Compact Full-Field Ion Detector System for SmallSats beyond LEO

John D. Wrbanek,
Susan Y. Wrbanek, Gustave C. Fralick
NASA Glenn Research Center
Cleveland, Ohio

Pamela E. Clark
Institute for Astrophysics and Computational Sciences
Catholic University of America
NASA GSFC, Greenbelt, MD

Roger R. McNeil
College of Science and Technology, Morehead State University
Morehead, KY

International Workshop on Instrumentation for Planetary Missions (IPM-2014)
November 4-7, 2013 – NASA GSFC
Outline

• Technology Roadmap Challenges
• SmallSat Platform Technology Challenges
• Application Concept: CFIDS
• GRC Technology R&D
• Solid-State Trigger/Veto Detectors
• Solid-State Cherenkov Detector
• WBG LET Detectors
• Benefits of WBG Detectors
• SPAGHETI: Deep-Space Application
• Summary
• Acknowledgements

defi end

“Measurements are necessary evils”
Technology Roadmap Challenges

• NASA’s Integrated Technology Roadmap (2012): Technology Area (TA) 8.3.1 “In-Situ Instrumentation/Detectors: Particles” Challenges:
 – Energy Threshold (resolve to 1 keV for 30 MeV)
 – Environment Tolerance (radiation-hard ion & electron sensors)
 – Data Handling (improved out-of-band rejection)
 – Heliophysics, Planetary Science Missions
 – “Robust sensors capable of operating for long periods in environment of space are needed to measure the radiation at the destination as well as during the journey.”

• TA08 Roadmap Enabling Approaches:
 – Integrated existing detector technologies
 – Radiation hardened electronics
 – Miniature power supplies

• Also consider: New detectors for smaller platforms
SmallSat Platform Technology Challenges

• Need to develop a radiation detector system to fly on small satellite platforms (such as CubeSats) to reduce cost, development time of missions
 – Design point: 1U CubeSat volume, mass for detector system (10 cm x 10 cm x 10 cm, 1 kg) on a deep space platform
 – CubeSats currently flown LEO applications, but future is in Deep Space

• High radiation particle influx from multiple directions (spherical 4π solid angle)
 – Current radiation detector technologies need temperature compensation
 – SmallSat platform size (<100 kg), power limits instrumentation systems
 – More complex systems require new technology

• Solution is the development of new robust, low power, thermally stable solid state radiation detector technology for omni-directional measurements in a compact space radiation detector system
 – Wide band gap semiconductors, micro-optics technologies
Application Concept: Compact Full-Field Ion Detector System (CFIDS)

- Mapping of heavy ions > 100 MeV/amu
 - Integrated system with solid-state Cherenkov detector and large area detectors in surrounding wedges

- High radiation flux rates for 10+ year missions
 - Precision rad-hard, thermally stable wide band gap detectors used

- Low noise, multi-directional measurements at single locations
 - Compact, spherical detector system

Space radiation detector with spherical geometry

- Technology covered by U.S. Patents 7,872,750 (January 18, 2011) and 8,159,669 (April 17, 2012)
Application Concept: Compact Full-Field Ion Detector System (CFIDS)

• CFIDS comprised of a spherical Cherenkov detector surrounded by stacked LET detectors with absorbers, Trigger and Veto detectors
Application Concept: Compact Full-Field Ion Detector System (CFIDS)

- CFIDS comprised of a spherical Cherenkov detector surrounded by stacked LET detectors with absorbers, Trigger and Veto detectors

GaP Diode for Solid-State Trigger/Veto Detectors

ZnO UV Sensor for Solid-State Cherenkov Detector

Large Area SiC Diode for LET Detectors
GRC Advanced Radiation Detector Technology Research and Development

- GRC Expertise and Facilities in:
 - Harsh Environment Thin Films
 - SiC Devices & Harsh Environment Packaging
 - Micro-Optics
 - Space-Based Instrumentation

- These strengths are combined into an in-house Radiation Instrumentation Research effort

MISSE 7 SiC JFET & Ceramic Packaging (arrow) on a Rad-Hard Electronics Board for ISS flight

CERES Thin Film Microbolometer Testing and Packaging
Solid-State Trigger/Veto Detectors

- Typically scintillator blocks of plastic or iodide crystal mated to a photomultiplier tube (PMT) or a pixelated avalanche photo detector (APD), also referred to as a silicon photomultiplier (SiPM)
- **Goal**: Replace the role of PMTs and SiPMs in these types of detectors with WBG devices, saving on size, weight and required power
- Demonstrated a miniature gallium phosphide (GaP) photodiode “paddle style” radiation detector as part of a 2-week OCT/STMD Center Innovation Fund (CIF) study in 2013 (patent pending).
- Use with acrylic ribbon scintillators for the CFIDS concept
Solid-State Cherenkov Detector

• Typically flat disks or blocks of sapphire or acrylic mounted on PMTs.
• **Goal**: Replace the role of the relatively large PMTs with solid-state devices that do not require temperature control or compensation.
• A fast, large area solid-state UV detector based on single-crystal, undoped zinc oxide (ZnO) was developed at GRC (patent pending) as part of two 10-week OCT/STMD CIF studies (2011, 2012)
 – Active area of 1 mm by 2 mm (2 mm²), designed to have a 1 ns response time with 10 V applied bias voltage
 – In a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors.
 – Sensitive to UV light at 254 nm, slightly less so at 370 nm, and not sensitive to room lighting (about 430-630 nm).
 – Demonstrated improved sensitivity to UV than commercial SiC and GaP detectors
WBG LET Detectors

- Typically silicon-based PIN diodes or lithium-drifted silicon wafers (Si(Li)), high bias voltage, thermally sensitive
- **Goal**: Replace silicon detectors with more robust, temperature-stable low-noise silicon carbide detectors
- Smaller SiC detectors studied as part of AEVA (2005-2007) and ETDP/D (2009-2011), AES (2012) for dosimetry
- Large-area detectors (2 cm², 350 µm thick) using high-purity, semi-insulating (HPSI) SiC wafers with low-Z FEP absorber between detectors for CFIDS
- GEANT models show a 4-fold coincidence is required to resolve LET for high energy protons and electrons
Benefits of WBG Detectors: Lower Power and More Robust

<table>
<thead>
<tr>
<th>Detector</th>
<th>Active Area</th>
<th>Mass</th>
<th>Volume</th>
<th>Voltage</th>
<th>Dark Current</th>
<th>Minimum Power Draw</th>
<th>Amplitude Signal to Noise</th>
<th>Maximum Operating Temperature</th>
<th>Temperature Sensitivity of Dark Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cherenkov Detector:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOA: PMT</td>
<td>20 cm²</td>
<td>170 g</td>
<td>180 cm³</td>
<td>1000 V</td>
<td>5 nA</td>
<td>5 µW</td>
<td>4x10⁵</td>
<td>50°C</td>
<td>0.2%/°C</td>
</tr>
<tr>
<td>Proposed: ZnO</td>
<td>2 mm²</td>
<td>11 g</td>
<td>0.80 cm³</td>
<td>10 V</td>
<td>5 nA</td>
<td>0.05 µW</td>
<td>2x10⁴</td>
<td>125°C</td>
<td>0.05%/°C</td>
</tr>
<tr>
<td>LET:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOA: Si PIN</td>
<td>1 cm²</td>
<td>0.5 g</td>
<td>185 mm³</td>
<td>100 V</td>
<td>5 nA</td>
<td>0.5 µW</td>
<td>1x10⁵</td>
<td>60°C</td>
<td>20%/°C</td>
</tr>
<tr>
<td>SOA: Si(Li)</td>
<td>30 cm²</td>
<td>35 g</td>
<td>15 cm³</td>
<td>300 V</td>
<td>5 µA</td>
<td>1.5 mW</td>
<td>8x10³</td>
<td>60°C</td>
<td>30%/°C</td>
</tr>
<tr>
<td>Proposed: SiC</td>
<td>2 cm²</td>
<td>0.5 g</td>
<td>185 mm³</td>
<td>5 V</td>
<td>70 pA</td>
<td>0.350 nW</td>
<td>2x10⁵</td>
<td>120°C</td>
<td>0.1%/°C</td>
</tr>
<tr>
<td>Scintillator Trigger/Veto:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOA: PMT</td>
<td>20 cm²</td>
<td>170 g</td>
<td>180 cm³</td>
<td>1000 V</td>
<td>5 nA</td>
<td>5 µW</td>
<td>4x10⁵</td>
<td>50°C</td>
<td>0.2%/°C</td>
</tr>
<tr>
<td>SOA: APD</td>
<td>9 mm²</td>
<td>3 g</td>
<td>200 mm³</td>
<td>30 V</td>
<td>5 nA</td>
<td>0.15 µW</td>
<td>8x10⁴</td>
<td>85°C</td>
<td>30%/°C</td>
</tr>
<tr>
<td>Proposed: GaP</td>
<td>4.8 mm²</td>
<td>5 g</td>
<td>170 mm³</td>
<td>5 V</td>
<td>20 pA</td>
<td>0.1 nW</td>
<td>3x10⁵</td>
<td>125°C</td>
<td>0.5%/°C</td>
</tr>
</tbody>
</table>
• SPAGHETI is a SmallSat mission for an EM–1-type launch on a 6U CubeSat bus enabled by stacks of WBS LET detectors

• SPAGHETI will explore the transient variations in ion flux anisotropy in deep space and near the lunar surface
Summary

• NASA GRC is leveraging expertise in harsh environment thin films, SiC devices & harsh environment packaging, micro-optics, and space-based instrumentation to advance radiation detector technology

• Application of wide band gap semiconductors as radiation detectors holds the promise of improved low-power, robust detectors for CFIDS

• SPAGHETTI using CFIDS radiation instrumentation system in a Deep Space CubeSat will allow in-situ studies of SEP and GCR interactions in lunar environments
Acknowledgements

• Elizabeth McQuaid and Nicholas Varaljay (GRC)
 – ZnO UV detector fabrication

• Dr. LiangYu Chen (OAI), Joseph M. Flatico (OAI),
 Michael Krasowski (GRC)
 – SiC dosimeter diode detector fabrication

• Dr. Nathan Schwadron (University of New Hampshire)
• Dr. Michael Collier (GSFC)
 – SPAGHETI collaboration
• Dr. Ben Malphrus (Morehead State University)
 – SPAGHETI CubeSat bus architecture

• GSFC Sciences and Exploration Directorate, MSU Department of
 Earth and Space Science and The Aerospace Corporation
 – CFIDS, SPAGHETI collaboration

• GRC Space Science Project Office