a Nér-Stokes
analysis is not necessarily straightforward, and is basically still a research area itself.

The Navier-Stoles equations can be applied ty &pe of flov. The expense and difficultyvalved in using
them currently limits their practical applicatiomhey can be used in design problems where the potential fiayof
high enough to offset their cost, and in research into confiole physics problems.

8.4 Examplel

In this example, transonic turbulentflavas computed in a ceerging-diverging duct. The calculations were
made using Proteus, a user-orientediBlaStoles code being deloped at NASA Lewis (@wne, Schwab, and Bui,
1993a,b). Trbulence was modeled using the eddy viscosity model of Baldwin and Lomax (1978). Wwhe flo
entered the duct subsonicalégcelerated through the throat to supersonic speed, then decelerated through a normal
shock and exited the duct subsonically.

The initial conditions were simply zero velocity and constant pressure and tempefidtussu = v =0 and
p =T =1 everywhere in the fla field.

This calculation was performed in three separate runs. In the first rurxittstagic pressure was gradually
lowered to a value W@ enough to establish supersonicwithroughout the dierging portion of the duct. The pres-
sure was lowered as follows:

.99 for1<n<100
p(t) = (2. 1405< 103n + 1. 20405 for 101< n < 500
Eb. 1338 for 501< n < 3001

wheren is the time lgel. The equation forp for 101< n <500 is simply a linear interpolation betwepr= 0. 99
and p = 0. 1338. In the second run, the exit pressure was gradually raised to a value consistent with the formation of
a normal shock just downstream of the throat. Thus,

Computational Techniques | Time-averaged Navier-Stokes Analyses 39



(o = 54327 10n—0.89636 for 3001 <n < 5000
P = .82 for 5001< n < 6001

Again, the equation fqo for 3001< n < 5000 is simply a linear interpolation betwepr 0. 1338and p = 0. 82. In
the third run, the exit pressure was kept constant at 0.82.

The remaining boundary conditions were the same for all runs. At the inlet, constant total pressure and tem-
perature were specified, and thgelocity and the normal gradient of tkeelocity were both set equal to zerat
the exit, the normal gradients of temperature and belbcity components were set equal to zero. At bathisy
no-slip adiabatic conditions were used, and the normal pressure gradient was set equal to zero.

The computed flo field is shavn in the following figure in the form of constant Mach number contours.
Contours are plotted at Mach numbers ranging from 0.0 to 1.2 in increments of 0.1.

/T

Computed Mach number contours for transonic diffuser flav.

The flov enters the duct at aboM = 0. 46, accelerates to just unddf = 1. 3 slightly downstream of the
throat, shocks down to abolt = 0. 78,then decelerates and Ves the duct at abou¥! = 0. 51. The normal shock
in the throat region and the growing boundary layers in therging section can be seen clearBecause this is a
shock capturing analysis, the normal shock is smeared in the streamwise direction.

1.0
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Computed and experimental static pressug distribution
for transonic diffuser flow

The computed distribution of the static pressure ratio along the top and baittnisveompared withxperi-
mental data (Hsieh, &vdlav, Collins, and Coaklg 1987) in the abee figure. Thestatic pressure ratio is here
defined agp/(pt)o, Where () is the inlet core total pressure. The computed results generally agree well with the
experimental data, including the jump conditions across the normal sAtekpredicted shock position, iever,
is slightly downstream of the experimentally measured position, probably due to turbulence feotel €hepres-
sure change, of course, is also smeaked @finite distance.There is also some disagreement between analysis and
experiment along the top wall near the inlet. This may be due to rapid changes ialltlbentour in this rgion
without sufficient mesh resolution.
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The three runs for this case required 709.2, 679.3, and 694.4 seconds of CPU timeyalgsj@caecution
on a Cray X-MP computer.

8.5 Example2

In this xample, computed results are presented for unsteadffough the same diffuser used in Example
1. Extensie experimental measurementsvieabeen made by Sajben, Bagand Kroutil (1984) for a variety of
unsteady flows through this flifer The results presented here are for an oscillating normal shoed diy an
oscillating back pressure. The computations were again made using the Proteus Navier-Stokes code.

For this case, flow enters a cowverging-diverging duct at a Mach number of 0.47. It accelerates to supersonic
conditions, then shocks down to subsonic conditions in theegitig part of the duct. The Mach number at the-nor
mal shock was about 1.25. The Reynolds number based on inlet height and velocit@2wak08. An 81 Stream-
wise) by 51 (cross-flow) mesh was used, padk the streamwise direction near the expected location of the normal
shock, and in the cross-flodirection near both @alls. Theinlet boundary conditions were specified total pressure
pr and total temperaturé;, zero cross-flav velocity v, and extrapolation ofi. At the «it, the static pressurp,
was Pecified, andy, v, and the static temperatuiewere etrapolated. Atthe walls, no-slip adiabatic conditions
were used, and the normal detive o p was st equal to zero.

In the calculation, the exit pressure was first set atvavidue to establish supersonicvildhroughout the
duct. Startingwith zero \elocity ezerywhere in the duct, steady conditions were obtained after 3000 time steps at a
CFL number of 5.0. The exit pressure was then raisqul/tpr = 0. 82,where py is the inlet total pressureThis
was done graduallytaking 2000 time steps at a CFL number of Oi'fe CFL number was then raised to 5.0, and
the calculation was continued until steady conditions were obtained after 16,000 additional time steps.

An oscillating exit pressure was then specified, using
Pe - (Peo . o sin(arat)
Pr Pr

where pg)o/ pr = 0. 82is the exit pressure at the start of the oscillatéoor,0. 0landw = 100 Hz are the amplitude

and frequeng of the oscillation, andis the time from the start of the oscillation. The exit presggdfer thus \ar-

ied from 0.81 to 0.83. The calculation was continued for nine cycles, with 4000 time stepsl@eberesults for

the last fie g/cles were gamined closely and found to be essentially identical, indicating that periodic conditions
have been achieed. Theunsteady flw field will be presented in movie form. This calculation was run on a Cray
X-MP computerand used 67 x 10 seconds of CPU time per grid point per time step. The entire calculation thus
required about 4.4 hours.

8.6 Example3

In this example, computed results using Proteus are presented for viscous lamipastla circular ginder.
Although this is not an internal fAg it dramatically illustrates the compligy of flows that may be computed using a
full time-averaged Navier-Stokes analysis.

In potential flav, the streamlines for i past a circular cylinder are perfectly symmetric. Thevflwer the
back half of the cylinder is a mirror image of theaflover the front half, with stagnation points &t @&nd 180. In
real life, havever, a& Reynolds numbers Rglarger than around 5, the floseparates from the surface, forming a
wake For Reg, between about 5 and 50, thewls seady with a pair of counter-rotating vortices in thebke rear
the g/linder. At Reynolds numbers larger than about 5000, tteesmecomes fully turblent. For Reynolds num-
bers between about 50 and 5000ybe, the flow is laminar but unsteadyortices are alternately shed from the
upper and lower surface, forming a Karmamtex greet. Thisasymmetric flav is triggered by asymmetric pertur
bations inherent in grphysical experiment.

The flov was run at Rg = 100. Incompressibleonditions were approximated by using a free stream Mach
number of 0.2.A polar grid was used, centered on the cylinder atteneling to 30 cylinder radiiA 50 (radial) by
99 (circumferential) mesh was used, packed near the cylinder surface and ehentekiine.

The exact potential flw solution for flowv over a ¢/linder was used for the initial flofield. Atthe g/linder
surface, no-slip boundary conditions were used for #lecitiesu andv, and the dewative 0 p/dr was =t equal to
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zero. Atthe outer boundary, v, and p were set to vary smoothly from the dik initial conditions to zero radial
derivative mnditions in the \ake. Becausehe flav was expected to be asymmetric, implicit spatially periodic
boundary conditions were used along the cut at thewakerline.

As noted earlierthe asymmetric flo at this Reynolds number occurs in nature because of the asymmetries
inherent in ap physical experiment. Havever, in the computations the geometigitial conditions, and boundary
conditions are all symmetric. The Nar-Stokes equations should therefore lead to a symmetrie ébany
Reynolds number Round-of and truncation errors are, of course, asymmetric perturbations in a computation which
could eventually lead to an asymmetric Wo Previous work has shown, hever, that steady symmetric flomay
be computed at Reynolds numbers as high as 1000. In the current calculation, therefore, an asymmetric perturbation
was introduced using the following procedure.

From the initial flov field, 1000 time steps were taken at a CFL numiisered on the minimum all@ble
time step, of 10.Second-order time differencing was used. The computed fiedd at this point is symmetric.
Asymmetry was introduced into theiidield at this time by temporarily rotating thglinder first one direction,
then the otherThe solution vas then continued at a CFL number of 5. The unsteadyfitddd will be presented in
movie form.
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