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Abstract

In a CE/SE simulation with a fixed total marching
time, generally the numerical dissipation increases as
the value of the C'F'L number decreases from 1, its
maximum stability bound. As such, in a case with
a large CFL number disparity (e.g., a simulation
with a highly nonuniform spatial mesh and a spa-
tially independent time step), the performance sen-
sitivity with respect to the C'F'L number can lead
to a solution that is highly dissipative in a region
where the local C'F'L number <« 1. In this paper,
the ideas used in a recent work on one-dimensional
C'F L number insensitive CE/SE schemes are elabo-
rated in a more detailed manner and also are ex-
tended to construct one-dimensional and multidi-
mensional solvers for applications involving nonuni-
form spatial meshes. Also an error in a recent re-
lated paper will be described and corrected. As a
by-product of the current work, a new set of wiggle-
suppressing weighted-averaging formulae much more
potent and flexible than those introduced earlier is
also presented.

1. Introduction

The space-time conservation element and solution
element (CE/SE) method is a high-resolution and
genuinely multidimensional method for solving con-
servation laws [1-37]. Tts nontraditional features in-
clude: (i) a unified treatment of space and time; (ii)
the introduction of conservation elements (CEs) and
solution elements (SEs) as the vehicles for enforc-
ing space-time flux conservation; (iii) a novel time
marching strategy that has a space-time staggered
stencil at its core and, as such, fluxes at an interface
can be evaluated without using any interpolation
or extrapolation procedure (which, in turn, leads to
the method’s ability to capture shocks without us-
ing Riemann solvers); (iv) the requirement that each
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scheme be built from a non-dissipative core scheme
and, as a result, the numerical dissipation can be
controlled effectively; and (v) the mesh values of
the physical dependent variables and their spatial
derivatives are considered as independent marching
variables to be solve for simultaneously. Note that
CEs are nonoverlapping space-time subdomains in-
troduced such that (i) the computational domain
can be filled by these subdomains; and (ii) flux con-
servation can be enforced over each of them and also
over the union of any combination of them. On the
other hand, each SE is a space-time subdomain in-
troduced such that (i) the boundary of each CE can
be divided into several component parts with each
of them belonging to a unique SE; and (ii) within a
SE, any physical flux vector is approximated using
simple smooth functions. In general, a CE does not
coincide with a SE.

Without using preconditioning or other special
techniques, since its inception [1] the CE/SE method
has been used to obtain numerous highly accurate
1D, 2D and 3D steady and unsteady flow solu-
tions with Mach numbers ranging from 0.0028 to 10
[28]. The flow phenomena modeled include travel-
ing and interacting shocks, acoustic waves, shedding
vortices, shock/boundary-layer interaction, detona-
tion waves, cavitation and hydraulic jump [2-37].
In particular, the rather unique capability of the
CE/SE method to resolve both strong shocks and
small disturbances (e.g., acoustic waves) simultane-
ously [11,13,14] makes it a unique tool for attacking
the problems in computational aeroacoustics (CAA).
Note that the fact that the (second order) CE/SE
method can solve CAA problems accurately is an ex-
ception to the commonly-held wisdom that a second-
order scheme is not adequate for solving CAA prob-
lems. Also note that, while numerical dissipation
is required for shock capturing, it may also result
in annihilation of small disturbances. Thus a solver
that can handle both strong shocks and small dis-
turbances simultaneously must be able to overcome
this difficulty.

In spite of its past successes, there 1s still room for
improving the CE/SE method. An example is the



fact that, in a CE/SE simulation with a fixed total
marching time, generally the numerical dissipation
increases as the value of the C'F'L number decreases
from 1, its maximum stability bound. As such, in
a case with a large C'F'L number disparity (e.g., a
simulation with a highly non-uniform spatial mesh
and a spatially independent time step), the perfor-
mance sensitivity with respect to the C'F' L number
can lead to a solution that is highly dissipative in a
region where the local CF'L number < 1.

In this paper, the ideas used in a recent work
[35] on one-dimensional C'F'L number insensitive
CE/SE schemes will be extended to construct one-
dimensional and multidimensional solvers for appli-
cations involving highly nonuniform spatial meshes.
Also a misconception introduced in a recent related
paper [36] will be described and corrected. As a
by-product of the current work, a new set of wiggle-
suppressing weighted-averaging formulae much more
potent and flexible than those introduced earlier 3]
will also be presented. The rest of the paper is or-
ganized as follows. A review of the existing CE/SE
schemes is given in Sec. 2. The new C'F'L number
insensitive schemes are described in Secs. 3-6. Nu-
merical results are presented in Sec. 7. Conclusions
and discussions are given in Sec. 8.

2. Review of the 1D CE/SE method

For simplicity, we review the existing CE/SE
schemes for the PDE

Ju n ou
ot oz
where a # 0 is a constant. Let #; = z, and z3 =t be
considered as the coordinates of a two-dimensional
Euclidean space E5. Then, by using Gauss’ diver-

gence theorem in the space-time Fs, it can be shown
that Eq. (2.1) is the differential form of the integral

conservation law
j{ h-ds=0
S(V)

As depicted in Fig. 1, here (i) S(V) is the bound-
ary of an arbitrary space-time region V in Fs, (ii)
h = (au,u), and (iii) d§ = do# with do and 7,
respectively, being the area and the unit outward
normal of a surface element on S(V). Note that:
(i) because h - d5 is the space-time flux of h leav-
ing the region V' through the surface element ds,
Eq. (2.2) simply states that the total space-time flux
of h leaving V through S(V') vanishes; (ii) in E3, do
is the length of a line segment on the simple closed
curve S(V); and (iii) all mathematical operations
can be carried out as though F5 were an ordinary
two-dimensional Euclidean space.

(2.1)

(2.2)

To proceed, let Q denote the set of all space-time
staggered mesh points in Fy (dots in Fig. 2(a)),
where n = 0,+1/2,+1,4+3/2,4£2, ..., and, for each
n,j=n+1/2n+3/2,n+5/2,... Each (j,n) € Q
is associated with a solution element, i.e., SE(j, n).
By definition, SE(j, n) is the interior of the space-
time region bounded by a dashed curve depicted in
Fig. 2(b). Tt includes a horizontal line segment, a
vertical line segment, and their immediate neighbor-
hood.

Let (z,t) € SE(j,n). Then Eq. (2.2) will be simu-
lated numerically assuming that u(z,t) and E(m,t),
respectively, are approximated by

* . def n n n n
u(z,t55,n) = uj + (ug)j(z — x5) + (ug)j (¢ —17)

(2.3)
and

E*(aj,t ij,m) def (au*(m,t idyn), ut(x,t; g, n)) (2.4)

Note that (i) uj, (ux);b, and (ut)? are constants in
SE(j,n), (ii) (z;,t") are the coordinates of the mesh
point (j,n) with z; = jaz and t” = nat, and (iii)
Eq. (2.4) is the numerical analogue of the definition
h= (au,u).

Let v = u*(z,t;j,n) satisfy Eq. (2.1) within
SE(j,n). Then one has (ut)? = —a (ux)? As a
result, Eq. (2.3) reduces to

u*(z,t;j,n) = ui +(ug )7 [(CL‘—CL‘]')—CL (t—t”)] (2.5)
i.e., u} and (u)} are the only independent marching
variables associated with (j, n).

Let F5 be divided into nonoverlapping rectangular
regions (see Fig. 2(a)). As depicted in Figs. 2(c)-
2(e), (i) two such regions, i.e., CE_(j,n) and
CE4(j,n), are associated with each interior mesh
point (j,n) € Q; and (ii) CE(j,n) is the union of
CE_(j,n) and CE4(j,n).

Given the above preliminaries, we are ready to de-
scribe the existing CE/SE solvers for Eq. (2.1).

2.1. The a scheme

Note that, among the line segments forming the
boundary of CE_(j,n), AB and AD belong to
SE(j,n), while CB and C'D belong to SE(j—1/2,n—
1/2). Similarly, the boundary of CE4(j,n) belongs
to either SE(j,n) or SE(j + 1/2,n — 1/2). As a
result, by imposing two conservation conditions at
each (j,n) € Q, i.e.,

f R* - d5= 0, and
S(CE4(jn))

}f h*-di=0, (jin)eQ  (26)
S(CE—(jn))




and using Eqgs. (2.4) and (2.5), one can obtain two
equations for the two unknowns u} and (u;)?. In
fact, let (i) v def aat/az, and (ii) for any (j,n) € Q,

n def AT n c
()} 2 (2.7
then Eq.(2.6) implies that (i)
n 1 n—1/2 n—1/2
Ui =3 {(1 + V)Uj—l/Z +(1— V)Uj+1/2
n—1/2 n—1/2 ¢
(1 v?) [(uf)j_l/g . (uf)j+1/2]} (2.8)
and, assuming |v| # 1, (ii)
(uz)j = (ug)j (lvl#1)  (2.9)
with
avndef L[ no1/2 no1/2 n—1/2
(uz)j = 5 [“]’4-1/2 SV (1 +V)(“f)j+1/2_
(L=v)(ws)]7f3] (WI# 1) (2.10)

The @ scheme, i.e., the inviscid case of the a-u
scheme [1,3,9], is formed by Egs. (2.8) and (2.9).
Note that, because

u _ sz u
0z 4 Oz

if # < z/(az/4), the normalized parameter (uz)?
can be interpreted as the value at (j, n) of the deriva-
tive of u with respective to the normalized coordi-
nate z. Also note that the superscript symbol “a”
in the parameter (u%)? is introduced to remind the
reader that Eq. (2.9) is valid for the a scheme.

The review of the a scheme is concluded with the

following remarks:

(a) As shown in [3], the two amplification factors
of the a scheme are identical to those of the
leapfrog scheme. As a result, the a scheme is
non-dissipative and it is stable if |v| < 1 (see
the additional discussions given in Sec. 2.2).

(b) Note that derivation of Eqs. (2.8) and (2.9)
can be facilitated by the following observations:
because u*(z,t;j,n) is linear in z and ¢, it
can be shown that the total flux of A* leaving
CE_(j,n) or CE4(j,n) through any of the four
line segments that form its boundary is equal to
the scalar product of the vector A* evaluated at
the midpoint of the line segment and the “sur-
face” vector (i.e., the unit outward normal mul-
tiplied by the length) of the line segment.

(¢) Because, for any (j,n) € ©Q, the total flux of h*
leaving each of CE_(j,n) and CE4(j,n) van-
ishes (see Eq. (2.6)), CE_(j,n) and CE4(j,n),
(j,n) € Q, will be referred to as the conser-
vation elements (CEs) of the a scheme. In
addition, because the surface integration over
any interface separating two neighboring CEs
is evaluated using the information from a sin-
gle SE, obviously the flux leaving one of these
CEs through the interface is the negative of
that leaving another CE through the same in-
terface. As a result, the local conservation re-
lations Eq. (2.6) lead to a global flux conserva-
tion relation, i.e., the total flux of h* leaving
the boundary of any space-time region that is
the union of any combination of CEs will also
vanish. In particular, because CE(j,n) is the
union of CE_(j,n) and CE4(j,n),

(J,n) €Q

?{ h*.ds=0,
S(CE(jn)) 2.11)

must follow from Eq. (2.6). In fact, it can be
shown that Eq. (2.11) is equivalent to Eq. (2.8).

(d) In addition to the non-dissipative a scheme, as
will be shown, there is a family of its dissipa-
tive extensions in which only the less stringent
conservation condition Eq. (2.11) is assumed [3].
Because Eq. (2.11) is equivalent to Eq. (2.8), for
each of these extensions, u? is still evaluated us-
ing Eq. (2.8) while (uz)} 1s evaluated using an
equation different from Eq. (2.9).

2.2. The a-€ scheme and the ¢ scheme

To proceed, consider any (j,n) € Q. Then (j +
1/2,n—1/2) € Q. Let

n def n-1/2 P n—1/2
wheys i n) ]y + (at/2) (w1

(2.12)
Substituting Eq. (2.7) and the relation (u:)} =
—a(ug)} into Eq. (2.12) and using the definition
v = aat/Az, one has

¢ —-1/2 ¢
u}11/2 =(u—2v uf);il//z (2.13)
Note that, to simplify notation, in the above and
hereafter we adopt a convention that can be ex-
plained using the expression on the right side of
Eq. (2.13) as an example, i.e.,

n—1/2 _ n-1/2

. n—1/2
jx1/2 = Yit1/2 2v(uz)

(u— 2vug) i1/

Also note that, by definition, (j £ 1/2,n) ¢ Q if
(j,n) € Q. Thus “3’11/2 is associated with a mesh



point ¢ Q. The reader is warned that similar situa-

tions may occur in the rest of this paper.
According to Eq. (2.12), “2’11/2 can be interpreted

as a first-order Taylor’s approximation of u at (j +

1/2,n). Thus

- AT

n n n n

u. — U, u. — U,

(u2)? def Tj+1/2  Tj-1/2 _ AT Tj+1/2  Tj-1/2
= 4 4

(2.14)

is a central-difference approximation of Ju/dz at

(j, n), normalized by the same factor az/4 that ap-
pears in Eq. (2.7). Note that: (i) the superscript

“c” 1s used to remind the reader of the central-

difference nature of the term (uz)?; and (ii) by using

Egs. (2.13), (2.14) and (2.8), one has

(u)} = ! [(u - 21/uf)n_1/2 —

P n—1/2
Iy jaij2 ~ (u = 2vus) ]

j—1/2
(2.15)

c a\n 1 n-1/2 n-1/2
(ug —uz)] = 2 [(uf)j+1/2 + (uf)i—l/Q]

L no1/2 n-1/2 .
1 (“y’+1/2 - j—l/z) (2.16)
The a-€¢ scheme is formed by Eq. (2.8) and
(uz)} = (ug)} + 2¢(uf — ug)} (2.17)

where € is a real number. Obviously the a-¢ scheme
reduces to the a scheme when ¢ = 0. Also, for the
case € = 1/2, Eq. (2.17) reduces to

(2.18)

Because (u%)y represents a central-difference ap-
proximation, hereafter, to simplify its frequent ref-
erences, the special a-¢ scheme with ¢ = 1/2 may be
referred to simply as the ¢ scheme.

To proceed, several key remarks about the a-¢

scheme are presented:

(a) At each mesh point (j,n) € Q, Egs. (2.8) and
(2.9) are the results of two conservation con-
ditions given in Eq. (2.6). Because Eq. (2.17)
does not reduce to Eq. (2.9) except in the spe-
cial case ¢ = 0, at each mesh point (j,n) € Q,
generally the a-e¢ scheme satisfies only the single
conservation condition Eq. (2.11) rather than
the two conservation conditions Eq. (2.6). How-

ever, because (u%)y generally is present on the

right side of Eq. (2.17), the a-¢ scheme gener-
ally will still be burdened with the cost of solv-
ing two conservation conditions at each mesh
point. The exception occurs only for the spe-
cial case ¢ = 1/2 (i.e., the ¢ scheme) in which

(b)

Eq. (2.17) reduces to Eq. (2.18). As it turns
out, implementation of a multidimensional Eu-
ler version of the ¢ scheme does not require in-
verting any system of equations while a similar
implementation involving a version of any other
a-¢ scheme (e # 1/2) generally requires invert-
ing, per mesh point and per time step, a system
of several linear equations (to be exact, a sys-
tem of eight and fifteen equations, respectively,
for 2D and 3D Euler equations). As such, it is
much more cost effective to use a multidimen-
sional Euler version of the ¢ scheme than using
that of any other a-¢ scheme. Partly for this
reason, extensions of the ¢ scheme have been
used extensively.

For the a-¢ scheme, it is shown in [3] that the
principal and spurious amplification factors per
at, respectively, are (Ay)? and (A_)? with

As(e, v, 0) dof cos(6/2) —ivsin(6/2)+

\/(1 —€) [(1 = €)cos2(6/2) + (1 — v2)sin*(0/2)]
(2.19)
Here (i) ¢ def v—1,and (ii) §, -7 < 0 < 7, is
the phase angle variation per az. In addition,
it is shown that (i) the necessary and sufficient
conditions for the stability of the a-¢ scheme are
0<e<, and lv| <1 (2.20)
and (ii) the a-e¢ scheme becomes progressively
diffusive as the value of € increases from 0 to
1. Note that, unless specified otherwise, in the
remainder of the paper the ranges of ¢, v and
6, respectively, are defined by Eq. (2.20) and
—r< <7

For the plane wave solution, u = etk(#=at),

the exact amplification factor per at

def ezk[:c—a(t+At)]

= 6ik(x_at) — e—ikaAt — e—il/6 (221)

where 6 = kax.
According to Eq. (2.19), [A+(0,v,6)]?, the am-
plification factors of the a scheme (which cor-

responds to the case ¢ = 0), have the following
properties:

[A£(0,v, )] =1 (2.22)
lim [A4(0,v, 0))? = T (2.23)
lim [A-(0,v, 9))? = et (2.24)



and

[A£(0,0,0)]* =1 (2.25)

On the other hand, e™#? the exact amplifica-
tion factor, has the following properties:

le=™f =1 (2.26)
lim e~f = ¢Fif (2.27)
v—=%1
and
eTP =1 if wv=0 (2.28)

For the a scheme, Egs. (2.22)—(2.28) imply that:
(i) the two amplification factor of the scheme,
and the exact amplification factor all have the
same constant absolute value (= 1) and, thus,
the scheme is non-dissipative; (ii) in the limit of
lv| = 1 (i.e., v — 1 or v — —1), the principal
amplification factor is identical to the exact am-
plification factor and, thus, the former has no
dissipative or dispersive error in this limit; (iii)
also in the limit of |v| — 1, the phase angle asso-
ciated with the spurious amplification factor is
exactly the negative of that associated with the
exact amplification factor and, thus, the spuri-
ous amplification factor has a large dispersive
error in this limit except when |0 < 1(i.e.,
when the wavelengths of the errors > 1); and
(iv) when v = 0, the two amplification factors
of the scheme, and the exact amplification fac-
tor are all equal to 1 and, thus, the two am-
plification factors of the scheme have no dissi-
pative or dispersive error if v = (0. Because
the accuracy of a scheme is essentially hinged
on the behaviors of the principal amplification
factor [1], according to the facts stated above,
the a scheme tends to become very accurate
when |v| approaches 1 or 0. However, the short-
wavelength errors associated with the spurious
amplification factor (which could be introduced
at t = 0 as a result of an inaccurate initial-value
specification [1]) may appear in a solution as
persistent (i.e., non-dissipative) numerical wig-
gles when |v| approaches 1 [1,9].

According to Eq. (2.19), [M+(1/2,v,0)]%, the
amplification factors of the ¢ scheme (which cor-
responds to the case ¢ = 1/2), have the follow-
ing properties:

Jim [ (172, 0)]? = eFif (2.29)
Jim A_(1/2,v,0)]* = —sin?(8/2)  (2.30)

and

Ae(1/2,0,0))2 = 1:|:cos(9/2)\/2—c052(9/'2)]
(2.31)
For the ¢ scheme, Eqs. (2.27)-(2.31) imply that:
(i) in the limit of |v| — 1, the principal amplifi-
cation factor is identical to the exact amplifica-
tion factor and, thus, the former has no dissipa-
tive or dispersive errors in this limit; (ii) also in
the limit of |v| — 1, the spurious amplification
factor has large dissipative and dispersive er-
rors; and (iii) when v = 0, the two amplification
factors of the scheme generally have large dissi-
pative errors but no dispersive errors. Accord-
ing to the facts stated above, like the a scheme,
the ¢ scheme also tends to become very accurate
when |v| approaches 1. However, unlike the a
scheme, the errors associated with the spurious
amplification factor of the ¢ scheme generally
do die out rapidly when |v| approaches 1. Also,
in sharp contrast to the a scheme, the ¢ scheme
becomes highly dissipative when v approaches

0.

N | —

In Sec. 3, it will be shown that new solvers of
Eq. (2.1) can indeed be constructed such that they
possess all the advantages but none of the disadvan-
tages listed above. Specifically, each of these solvers
will be formed by Eq. (2.8) and a new equation
in which (uz)} is evaluated using a simple central-
differencing procedure similar to that used to ob-
tain (u$)?. In addition, (uz)? so obtained will be

T/ J

(i) identical to (uz)? in the limit of |v| — 1, and

(i) identical to (u3)} when v = 0. As such, each of
these new solvers (i) is comparable to the ¢ scheme in
ease of implementation; (ii) becomes the ¢ scheme in
the limit of |v| — 1; and (iii) becomes the a scheme

when v = 0.

2.3. A special wiggle-suppressing scheme

If discontinuities are present in a numerical solu-
tion, any a-¢ scheme such as the ¢ scheme is not
equipped to suppress numerical wiggles that gener-
ally appear near these discontinuities. To serve as
a preliminary for future development, here we shall
briefly review an extension of the ¢ scheme which was
introduced as a remedy for this deficiency [3,35].

To proceed, let



n n
¢ \n def 1 n ny _ A% uj+1/2 %
(uzy)j = §(Uj+1/2 —uj) = 4 (T/2

(2.33)
ie., (uz_)} and (uz,)} are two (normalized) nu-
merical analogues of du/dz at (j,n) with one being
evaluated from the left and another from the right.

It can be shown that

1 n .
(u3)] = 5 (w5 +uiy); (2.34)

ie., (ug)? is the simple average of (ug_)7

4 7 and
(ugz,)?. As such, the ¢ scheme can be extended by
replacing (ug)} in Eq. (2.18) with an weighted av-
erage of (u%_)? and (u%_}_)” In other words, the
resulting extension is formed by Eq. (2.8) and

(uz)j = (w-)f (ug_)j + (we)f (w54 )7

n

where (w-)? and (wy)}, the weight factors asso-

ciated with (uz_)7 and (ug,)} respectively, must

satisfy the condition

(2.35)

(w )P + (g )} = 1 (2.36)
at all (j,n) € Q. In addition, the expression on the
right side of Eq. (2.35) represents an interpolation
(rather than an extrapolation) of (ug_)j and (ug )}
if and only if

(w-)] >0 and (wy)f >0 (2.37)

Let z_, z4, and a > 0 be real variables. Let
W_ and Wy be the functions defined by: (i)
W_(z_,z4;0) = Wi(z_,z4;a) = 1/2 if 2_ =
zy = 0; and (ii)

DN |24 |
Wotomzgia) = 2 (o ey > 0)
(2.384)
and
Wi(z_,z4;a) -] (Je—| +]z4+] > 0)

e ey

(2.38b)

if either z_ # 0 or 4 # 0. Furthermore, let
(we)j = We((uz_ )i, (uzy)f, @)

Then (w_)7 and (w4 )} so defined satisfy Egs. (2.36)
and (2.37) and have the property that

(wo)} = (wy)f = 1/2 it

or |(ug_)j = |(uzy)7|
Note that: (i) to avoid dividing by zero, in practice
a small positive number such as 1072° is added to

(2.39)

a=0

(2.40)

each of the denominators in Eqgs. (2.38a,b); and (ii)
the special cases of Eqgs. (2.38a,b) with @ = 1 and
a = 2 are used in the slope-limiter proposed by van
Leer [38], and van Albada et al. [39].

An extension of the ¢ scheme is formed by
Eqgs. (2.8) and (2.35) with (w-)} and (w4 )} being
defined by Eq. (2.39). Let a > 0 and [(uz_)}| #
[(uz4)7]. Then Egs. (2.38a,b) imply that, of (ug_)7}
and (ug,)?, the one with smaller absolute value 1s
associated with an weight factor > 1/2. This ob-
servation coupled with Eqs. (2.34)—(2.37) leads to
the conclusion that, of (uz_)} and (ugy)?, (uz)j
will have an algebraic value closer to the one with
smaller absolute value if (uz)? is evaluated as an
weighted average of (uz_)} and (ug,)} according
to Eq. (2.35). As a result, (uz)] so evaluated has
a smaller absolute value than that evaluated using
Eq. (2.18). In turn, numerical wiggles or overshoots
can be annihilated by the additional numerical dis-
sipation introduced as a result of this local “flat-
tening” of (uz)j. Tt has been shown numerically
that the extension is stable if |v| < 1 and a > 0.
Moreover, as a result of Eqs. (2.18), (2.34), (2.35)
and (2.40), (i) the extension reduces to the ¢ scheme
when o = 0; and (ii) even if & > 0, the extension be-
haves very much like the ¢ scheme in any smooth so-
lution region (where the condition (uz_)7 = (uz)}
more or less prevails) or at a solution extremum
(where the condition (ug_)} = —(ug4 )} more or less
prevails). As such, the wiggle-suppressing power of
the extension takes effect only if &« > 0 and only in
a solution region where |(ug_)7| and [(ug, )7| differ
substantially.

3. The ¢-7 and c-7* schemes

In this section, the ideal solvers of Eq. (2.1) men-
tioned at the end of Sec. 2.2 will be constructed. As
a preliminary, first we shall show that (u%)? can also
be cast into a central-difference form when v = 0.

To proceed, note that by assumption a # 0. Thus
v = 0 if and only if at = 0. Because |[EF| = |AD| =
|CB| = 0 (see Fig. 2(c,d)) when at = 0, the two
conservation conditions given in Eq. (2.6), for the
case v = 0, respectively reduce to: (i) the flux leav-
ing CE4(j,n) through the top face AF is equal to
that entering the same CE through the bottom face
ED; and (ii) the flux leaving CE_(j, n) through the
top face AB is equal to that entering the same CE
through the bottom face C'D. According to Remark
(b) given at the end of Sec. 2.1, the flux leaving
CE4(j,n) through the top face AF is equal to the
value of u* at the midpoint of AF (evaluated us-
ing the marching variables at point A) multiplied
by |AF|, while that entering it through the bottom
face ED is equal to the value of u* at the midpoint



of ED (evaluated using the marching variables at
point E) multiplied by |ED|. With the aid of these
observations and the fact that [AF| = |ED|, the
above condition (i) implies that, when v = 0, the
value of u* at the midpoint of AF evaluated using
the marching variables at point A is equal to that at
the midpoint of ED evaluated using the marching
variables at point E. As such, the first conservation
condition given in Eq. (2.6) is equivalent to

(utua)] = (u—us)'} s (v=0) (3.1)

if v = 0. Similarly, by using the above condition
(ii), it can be shown that the second conservation
condition given in Eq. (2.6) is equivalent to

(v—up)] = (utuz)i2}75 (v=0)  (32)
if v = 0. Because Egs. (2.8) and (2.9) (which form
the a scheme) are equivalent to Eq. (2.6) if [v| # 1,
they must be equivalent to to Egs. (3.1) and (3. )
when v = 0. In fact, by subtracting Eq. (3.2) from
Eq. (3.1), one obtains Eq. (2.9) where (ug)} is the

reduced form of Eq. (2.10) for the case v =0, i.e.,

| n—1/2 n—1/2
(uz)j = ) (u— “f)j+1//2 — (u+ “f)j—l//z (v=0)

Similarly, by summing over Egs. (3.1) and (3.2), one
can obtain the reduced form of Eq. (2.8) for the case
v =20.

With the aid of Eq. (3.3) and the facts that: (i)

(u— uf)?_lfll/; and (u+ uf)y__ll//;, respectively, repre-
sent an approximation of u at the midpoint of ED
and that at the midpoint of CD (see Fig. 2(c,d));
and (ii) the distance between the two midpoints re-
ferred to above is Az /2, it becomes obvious that, for
the special case v = 0, (ug)} is indeed a central-
difference approximation of du/dz at (j,n — 1/2)
(which is identical to (j, n) when v = 0), normalized
by the factor az/4. QED.

According to the above discussions, construction
of the 1deal solvers defined at the end of Sec. 2.2 is
hinged on finding central-difference approximations
for (uz)? such that each approximation (i) becomes
(ug)j in the limit of [v| — 1, and (ii) reduces to the
expression on the right side of Eq. (3.3) when v = 0.
As a result of these observations, these new solvers
can easily be constructed as the subschemes of the
e-T scheme, a new solver of Eq. (2.1) to be described
immediately.

3.1. The e-7 scheme

To proceed, refer to Fig. 3. Here My and M_
denote the midpoints of AF and AB, respectively.
Also Py and P_ are two points on BF' that satisfy

the following two conditions: (i) P; is to the right
(left) of My if and only if P_ is to the left (right)
of M_; and (ii) (M4 Py| = |M_P_|,i.e., My P and
M_ P_ have the same length. In addition, let the pa-
rameter 7 be defined by: (i) raz/4 = |M_|_P_|_| if Py
is to the right of My ; and (ii) 7 az/4 = —| My Py | if
Py is to the left of M. Obviously, it follows from
the above definitions that (i) raz/4 = |M_P_| if
P_ is to the left of M_; and (ii) 7 az/4 = —|M_ P_]|
if P_ is to the right of M_.
Moreover, let

def

u'(Pr) % [u+ (at)2)u;, — (1 — 7)(az/4)u]" M2

j+1/2
(3.4)

W'(P-) = [u+ (at/2)ue + (1= 7)(az/4)u)} 77
(3.5)
By definition, u/( Py ) is a first-order Taylor’s approx-
imation of u at P, evaluated using the marching
variables at point E, while u/(P_) is a first-order
Taylor’s approximation of u at P_ evaluated using

the marching variables at point C'. Also note that,

by using Eq. (2.7) and the relation (u¢)} = —a(us)7,
Egs. (3.4) and (3.5) can be simplified as
P n—1/2 c
W(Py) = [u— (1420 — T)usll7 ) (3.6)
and
W(P) = [ut (1—2v - ryu} /2 (3.7)
respectively.

At this juncture, note that Py and P_ generally lie
outside of SE(j + 1/2,n—1/2) and SE(j — 1/2,n —
1/2), respectively. Yet here, by definition, u'(P;)
and u'(P-) are evaluated as though Py and P_ lie
within (j+1/2,n—1/2)and (j—1/2,n—1/2), respec-
tively. At first glance, the current practice is incon-
sistent with a previously established rule. However,
as explained by the reasons given below, the defini-
tion of u/(Py) and u/(P-) is perfectly legitimate:

(a) Recall that solution elements were introduced
such that the boundary of a CE can be di-
vided into several component parts with each
of them belonging to a unique solution ele-
ment. As such, the flux over a component part
that belongs to a special solution element, say
SE(j,n), can be unambiguously determined in
terms of the marching variables at the mesh
point (j,n). In other words, in related to eval-
uation of any flux conservation condition over
any CE, Egs. (2.3)-(2.5) can be applied only to
a point (z,t) € SE(j, n).

(b) On the other hand, «'(P;) and w/(P-) intro-

duced here have nothing to do with flux evalua-



tion. In fact, they will be used only in the con-
struction of some numerical analogues of du/dz

at (4,n).

To proceed, note that: (i) A (i.e., the mesh point
(j,n)) is the midpoint of P_Py, and (ii) |P-P4| =
(14 7)az/2. Thus

(i) V(P ()

201+ 1)
az (u'(Py) —u'(P-)
=— | — -1 3.8
1 < (1+7)az/2 (r7-1) 3%
represents a central-difference approximation of

OJu/0x at the mesh point (j, n), normalized by the
factor az/4. Thus the new scheme formed by
Egs. (2.8) and
(uz)j = (uz)j (3.9)

represents a solver for Eq. (2.1). Because (i)
(tz)? represents a central-difference approximation
of (uz)j, and (ii) the approximation is associated
with the parameter 7, hereafter the new scheme will
be referred to as the ¢-7 scheme.

To explore the -7 scheme, note that Eqs. (3.6)—
(3.8) can be combined to yield

[+ (1— 20— T)uf];_—j//,j} (r#—1) (3.10)

Moreover, by using Egs. (2.10), (2.16) and (3.10),

one has

(Ug)} = (ug)j + Tt 7_(ucf — ul)?
V(l_ T) n—1/2 Tl—l/Z
_m (uf)j+1/2 - (uf)j_l/z (3.11)

By comparing Eq. (3.11) with (2.17), one concludes
that the c- scheme generally is different from the a-¢
scheme. In fact, a special case of the e-7 scheme can
be turned into that of the a-¢ scheme and vice versa
if and only if either (i) 7 = 1 or (ii) v = 0. For the
case 7 = 1, Eq. (3.11) implies that (uz)7 = (ug)7}.
In other words, the ¢ scheme is the special case of
the e-7 scheme with 7 = 1, a fact that can also
be deduced from the observation that the points Py
and P_ depicted in Fig. 3, respectively, coincide with
points F and B (i.e., the mesh points (j+1/2,n) and
(j—1/2,n)) if 7 = 1. On the other hand, it is seen
that, when v = 0, the ¢-7 scheme become the a-¢
scheme with ¢ = 7/(1 4+ 7). In fact one can further
deduce that c-7 scheme reduces to the a scheme if
and only if v = 7 = 0.

Furthermore, by studying the amplification matrix
and the amplification factors of the ¢-7 scheme [40],
it has been established that:

(a) The c-7 scheme is stable if

T > 1(|v]), and vl <1 (3.12)
where 7,(s) (0 < s < 1) is a numerically estab-
lished function. As shown in Fig. 4, 7,(s) is a
strictly increasing function of s with the follow-

ing properties:

7,(0)=0; lim 7(s)=1; and
s—1—
0<m(s)<s if 0<s<1 (3.13)

(b) The c-7 scheme is also stable if 7 > 1 and |v| =
1. However, it is unstable if either (i) |[v| > 1 or
(ii) lv] < 1 and 7 < 7,(|v|).

(c) For any given fixed value of |v| < 1, the
c-7 scheme generally becomes more dissipative
as the value of 7 increases from its minimum
7,(|v|). With the above preliminaries, the ideal

solvers of Eq. (2.1) defined at the end of Sec. 2.2
will be constructed in Sec. 3.2.

3.2. The e-7* scheme

The value of 7 used in the ¢-7 scheme generally
can be chosen independent of v. Here we consider
a subset of the c¢-7 scheme in which 7 is a function
of |v]. Specifically, for each member in this subset,
(i) there exists a strictly monotonically increasing
smooth function h(s), 0 < s < 1, which has the
following properties:

h(0) = 0; lir{l— h(s)=1; and
h(s) > 1o(s) if 0<s<1 (3.14)
and (ii)
7= h(|v]) (< 1) (3.15)

Note that, using the definition of h and Eq. (3.15),
one can easily infer from Fig. 3 a simple relation
between the value of |v| and the locations of Py and
P_, i.e., as the value of |v| increases from 0 to 1, P4
will move away from M, and edge toward the mesh
point (7+1/2, n) while P_ will move away from point
M_ and edge toward the mesh point (j — 1/2,n).
Also note that, by using Eqgs. (3.13)-(3.15), one can
show that: (i)

7=0

if v=0 (3.16)



(i)
Im =1
lv|—1-—

(3.17)
and (iii)

7> 1(|v|) (lvl< 1) (3.18)

Recall that (i) (ﬂf)? = (u%)? if r=v =0; and
(ii) (uz)} = (ug)} if 7 = 1. As such, Egs. (3.16) and
(3.17) imply that, for each member in the subset, (i)
(ﬂf)? = (u%);‘ if v = 0; and (ii) (ﬂf)? = (u%);‘ in
the limit of || — 17. In other words, all members
in the subset are ideal solvers in the domain |v| < 1.
Moreover, by using Eq. (3.12) and (3.18), one can
also show that these ideal solvers are also stable in
the same domain.

Corresponding to infinitely many choices of A that
meet all the requirements stated earlier, there are
infinitely many members in the subset. One special
member of this subset with

h(s)=s (0<s<) (3.19)
is explored in [35]. Hereafter, the subset will be re-
ferred to simply as the c-7* scheme. Also, unless
specified otherwise, in the remainder of this paper
Eq. (3.15) will be assumed for a given function h.

4. Extensions of the ¢-7* scheme and
related weighted averagings

To proceed, let

—u'(P)  az <u? - u’(P—))

T T I+ T 4 \(I+n)az/d
(4.1

(i3 )7 def U/(P+)_U§l AT
Uz g = - =
+i 147 1 1+r A:L‘/4

(4.2
Because |AP_| = |[AP;| = (14 7)az/4 (see Flg 3)
it is easy to see that (ﬁf_)? and (ﬂﬂ_)? are two
normalized one-sided difference approximations of
Ju/dz at the mesh point (j, n) with one being evalu-
ated from the left and another from the right. Also,
it follows immediately from Egs. (3.8), (4.1) and

(4.2) that
(4.3)

Moreover, by (i) substituting Egs. (2.8), (3.6)
and (3.7) into Eqs.(4.1) and (4.2), and (ii) using
Egs. (3.10) and (3.16), one arrives at the conclusion
that

= (4s4); = (4z)j (v=0) (44)

when v = 0.

With the above preliminaries, several extensions of
the e-7* scheme will be constructed in the following
subsections.

4.1. Scheme w-1

A comparison of Egs. (4.1)—(4.3) with Egs. (2.32)-
(2.34) reveals that an obvious extension of the ¢-7*
scheme can be obtained by replacing (uz_)} and
(ugy)? in Egs. (2.35) and (2.39) with (uz-)} and
(tUg4)7, respectively. In other words, the new exten-
sion is formed by Eq. (3.8) and

(uz)j = (w-)j (Uz-)7 + (wy)j (4ag)}  (45)

with
= Wi ((tz-)7, (Uz4)7, @)

Because the scheme is the first extension of the ¢-7*
scheme in which (uz)? is expressed as an weighted
average of (uz-)7 and (ugz4 )}, for simplicity, here-
after 1t will be referred to as Scheme w-1. It has
been shown numerically that Scheme w-1 is stable if
lv| <1 and a > 0.

Note that, as a result of Eqgs. (2.38a,b), (4.4) and
(4.6), one concludes that, for any given a > 0,
(w-)} = (wy)] = 1/2if v = 0. In other words,
for Scheme w-1, the “weighted” average on the right
side of Eq. (4.5) becomes a simple average if v = 0.
According to an explanation given in the last para-
graph of Sec. 2, this implies that Scheme w-1 will lose
its capability to suppress wiggles or overshoots when
v becomes small. For this reason, even though the
Euler version of Scheme w-1 performs much better
than that of the special scheme referred to in Sec. 2.3
in its ability to resolve shocks and contact disconti-
nuities crisply in a wide range (from 1 to less than
0.001) of the global C'F'L number (i.e., the maximal
value of local C'F'L numbers), it has a serious short-
coming, i.e., wiggles or overshoots can appear near a
discontinuity in a generated solution when the local
C'F L number there becomes extremely small. In the
following, it will be shown that this weakness can be
overcome by simple modifications of Eq. (4.6).

4.2. Scheme w-2

A new scheme, referred to as Scheme w-2 is formed
by Eqgs. (3.8) and (4.5) with (w4)} being given by
Eq. (2.39). In other words, although (uz)j is still
constructed as an weighted average of (uz-)7 and
(tz4 )?, the associated weight factors (wy)? are eval-
uated using (ugz_)j and (uzy)?. Because the last
two parameters, respectively, are identical to the
special cases of (uz_)? and (ﬂ5+)? with 7 = 1 (see
Eqs. (2.12), (2.32), (2.33), (3.4), (3.5), (4.1), and
(4.2)), their values do not vary with v. As such,

(wx)} # 1/2 and therefore the weighted average on

(we)j (4.6)



the right side of Eq. (4.5) will not turn into a simple
average when v = 0. In other words, Scheme w-2
is still capable of annihilating the numerical wiggles
near a discontinuity even if v becomes small. It has
been shown numerically that Scheme w-2 again is
stable if |[v| < 1 and o > 0.

Note that a possible drawback of Scheme w-
2 is that the relation [(uz_)}| < [(ugy)?l
([(uz_)7| > |(ug4)7]) does not automatically follow
from [(tiz_ )71 < (24 )?| ([(iiz-)2| > |(iie4)7]) and
vice versa. As a result, at some local mesh points,
it may happen that, of (uz-)} and (iz4)}, the one
with smaller absolute value may not be associated
with a weight factor > 1/2. According to a dis-
cussion given in the last paragraph of Sec. 2, this
implies that there i1s no guarantee that, at all lo-
calities, the weighted-averaging induced numerical
dissipation will be available to suppress wiggles or
overshoots. Despite this possible failing, fortunately
it has been demonstrated numerically that, not only
are they capable of suppressing wiggles or overshoots
robustly, Scheme w-2 and its Fuler extensions are

also highly accurate.

In the following, schemes that overcome the weak-
ness of Scheme w-1 and also avoid the theoretically
possible failing associated with Scheme w-2 will be
constructed using new weighted-averaging formulae
more advanced than that given in Egs. (2.38a,b).

4.3. New weighted-averaging techniques

To pave the way, first we shall discuss a limitation
of Eqs. (2.38a,b) as a generator of weight factors.

Let zx # 0. Then, for a given « > 0, obviously
W_ —1/2and Wy — 1/2as|z;/x_| — 1. Assuch,
when |z /z_] is very close to 1, then both W_ and
W, will be very close to 1/2 unless « > 1. As a re-
sult, in case that (i) (tz4 )] # 0, (i) [(dz4)} /(Uz-)7 |
is very close to 1; and (iii) Eqgs. (4.6) is assumed, then
the only way to prevent the weighted average that
appears on the right side of Eq. (4.5) from becoming
almost a simple average is to increase the value of
a used. However, this approach may be impractica-
ble because numerical evaluation of a quantity such
as ¢* for any real number z generally is hampered
by round-off errors and thus becomes highly inaccu-
rate if the value of a becomes too large, say 100. It
is the purpose of this subsection to introduce new
weighted-averaging techniques that do not have the
limitation discussed above.

For motivation, note that Eqs. (4.5) and (4.6) can
be expressed as

(4.7)

(ug)] = wizy + wazs
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and
S1 S9
wy = and wy = s1+s9 >0
! S1 + 83 E 1+ s9 (51432 )
(4.8)
respectively if
def , . def , . n
r = (uf_)] and x5 = (uﬂ_)j (4.9)
def n def n
wy = (w-)] and wy = (wy)] (4.10)
def |, ~ no def |/ . n|a
s1 = [(tz4)7|" and sy = [(dz-)7 | (o >0)
(4.11)

Equation (4.7) represents an weighted average of
only two values x; and x5. However, for the sake
of generality, weighted averages of two or more val-
ues will be considered in the following development.

To proceed, let (i) N be an integer > 2, (ii) s,

£=1,2,...,N, be given positive numbers, and (iii)
w2 p—19 N (4.12)
S
where
N
= (E SZ) >0 (4.13)
=1

(Note: to streamline the following development, here
we assume that s, > 0, £ = 1,2,...N, instead of
s¢ >0, =1,2,...,N, as could be inferred from
Eq. (4.11). However, without causing any practical
harm, one can add a very small positive number,
such as 1072% to each member of a set of nonnega-
tive numbers and turn all of them into positive num-
bers). Tt follows from Egs. (4.12) and (4.13) that

N
dwe=1, and 1>w >0, £=12... N
=1

(4.14)
As such,

N
WES wx (4.15)
=1
is an “interpolated” weighted average of the real
numbers z;. Note that, unless specified otherwise,
hereafter ¢ = 1,2,... N is assumed.

Let 1
8wy — - (4.16)
Then |
Wy = N ) (417)

Also, with the aid of Eq. (4.14), Eq. (4.16) implies

that
N
> 6=0 (4.18)
£=1



Note that W becomes the simple average of z, if
all 6 = 0. Thus the set {é1,8s,...,8n} provides a
measure of how far the weighted average is deviated
from the simple average. In the following, a simple
way to adjust this deviation will be introduced.

Let

€

§ def min{é,} and émax def max{é,} (4.19)

min
Then Eq. (4.17) and the fact that 1 > w, > 0 for all
£ imply that

1 1
1> N + 6max and N + 6Hlll’l >0 (420)
Let some 6, # 0 (i.e., the case with all w, = 1/N
is excluded). Then Eq. (4.18) implies that émax >
0 > 6pin- The last inequality and Eq. (4.20) can be

combined to yield

1
1_ﬁ>5max>0>6 (some &, # 0)

(4.21)
Note that an immediate result of Eq. (4.21) is

boi

(4.22)

min = T %

def .
Omax — mImin

{ 1 1 i) 1
6maX N ’ N‘Smln
(some &, # 0)

Given any adjustable real parameter o > 0, let

7 def

6y = o (4.23)
Then Eq. (4.18) implies that
N
> s =0 (4.24)
=1
In turn Eq. (4.24) and
w1 s (4.25)
imply that
N
> wyp =1 (4.26)
=1
Assuch, wj, £ =1,2,..., N, form a new set of weight

factors. From Egs. (4.23) and (4.25) one also con-
cludes that the disparity of the weight factors (i.e.,
the deviation of the values of the weight factors from
1/N) will be amplified (reduced) if o > 1 (o < 1).
The condition that
1>w, >0

(4.27)

will be imposed in the current development. With

the aid of Eqgs. (4.23) and (4.25), and the original
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assumption that ¢ > 0, it can be shown that, for
the case that some §; # 0, Eq. (4.27) is satisfied if
and only if

(some &y # 0)

where omax is defined in Eq. (4.22). On the other
hand, for the special case in which all §, = 0, one
can conclude that w, = 1/N (and thus Eq. (4.27) is
satisfied) for all £ and all & > 0.

Note that, according to Eq. (4.22), omax > 1.
Moreover, omax increases as [dmax| and |6, | de-
crease. In fact, omax — +00 as émax — O0F
and 6,45, — 07. Thus the range of the values of
o allowed becomes larger when [émax| and [6,ip]
become smaller. Note that, when W defined in
Eq. (4.15) almost becomes a simple average (i.e.,
when |[dmax| < 1 and |65, < 1), the disparity
of the weight factors must be amplified sharply such
that the weighted average

(4.28)

O'maxz0'>0

; def al / .
W=Dy wp (4.29)

=1

will deviate substantially from the simple average.
In this case, the large range of the values of ¢ allowed
meets the need to use a large value of o. In practice,
the value of ¢ used is that generated using a preset
formula as long as the generated value is less than
or equal to omax. For the case that the generated
value is larger than omax, ¢ = omax is assumed.

To be more specific, consider the N = 2 case in
which z, and s;, £ = 1,2, are defined by Egs. (4.9)
and (4.11). Tt was explained earlier that, for this
case, wy — 1/2 and wy — 1/2 as v — 0. In other
words, the weighted average wqz, + wozs almost be-
comes a simple average when |v| < 1. To prevent
this from happening, the weight factors wy and ws,
respectively, are replaced by the new weighted fac-
tors w| and w) generated assuming

. 0'0
o = Imin-< omax, m

where 0, > 0 1s a preset parameter in the order of
1. Note that Eq. (4.30) states that (i) o = o,/|v| if
omax > 0,/ ||, and (ii) ¢ = omax if omax < 0, /|V|.
As such, 6> 1 when |v| < 1.

Note that, for any N = 2 case, one of §; and &5 is
dmax while another is 6,,);,,. As aresult, Eqs. (4.18),
(4.20), and (4.22) imply that

(4.30)

0 < dmax = —0ppin < 1/2 (some 8; # 0)
(4.31)
and
1
Omax = - (some &, # 0) (4.32)
2 émax



Also for any case with N = 2, émax > 0 and o =
omax, it can be shown that: (i) w] = 1 and w = 0if
81 = 8max, and (i) wh = 1 and w} = 0if 63 = dmax.
This completes the description of a new approach
by which the weight factors wj, £ = 1,2,...,N,
are generated from the given weight factors wy,
£=1,2,...,N. In the following, Another approach
will be described.
To proceed, the indices of sp, £ = 1,2,..., N, will
be reshuffled such that
SN > SN_1 > ...>81 >0 (433)
As such, Egs. (4.12) and (4.13) imply that Eq. (4.14)
can be replaced by a set of stronger conditions, i.e.,

N
ngzl and 1>wy >wng1>...>w >0
=1

(4.34)
Next let
pe AL g=1,... N-1  (4.35)
st
Then (i) 9, >0,£=1,..., N—1, and (ii)
‘
Se+1 = [H(1+UZ’) 51, £:11 aN_l
=1
(4.36)

Given any adjustable real parameter o > 0, let (i)
§1 = s1 and

L
So41 = lH(HUW)l 5, £=1,...,N—-1

=1
(4.37)
and (ii)
& =12, N (4.38)
S
where
. N
g &t (Z gz) >0 (4.39)
=1
Because ¢ > 0 and n, > 0, £ = 1,...,N—1,
Eq. (4.37) implies that
SN >SN 2 ...>258 >0 (440)

Also, as a result of Eqgs. (4.38)—(4.40), one has

N
Zﬁ)z:l and 1>wuy>wng>...2w >0
=1

(4.41)
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Assuch, wy, £=1,2,..., N, form a new set of weight
factors and

N
=, def ~
W = Wy Xy

=1

(4.42)

is an “interpolated” weighted average of the real
numbers z,. Note that, for the special case that
SN = SN-1 = ... = s1 > 0, it is easy to see that (i)
wg=w; = 1/N, £ =1,2,...,N, and (ii) n, = 0,
£=1,...,N—1.

Let ¢; and £5 be any pair of integers with 1 < £; <
ly < N. Then Egs. (4.12) and (4.36)—(4.38) imply
that

£—1
w
t2 = H (1 —|— 7]2/) (443)
We, =0
and
oy £—1
== IT (+one) (4.44)
4 2=,

Because ¢ > O and n, > 0, £ = 1,... ., N—1, a
comparison of Eqs. (4.43) and (4.44) reveals that
we, [we, = We, /W, = 1 if n, = 0 for all £ with
6y < €< (83— 1). However, in case that n, # 0 for
at least one £ with £; < £ < (€3 — 1), one has

Wep
> we ifo>1
w .
<2 ifo<d (4.45)
Wy, 1
=% jfg=1
wll

From the above discussions, one concludes that,
except for the special case in which sy = sy_1 =

. = s1, the disparity of w, is greater (less) than
that of wy if ¢ > 1 (¢ < 1). Note that the current
approach for amplifying the weight factors has one
advantage over the approach described earlier, i.e.,
in the current approach, there is no upper bound for
the value of ¢ one could use. Thus, in the current
approach, Eq. (4.30) is simplified as

To

o=
|v]

(4.46)

4.4. Schemes w-3 and w-4

Consider the N = 2 case in which z;, and s,
£ = 1,2, are defined by Eqs. (4.9) and (4.11). Let
(wl)} and (w )}, respectively, be the weight factors
associated with (uz-)7 and (tz4)] generated using
the first approach described in Sec. 4.3. Then, by
definition, Scheme w-3 is formed by Eq. (2.8) and

(uz)f = (W) (dz-)7 + (w})] (24 )}

On the other hand, let (17)_)? and (1?;4_)?, respec-
tively, be the weight factors associated with (iz-)}

(4.47)



and (tz4 )} generated using the second approach de-
scribed 1n Sec. 4.3. Then, by definition, Scheme w-4
is formed by Eq. (2.8) and

(Uf)?

= (0-)7 (4z- ) + (04)7 (z4)]  (4.48)

5. Schemes for nonuniform meshes

Consider the space-time mesh (=L < z < L and
t > 0) depicted in Fig. 5. Here (i) L > 0 is a
given length, and (ii) the mesh structure in the re-
gion —L < z < 0 is the mirror image of that in the
region 0 < = < L.

Let the domain 0 < # < L on the z-coordinate
line be divided into K intervals using the dividing
coordinate points #1, s, ..., Tx_1 Where

0<Z <&r<...<Zg <L (5.1)

Let
def - -
Ly = & — Zp_1, k=1,2,... K (52)
with
200 and i L (5.3)
Then
K
> Lp=L, and Ly>0, k=12 K
k=1
(5.4)
In the current development, it is assumed that
Ly=r""1Ly, k=1,2,... K (5.5)
where r is a parameter with
r>0 and r#1 (5.6)
By combining Egs. (5.4)—(5.6), one has
(1—r)rk-1L ) .
Lk:ﬁ, k:l,Z,...,A (57)
In turn, Egs. (5.2), (5.3), and (5.7) imply that
) 1—rF , .
:z:k:(l_rK)L, k=0,1,2,...,K (5.8)

Note that, unless specified otherwise, hereafter it 1s
assumed that £ = 1,2,..., K.

Moreover, for any k, let the interval (Zj_1, 1)
be divided into M uniform sub-intervals with the

dividing points 3321_)1, *%2231’ . 535}:11_1) where M > 0

is a given integer and

~(1) ~(2)

gy <a) <@ < <aMTV i (5.9)
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Thus
dm—m — g o m=1,2,...,M (5.10)
where
. L—M’“ (11__7”):; : <%) (5.11)
and
#0 e and #M) Yy (5.12)

Note that (i) the validity of the last equality sign in
Eq. (5.11) follows from Eq. (5.7); and (i) Eqgs. (5.8)—
(5.12) imply that

L
1—rK

LK -1, m=0,1,,..

iém) =

{1— [1—1—(7’—1)%] rk},

k=0,1,.. LM (5.13)

Note that :Eg?) i1s yet to be defined. However, as a
natural extension of Eq. (5.12) (i.e.,let k = K +1 be
allowed in the first part of Eq. (5.12)), it is assumed
that 55(}?) = #g. According to Eq. (5.8), x = L.
Thus

B0

(5.14)

As will be shown, the above definition is needed in a
later development. Note that, unless specified oth-

erwise, hereafter 1t is assumed that m =1,2,..., M.
To pave the way, let
def 1 3 KM
= - 1,=, ... 1
R(f) {0,2, SN } (5.15)
D(f) = {(K,0}U{(k,m)k=0,1,... K-
m=0,1,...,.M—1} (5.16)

By definition, (i) R(f) represents a set of integers
and half-integers and (ii) D(f) represents a set of
ordered pairs of integers. It can be shown easily
that there are (KM + 1) elements in each of these
two sets. In addition, the function f defined by

i=fk,m) = LM; = (5.17)
represents a one-to one mapping between D(f) and
R(f). For the special case K = 3 and M = 4, the
values of the function f are listed in Table I. For any
given j € R(f), let (i) (k,m) = f=1(j) where f~!is
the inverse of f; and (ii)

EC.
I]—

def

and z_; = —x;

2 (5.18)

Hereafter, for any j = 0,+£1/2,+1,...,£KM/2, the
mesh line z = x; will be referred to as the jth spatial
mesh line.



Next, the intersection of the jth spatial mesh line
and the horizon line with ¢t = nat (n =0,1/2,1,..)
is considered as a mesh point (marked by a dot in
Fig. 5) and denoted by (j,n) if (j + n) is a half-
integer. By its definition, the coordinates of (j,n)
are given by

and ¢t =1" % nat

r =z (5.19)
In this section, the set of all (j,n) is again denoted
by Q. As shown in Fig. 6(a,b), (i) each (j,n) € Qis
associated with two conservation element CE_(j, n)

and CE4(4,n); and (ii)

_ def q
ar; = zj—wxj_1/2 and  Arj

— ApT
= AT 19

Also, as shown in Fig. 6(c),

As a result, Az

CE(j,n) € CE_(j,n) UCE4(j,n)

and

AZ;j def Tjyi/a = Tj—1/2 = Az; + Am}" (5.22)

Hereafter, the midpoint of the top face of CE(j,n)
is referred to as the solution point (marked by a
cross in Fig. 6(c)) associated with the mesh point
(j,n) and is denoted by (j,n)’. As shown in Fig. 5,
a solution point may or may not coincides with a
mesh point. Also, as depicted in Fig. 6(d), each
(j, n)" is associated with a solution element SE(j, n).
Note that, by its definition, the coordinates of (j, n)’
are given by

r = m; def %(mj_1/2+mj+1/2) and t=1" (5.23)
In addition, the midpoint of the line segment joining
(j,n) and (j+1/2,n), and that of line segment join-
ing (j,n) and (j — 1/2, n) are marked by circles (see
Fig. 6(c)) and, respectively, denoted by (j,n)* and
(j,n)~. Note that the line segment joining (j, n) and
(j + 1/2,n), and that joining (j,n) and (j — 1/2,n)
are the top faces of CE4(j,n) and CE_(j,n), re-
spectively. As such, (j,n)* and (j,n)~ are the cur-
rent counterparts of points M, and M_ depicted
in Fig. 3. By their definitions, the coordinates of

(j,n)* and (j,n)” are given by
def 1 n .
r = :E;' = E(:E] +xj41/2) and t=t (5.24)
and
z=z; def —(xj +xj-1/2) and t=1t" (5.25)
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respectively.
Furthermore, by using Egs. (5.20), (5.23) and
(5.24), it can be shown that

Ty Wy = GAT >0 (5.26)
Fiprys— 2t = sart, , >0 (5.27)
j+1/2 i T 9T+ :
1
, T — -t 9Q
1} —2j = 5AL; >0 (5.28)
1
+ — - .
xf — .Z‘; = 54%; >0 (5.29)
/ 1 .
Tj—Tj_1/0= §Afl?j—1/z>0 (5.30)
1
Tipips =T = 3A%j41/2 > 0 (5.31)
1 - 513
Tip1e = T = 3 2% + A:v;’+1/2 >0 (5.32)

The relations Egs. (5.20), and (5.22)—(5.32) are
clearly illustrated in Fig. 7.

The current counterparts of points Py and P_ de-
picted in Fig. 3 are points P,; and P_; depicted in
Fig. 7. By definition, the coordinates of points P, ;
and P_;, respectively, are given by

z=z(Py;) and t=1¢" (5.33)
and
r=2z(P_;) and t=1" (5.34)
with
P oty = ot Tt
2(Pyj) = 2] +1(2) 410 —2]) = 2] + 9 A%z
/ l—7 4 :
= 2 pjs — — 8T (5.35)
def _ — — ] —
w(Pj) = wf +7(@f_1p—a) = v — gz,
1l—7m  _ )
=z 1+ T]M]._m (5.36)
Here note that: (1) 7;, with the range
0<r<1 (5.37)

is a parameter to be defined later; and (ii) as the
value of 7; increases from 0 to 1, P;; will move away
from (j,n)* and edge toward the solution point (j +
1/2,n)" while P_; will move away from (j,n)~ and
edge toward the solution point (j — 1/2,n)".

This completes the specification of key geometric
parameters. Next note that, the current counterpart
to Eq. (2.3) is
def

u (@, t55,n) = ui 4 (ue) (v — 25) + (ud)f (¢ — 1)

(5.38)



i.e., u? is the value of u* at the solution point (j, n)’.
Because (ut);‘ = —a(ux)? is also assumed here, the

current counterpart to Eq. (2.5) is
u'(x,t54,n) = ul +(ug)} [(r—m})—a(t—t”)] (5.39)

Obviously, Eq. (2.4) is valid even for the current
case. By imposing Eq. (2.11), and using Eqgs. (2.4)
and (5.39), one can obtain the current counterpart
to Eq. (2.8), i.e.,

xzt
A.I‘]

= o [ e e )
i— [0S + ()23 (@7 =250
_% [uj-ltll//22 + (“w)j;f//; (Tj41/2 — I}'+1/2)
-]
% [ ?—_11//22 + (Uf);l—_f//; (Tj—1/2— m;—1/2)

aat n—1/2
_T(ux)j_l/g] (5.40)

Note that, normalized numerical analogues of
Ju/Ox are not used in this section.

Next, let

w'(Pyj) Eu (2(Py), %5 +1/2,n — 1/2) (5.41)
and

u'(P_j) € w (2(P_j), ¢ 5 — 1/2,n— 1/2) (5.42)

By using Egs. (5.35), (5.36), and (5.39), Egs. (5.41)
and (5.42) imply

n—1/2

u'(Pyj) = Ujyq/o T
(1= m)(af = ) 4ap2) = (ast/2)] (w5, Sy
(5.43)
and
W(Pj) = T i+
(V=77 = 2)_1y0) = (ast/2)] (w)} 7]
(5.44)

respectively. Eqs. (5.43) and (5.44) are the current

counterparts to Eqgs. (3.6) and (3.7), respectively.
Next, the current counterparts to Eqgs. (4.1) and

(4.2) are

n def ui — u'(P_j)

(to-)] 2 a(P) (5.45)
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and

(5.46)

respectively. Note that it can be shown easily that
the denominators in Eqgs. (5.45) and (5.46) are pos-
itive always. By using one of many approaches
described earlier, one can generate (w_)? and
(w4)7, the weight factors associated with ()7
and (tz4)7. Given (w-)7 and (w4)}, a solver can

be formed by Eq. (5.40) and

(uz)j = (w-)j (4e-)7 + (wi)f (4o4)]

To complete the description of the current solvers,
note that, among many possible choices, one may
assume that

(5.47)

7 = lant/e;],

(5.48)
where e; are positive constants defined by: (i)
€j ef min{(z} —}_,), (¢}, —2})} (5.49a)
if = 0,+1/2,+1,...,+(KM —2)/2; (ii)
def . (e
ej = min{2(z} — m}_l/Q), (25— %)} (5.49h)
if j = —(KM —1)/2; and (iii)
def .
ej = min{2(z} ), —23), (2f —2j_1)}  (5.49¢)

if j = (KM — 1)/2
Note that 7; given in Eq. (5.48) can be inter-
preted as the CF'L number at (j, n)’. In other words,
Eq. (5.48) is the current counterpart of a special case
of Eq. (3.15) in which h(s) = s. Also Note that,
because z(xarq1y/2 and _(gar41)/2 are undefined,
m/ﬂ:KM/z cannot be defined using Eq. (5.23). How-
ever, according to Eq. (5.49), x/iKM/2 are needed
in the definitions of et gar_1)/2, As such, here we
assume that
/
‘/E:I:KM/2 = x:tKM/Q (550)
Also, to satisfy Eq. (5.37) for all values of j, at is
subjected to the condition that
min{e; }

(5.51)

=l

We conclude this section with a discussion of
Eq. (5.11) for the special case in which r% > 1.
For the case r > 1, Eq. (5.11) implies that

0 = (1—r)rk-t

1—rK

L (1—r)rk-t
e

—r

j=0,+1/2, +1,43/2,..., +(KM—1)/2



r—1

K .
= - — 1 b2
Y (r* > 1) (5.52)
In turn, Eq. (5.52) implies that
1 K
N——— 1 5
r T M /D) (r* > 1) (5.53)

Finally, by combining Egs. (5.7) and (5.53), one has

1

(5.54)
Thus, for the case X > 1, r and therefore R can be
easily evaluated in terms of M and the ratio £ /L
without using an iterative procedure, as would be
expected if Eq. (5.11) is used directly.

=Kl (W)K_l (r*>1)

6. Two-dimensional extensions using triangular meshes

Several 2D CE/SE schemes using triangular
meshes were described in [7,8]. These 2D schemes
also can be easily modified to become C'F L number
insensitive schemes. A sketch explaining how this
can be done is given here.

Consider Fig. 8. Here, a triangle AABC is
surrounded by three neighboring triangles AADB,
ABEC and ACFA. The centroids of AABC),
AADB, ABEC, and ACF A are denoted by G, G,
G5, and (3, respectively.

Let the plane shown in Fig. 8 be a z-y plane at
the time level t = ¢, n =0,1/2,1,.... Then G can
be considered as a mesh point at ¢ = t". As shown
in [7,8], the three conservation elements associated
with G are three quadrilateral space-time cylinders
sandwiched between the time level at ¢ = ¢" and that
at t = t"~1/2 with their top faces being GAG, B,
GBGLC, and GCG3A, respectively. The centroids
of the above three top faces are denoted by M, M5
and Mj, respectively. M, M-, and Mjs, are the
current counterparts to points (j,n)* and (j,n)”
depicted in Fig. 7 (or points M; and M_ depicted
in Fig. 3).

Furthermore, let the solution point associated
with point G be the centroid of the hexagon
AG1BG2CG3 (which is the union of the three top
faces referred to in the last paragraph) and denoted
by G’ (not shown in Fig. 8). In general, G’ does not
coincide with G. Also G and G’ are current counter-
parts to (j,n) and (j,n)" depicted in Figs. 6 and 7.
The solution points associated with Gy, Gs, and G5
can be defined similarly and denoted by G, G%, and
GY%, respectively. The projections of G, G%, and G%
at the time level ¢t = t"~1/2 are the current counter-
parts to (7 + 1/2,n— 1/2) and (j — 1/2,n — 1/2)’
depicted in Fig. 7.

In addition, note that points P, Ps, and P5 de-
picted in Fig. 8 are the current counterparts to
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points Py; and P_; depicted in Fig. 7. By defi-
nition, they lie on the line segments M; G, M2GY,
and M3GY, respectively. (Note: in Fig. 8, G}, GY,
and G4 happen to coincide with G, G2 and G, re-
spectively.) Tt is also assumed that

| M, Py
| MGy

=G, (=123  (6.1)

where 7(G’) is the current counterpart to 7; (see
Eq. (5.48)) and is subjected to the condition

0<r(@) <1 (6.2)

Finally note that, points My, M-, and M3 were
incorrectly defined in [36] as the midpoints of the

line segments G'G', G'GY,, and G'GY, respectively.

7. Numerical results

The solvers described in this paper, in a straight-
forward manner described in [3,7,8], have been ex-
tended to become their Euler versions. Accuracy of
of these Euler solvers will be assessed here.

7.1 Sod’s Shock-tube problem

First, accuracy of the 1D uniform-mesh Euler ver-
sions of the special scheme described in Sec. 2.3 and
Scheme w-4 are evaluated using Sod’s shock tube
problem [41]. The results are shown in Figs. 9 and
10 with the understanding that the “old” solutions
are generated using the special scheme with a = 1
(see Eq. (2.39)) while the new solutions are gener-
ated using Scheme w-4 with « = 1 and o, = 0.5 (see
Egs. (4.11), and (4.46)). Here the spatial domain
is defined by —0.505 < z < 0.505 with az = 0.01.
The numerical results at ¢ = 0.2, including density
(p), velocity (u) and pressure (p), are presented for
two different sizes of time step, i.e., (i) at = 4x 1073
(Fig. 9); and (ii) at = 4x 107° (Fig. 10). The values
of the global CFL number for these two cases ap-
proximately are 0.88 and 0.00088, respectively. Be-
cause each marching step advances a time period
At/2, it requires 100 and 100, 000 marching steps for
cases (1) and (ii), respectively, to advance to ¢t = 0.2.

From the results shown, it is clear that the old
CE/SE solutions are highly dissipative when the
value of global CFL number < 1. In sharp contract,
the new solutions are still quite accurate even when
CFL number < 0.001. The advantage of Scheme w-4
over the scheme described in Sec. 2.3 is overwhelm-

ing.
Next, accuracy of the 1D nonuniform-mesh Eu-
ler versions of Scheme w-3 (o = 2 and o, = 1)

are also evaluated using Sod’s shock tube problem.
The results obtained using three different nonuni-
form meshes are shown in Figs. 11-13. Using the



geometric parameters defined in Sec. 5, the three
meshes, respectively, are defined by (i) L = 0.5,
1/0.96, M = 4, and K = 170; (i) L = 0.5,
r =2 M =50, and K = 11; and (iii) L 0.5,
r=4, M = 75, and K = 6. By using Egs. (5.53)
and (5.54), it is easy to shown that (i) £x/L = 0.01
for all three cases, and (ii) R ~ 1000 for case (i) and
R = 1024 for cases (ii) and (iii). The numerical re-
sults (¢ = 0.2) are generated after 100,000 marching
steps assuming at = 4 x 1076,

Because R = £k /£1 ~ 1000, the variation in mesh
intervals is very large for all three cases. As a result,
the disparity in C'F L numbers is also very large—
they vary from 0.88 near z = 0 to 0.00088 near
z = +IL. Nevertheless, according to Figs. 11-13,
the numerical results match very well with the ex-
act solutions for all three cases. The only exception
is that, for cases (ii) and (iii) where r = 2 and r = 4,
respectively, there are small solution bumps near in-
terfaces separating mesh intervals of vastly different
sizes. It is interesting to note that solution accu-
racy at points away from these interfaces are not
impacted by these bumps.

r =

7.2 Propagation of Sound Waves through
a Transonic Nozzle

The benchmark problem 1.1 in the third Compu-
tational Aeroacoustics (CAA) Workshop that have
been solved using the 2D CE/SE Euler solver with
adjustable numerical dissipation in [44] are used to
test the 2D Euler version of scheme w-2 described
above. The same 401 stretching mesh used in [44] is
used here. As shown in Fig. 14, the current numer-
ical results agree very well with the exact solutions.

7.3 Oblique shock reflection

The oblique shock reflection problem[7] is solved
using 9600 (120x40x2) uniformly-distributed struc-
tured triangles with A¢ = 0.005 and 0.0005, re-
spectively. For At = 0.005, the Courant number
is in the order of 1. Numerical results obtained us-
ing different models are very similar. However, for
At = 0.0005, the solution obtained using an old
CE/SE scheme becomes very dissipative. In con-
trast, as shown in Fig. 15, the numerical solutions
obtained using the 2D Euler version of scheme w-2
still preserve sharp shock resolution.

8. Conclusions and discussions

Generally speaking, a stable numerical marching
for a non-linear problem requires the presence of a
sufficient amount of numerical dissipation. However,
accuracy of the numerical results, especially for an
unsteady problem, will suffer if too much numeri-
cal dissipation is present. As such, a careful con-
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trol of numerical dissipation is a must for an accu-
rate and stable non-linear unsteady numerical sim-
ulation. However, a proper control of numerical dis-
sipation is a very difficult task. Although one can
increase the numerical dissipation rather easily, 1t 1s
much harder to reduce it when accuracy considera-
tion requires it.

The CE/SE method is developed from a set of non-
dissipative solvers. As such each CE/SE solver is
an extension of a core non-dissipative scheme. It is
this unique feature that make it much easier to re-
duce numerical dissipation in a CE/SE simulation.
It is also the key reason behind the successful con-
struction of the Courant number insensitive CE/SE
schemes described in this paper.

In this paper, the ideas used in a recent work on
one-dimensional C'F'L number insensitive schemes
are elaborated in a much more detailed manner.
These ideas are also extended to construct one-
dimensional and multidimensional solvers for appli-
cations involving nonuniform meshes. The advan-
tages of the new schemes over the original CE/SE
schemes are overwhelming and clearly demonstrated
by the numerical results presented.

In addition, we also report advances in developing
new wiggle-suppressing techniques. These new tech-
niques are based on a new set of weighted averaging
formulae which are much more potent and flexible
than those introduced earlier.

Finally note that, in addition to the Euler appli-
cations reported in this paper and [35,36], the CFL
number insensitive schemes recently have also been
applied to (i) Navier-Stokes problems by C.L. Chang
[42]; and (ii) chromatographic adsorption problems
[43] by Y.I. Lim et al..
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Table I. The values of function f(K=3,M =4)
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Figure 1. — A surface element on the boundary
S(V) of an arbitrary space-time volume V.
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Figure 9: Uniform-mesh solutions to Sod’s problem (CFL number = 0.88).
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Figure 11: Nonuniform-mesh solutions to Sod’s problem (L = 0.5,7 = 1/0.96, M = 4, K = 170).
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Figure 12: Nonuniform-mesh solutions to Sod’s problem (L = 0.5,r = 2, M = 50, K = 11).
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Figure 13: Nonuniform-mesh solutions to Sod’s problem (L = 0.5,7 =4, M =75, K = 6).
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