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Abstract

The stability of a CE/SE scheme requires that the
CFL number < 1. Without using special techniques
that involve ad hoc parameters, generally the numer-
ical dissipation associated with a CE/SE simulation
with a fixed total marching time increases as the
CFL number decreases. As a result, for a small CFL
number (say < 0.1), a CE/SE scheme may become
overly dissipative. In this paper, using Sod’s shock
tube problem as an example, it is demonstrated that
a parameter-free CE/SE scheme constructed here
can resolve shocks and contact discontinuities crisply
for the CFL number ranging from close to 1 to less
than 0.001.

1. Introduction

The space-time conservation element and solu-
tion element (CE/SE) method is a high-resolution
and genuinely multidimensional method for solving
conservation laws [1-35]. The CE/SE method dif-
fers substantially in both concept and methodology
from the well-established methods. Its nontradi-
tional features include a unified treatment of space
and time, the introduction of space-time staggered
conservation elements and solution elements, a novel
shock-capturing strategy that does not use Riemann
solvers, and above all, a mathematically simple and
yet physics-solid logical structure that accounts for
the method’s simplicity, robustness and accuracy.
Note that conservation elements are nonoverlapping
space-time subdomains introduced such that (i) the
computational domain is the union of these subdo-
mains; and (i) flux conservation can be enforced
over each of them and also over the union of any
combination of them. On the other hand, each solu-
tion element is a space-time subdomain over which
any physical flux vector is approximated using sim-
ple smooth functions. In general, a conservation el-
ement does not coincide with a solution element.

To date, numerous highly accurate CE/SE steady
and unsteady solutions with Mach numbers ranging
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from 0.0028 to 10 have been obtained without using
preconditioning or other special techniques [28]. The
flow phenomena modeled include traveling and in-
teracting shocks, acoustic waves, shedding vortices,
detonation waves, cavitation, and hydraulic jump
[1-35]. In particular, the rather unique capability
of the CE/SE method to resolve both strong shocks
and small disturbances (e.g., acoustic waves) simul-
taneously has been verified through several accurate
predictions of experimental data [13,14]. Note that,
while numerical dissipation is required for shock res-
olution, it may also result in annihilation of small
disturbances. Thus a solver that can handle both
strong shocks and small disturbances simultaneously
must be able to overcome this difficulty.

In spite of its past successes, there is still room
for improving the CE/SE method. An example is
the fact that, for a practical CE/SE simulation with
a fixed total marching time, local numerical dissi-
pation tends to increase as local CFL number de-
creases. As a result, without using special tech-
niques (see Sec. 2) that involve ad hoc parameters,
a CE/SE solution may become overly dissipative
at some region if its local CFL number becomes
too small (say < 0.1). In a numerical simulation
involving a highly nonuniform spatial mesh and a
spatially independent time step, the values of local
CFL number may vary sharply across the computa-
tional domain. As a result, these values may range
from its maximum stability bound, i.e., 1, to a value
& 1. For this case, the performance sensitivity of a
CE/SE scheme with respect to the variation of the
local Courant number obviously can result in a so-
lution that is highly dissipative in a regions where
the local CFL number < 1.

In this paper we shall describe how one can con-
struct parameter-free and Courant-number insensi-
tive CE/SE schemes. The rest of the paper is or-
ganized as follows. A review of the existing CE/SE
schemes is given in Sec. 2. The new Courant-number
insensitive schemes are described in Sec. 3. Using
Sod’s shock tube problem [36] as an example, it is
shown in Sec. 4 that the Euler version of a new
scheme described in Sec. 3 can resolve shocks and
contact discontinuities crisply for the CFL number
ranging from 1 to 0.001. Concluding remarks are



given in Sec. 5. Finally, to give the reader a con-
crete idea about the simplicity and robustness of the
CE/SE method in general and the new schemes in
particular, the short Fortran program used to gen-
erate the present numerical results is listed in Ap-
pendix.

2. Review of the 1D CE/SE method

For simplicity, we review the existing CE/SE
schemes for the PDE
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where a # 0 is a constant. Let £1 = z, and x5 =t be
considered as the coordinates of a two-dimensional
Euclidean space E5. Then, by using Gauss’ diver-
gence theorem in the space-time FEs, it can be shown
that Eq. (2.1) is the differential form of the integral
conservation law

=0 (2.1)

7{ h-d3=0 (2.2)
(V)

As depicted in Fig. 1, here (i) S(V) is the bound-
ary of an arbitrary space-time region V in Es, (ii)
h = (au,uv), and (iii) d§ = do@ with do and 7,
respectively, being the area and the unit outward
normal of a surface element on S(V). Note that:
(i) because h - d3 is the space-time flux of  leav-
ing the region V through the surface element d3,
Eq. (2.2) simply states that the total space-time flux
of i leaving V through S(V) vanishes; (ii) in Es, do
is the length of a line segment on the simple closed
curve S(V); and (iii) all mathematical operations
can be carried out as though E» were an ordinary
two-dimensional Euclidean space.

To proceed, let Q denote the set of all space-time
staggered mesh points in FE» (dots in Fig. 2(a)),
where n = 0,4+1/2,+1,43/2,%2,..., and, for each
n,j=n+t1/2,n+3/2,n+5/2,.... Each (j,n) € Q
is associated with a solution element, i.e., SE(j,n).
By definition, SE(j,n) is the interior of the space-
time region bounded by a dashed curve depicted in
Fig. 2(b). It includes a horizontal line segment, a
vertical line segment, and their immediate neighbor-
hood.

Let (z,t) € SE(j,n). Then Eq. (2.2) will be simu-
lated numerically assuming that u(z,t) and h(z,t),
respectively, are approximated by

u* (x5 §,m) L ul 4 (ug) (@ — z5) + (ug) 2t — ")
(2.3)
and

B*(z,t;5,m) € (au*(z,t;4,n), u*(z,t;4,n)) (2.4)

Note that (i) u?, (uz)}, and (us)? are constants in
SE(j,n), (ii) (z;,t™) are the coordinates of the mesh
point (j,n) with 2; = jaz and t" = nat, and (iii)
Eq. (2.4) is the numerical analogue of the definition
h = (au,u).

Let u = u*(x,t;j,n) satisfy Eq. (2.1) within
SE(j,n). Then one has (uy)} = —a(ug)}. As a
result, Eq. (2.3) reduces to

w(z,t;4,n) = uj + (ug)} [(z — z;) —a(t —t")],
(2.5)
for (z,t) € SE(j,n), ie., u} and (u;)} are the
only independent marching variables associated with

(J,n).

Let E; be divided into nonoverlapping rectangular
regions (see Fig. 2(a)). As depicted in Figs. 2(c)-
2(e), (i) two such regions, i.e., CE_(j,n) and
CEL (j,n), are associated with each interior mesh
point (j,n) € Q; and (ii) CE(j,n) is the union of
CE_(j,n) and CE4(j,n).

Given the above preliminaries, we are ready to de-
scribe the existing CE/SE solvers for Eq. (2.1).

2.1. The a Scheme

Note that, among the line segments forming the
boundary of CE_(j,n), AB and AD belong to
SE(j,n), while CB and CD belong to SE(j—1/2,n—
1/2). Similarly, the boundary of CE, (j,n) belongs
to either SE(j,n) or SE(j + 1/2,n — 1/2). As a
result, by imposing two conservation conditions at
each (j,n) € Q, i.e.,

f R*-dg=0, and
S(CE4(j:n))

]f h*-dg=0, (jn)eQ  (2.6)
S(CE_(j4,n))

and using Egs. (2.4) and (2.5), one can obtain two
equations for the two unknowns v} and (uz)}. By
solving these equations, one has (i)

1 ~1/2 ~1/2
uf = 3 {(1 + V)u?71/2 +(1- V)u?+1//2 +

- [0 - b} en
and, assuming 1 — 2 # 0, (ii)
(uy)} = (ug")} (2.8)
with
atn def 1T n_1/2 n—1/2 n—1/2
(um+)j = 5 [uj+1//2 _“j_1//2 - (1 - V)( ;r)j—l//z
—(+ )@ (2.9)



Here, (i) v et aat/az, and (ii) for any (j,n) € Q,

AT

W} = T (w)]
The a scheme, i.e., the inviscid case of the a-u
scheme [1,3,9], is formed by Egs. (2.7) and (2.8).
Note that: (i) hereafter the superscript symbol “+”
is used to denote a normalized parameter; and (ii)
the superscript symbol “a” in the parameter (uj)?
is introduced to remind the reader that Eq. (2.8) is
valid for the a scheme.

The review of the a scheme is concluded with the
following remarks:

(2.10)

(a) As shown in [3], the two amplification factors
of the a scheme are identical to those of the
leapfrog scheme. As a result, the a scheme is
nondissipative and it is stable if v? < 1.

(b) Note that derivation of Egs. (2.7) and (2.8)
can be facilitated by the following observations:
because u*(z,t;j,n) is linear in z and ¢, it
can be shown that the total flux of A* leaving
CE_(j,n) or CE4(j,n) through any of the four
line segments that form its boundary is equal to
the scalar product of the vector h* evaluated at
the midpoint of the line segment and the “sur-
face” vector (i.e., the unit outward normal mul-
tiplied by the length) of the line segment.

(¢) Because, for any (j,n) € Q, the total flux of h*
leaving each of CE_(j,n) and CE,(j,n) van-
ishes (see Eq. (2.6)), CE_(j,n) and CE4(j,n),
(j,m) € Q, will be referred to as the conser-
vation elements (CEs) of the a scheme. In
addition, because the surface integration over
any interface separating two neighboring CEs
is evaluated using the information from a sin-
gle SE, obviously the flux leaving one of these
CEs through the interface is the negative of
that leaving another CE through the same in-
terface. As a result, the local conservation re-
lations Eq. (2.6) lead to a global flux conserva-
tion relation, i.e., the total flux of R leaving
the boundary of any space-time region that is
the union of any combination of CEs will also
vanish. In particular, because CE(j,n) is the
union of CE_(j,n) and CE,(j,n),

7{ h*-d5=0, (j,n)e (2.11)
S(CE(j,n))
must follow from Eq. (2.6). In fact, it can be

shown that Eq. (2.11) is equivalent to Eq. (2.7).

(d) In addition to the nondissipative a scheme, as
will be shown, there is a family of its dissipa-
tive extensions in which only the less stringent

conservation condition Eq. (2.11) is assumed [3].
Because Eq. (2.11) is equivalent to Eq. (2.7), for
each of these extensions, u} is still evaluated us-
ing Eq. (2.7) while (u)? is evaluated using an
equation different from Eq. (2.8).

2.2. The a-€ Scheme

To proceed, consider any (j,n) € Q. Then (j +
1/2,n—1/2) € Q. Let

def n-—1/2 n—1/2
u;11/2 = uj:tl//2 + (At/2)(ut)ji1//2 (2.12)
Substituting Eq. (2.10) and the relation (u;)] =
—a(ug)} into Eq. (2.12) and using the definition
v = aAt/Az, one has

41n—1/2 def n—1/2 +\n—1/2
E]jil/Q = Ujyqs 2 (ug )jzl:l/2
(2.13)
Note that, by definition, (j£1/2,n) ¢ Qif (j,n) € Q.
Thus u}%, /o 18 associated with a mesh point ¢ Q.
The reader is warned that similar situations may
occur in the rest of this paper.
According to Eq. (2.12), “;11/2 can be interpreted
as a first-order Taylor’s approximation of u at (j +
1/2,n). Thus

'mn —
Ujiy/p = [u— 2vu

'n —_ln
Az [(Uiiq12 —Uj 12

J 4 4 AL

(2.14)
is a central-difference approximation of du/dz at

'n —qyln
(ueH)n def Ujyi2 ~ Uj_i72
x

(j,m), normalized by the same factor Az /4 that ap-
pears in Eq. (2.10). Note that the superscript “c”
is used to remind the reader of the central-difference
nature of the term (u$t)”. The a-€ scheme is formed
by Eq. (2.7) and

(uz)j = (uz")j + 2e(ug” —ug™)7 (2.15)
where € is a real number. Obviously the a-€ scheme
reduces to the a scheme when € = 0. Also, for the
case € = 1/2, Eq. (2.15) reduces to

(u)j = (ug")f

: : (2.16)

Note that the first part of the expression on the
right side of Eq. (2.15), i.e., (ug"‘)?, emerges from
the development of the non-dissipative a scheme.
As a result, it is the non-dissipative part. On the
other hand, the second part, whose magnitude can
be adjusted by the parameter €, represents numeri-
cal dissipation introduced by the difference between
the central difference term (ug')? and the non-
dissipative term (u$")7. Thus one may heuristically

conclude that the numerical dissipation associated



with the a-e scheme can be increased by increasing
the value of €. It was shown in [3] that this conclu-
sion is indeed valid in the stability domain of the a-¢
scheme, i.e.,

0<e<l, and 12<1 (2.17)

2.3. The a-e-a-B Scheme

If discontinuities are present in a numerical so-
lution, the a-e scheme is not equipped to suppress
numerical wiggles that generally appear near these
discontinuities. The a-e-a-3 scheme was introduced
as a remedy for this deficiency.

To proceed, let

( c+)n difl( In n)_ﬂ u;il/Q_u-?
Yat)i = W2 T4 = oy AT/2
(2.18)
n n
1p def 1 , Az U T U
(“g—)? = 5(“? _ujﬁ1/2) =1 <T/2
(2.19)

Le., (ugh)} and (ug")? are two (normalized) numer-

ical analogues of the value of Ou/dz at (j,n) with
one being evaluated from the right and another from
the left. It can be shown that

(wg")j = 5 [Weh)F + (ugD)7]

z /j

(2.20)

DN | =

ie., (ugt)? is the simple average of (u;i)? and
(ugt)?. Next, let the function W, be defined by
(i) W,(0,0,0) = 0 and (ii)

$+a$—+ m_aa:_,_
Wilo_,aysa) = a2t lo "
24> + ||

(2.21)
where x4, z_ and o > 0 are real variables. Note
that (i) to avoid dividing by zero, in practice a small
positive number such as 1079 is added to the de-
nominator in Eq. (2.21); and (ii) W,(2z_,z4;a), a
nonlinear weighted average of z_ and z,, becomes
their simple average if « = 0 or |z_| = |z4|. Fur-
thermore, let

w+yn def ct+\n c+\n
(’wa +)j é WO ((uz_—’l_—)] ] (th)J,Oé)

(2.22)

Note that the superscript “w” is used to remind the
reader of the weighted-average nature of the term
(uyt)}. With the aid of the above definitions, a
more advanced scheme, referred to as the a-e-a-f
scheme, can be defined by Eq. (2.7) and

= (ug )] + 2e(ug” —ug)] + Blug T —ugh)}

j
(2.23)
Here 8 > 0 is another adjustable constant. It can

be shown that the a-e-a-f scheme reduces to the a-¢

» (lz4l+]z—| > 0)

scheme if &« = 0 or 8 = 0. Also, for the special case
that e =1/2 and § =1, Eq. (2.23) reduces to

(W)} = ()]
Hereafter the scheme formed by Eq. (2.7) and (2.24)
will be referred to as the a-a scheme. It has been
shown numerically that the a-a scheme is stable if
v2 <1land a>0.

The expression on the right side of Eq. (2.23) con-
tains three parts. The first part is a non-dissipative
term (ugt)?. The second part is the product of
2¢ and the difference between the central difference
term (ugt)? and the non-dissipative term (ugt)?.
The third part is the product of 8 and the dif-
ference between a weighted average of (u;i)]" and
(u;t);b and their simple average. Numerical dissi-
pation introduced by the second part generally is
effective in damping out numerical instabilities that
arise from the smooth region of a solution. But it is
less effective in suppressing numerical wiggles that
often occur near a discontinuity. On the other hand,
numerical dissipation introduced by the third part
is very effective in suppressing numerical wiggles.
Moreover, because the condition |(u§i);‘| = |(u;t);b|
more or less prevails and thus the weighted average
is nearly equal to the simple average (see comment
(ii) given immediately following Eq. (2.21)) in the
smooth region of the the solution, numerical dissi-
pation introduced by the third part has very slight
effect in the smooth region.

From the above discussion, one concludes that
there are two different types of numerical dissipation
associated with the a-e-a-f scheme and they com-
plement each other. As a result, the a-e-a-8 scheme,
in principle, is capable of handling both small dis-
turbances and sharp discontinues simultaneously if
the values of €, a and § are chosen properly. As-
suming that the spatial mesh used is uniform, the
choice with e = 1/2, a = 1,2 and 8 =1 (i.e., using
Egs. (2.7) and (2.24) with o = 1, 2) generally will re-
sult in decent CE/SE solutions if the absolute value
of v is not too small. However, for a more chal-
lenging situation, the parameter ¢ and 8 generally
must be considered as functions of v such as those
suggested in [3,7], i.e.,

(2.24)

e(v) =0.5vexp(l-v) and B(v)=+v, 0<v<1

(2.25)
Even though the use of Eq. (2.25) and its Euler ver-
sion was a success in some cases [3], the ad hoc na-
ture of the approach is fundamentally not satisfying.
In the following, we present a simpler and more ro-

bust approach.

3. New schemes



To proceed, note that the a-a scheme (a = 1,2) is
very accurate as long as 0.1 < v?2 < 1. However, it
becomes very diffusive when |v| < 1. To overcome
this weakness, in the following we shall construct a
new scheme that reduces to (i) the a-a scheme in
the limit of |v| — 1, and (ii) the nondissipative a
scheme in the limit of v — 0. As a prerequisite, we
shall first study the a scheme in the limit of v — 0.

The a scheme is formed by Egs. (2.7) and (2.8). It
can be shown easily that, in the limit of #» — 0, these
equations are equivalent to the system of equations

n—1/2 n—1/2
ul + W) =l Y — () (3.1)
and
ulf — ()P =ul S+ ) (3.2)

j—1/2

Note that, with the aid of Remark (b) given at the
end of Sec. 2.1, it can be shown easily that, in the
limit of At — 0 with @ and Az being held constant,
the two conservation conditions given in Eq.(2.6) re-
duce to Egs. (3.1) and (3.2), respectively. This con-
clusion is consistent with the definition v = aat/ax
and the fact that Egs. (2.7) and (2.8) are equivalent
to Eq. (2.6) if 1 — % # 0.

To construct the new scheme, let P, M_, M,
and P, be the points depicted in Fig. 3. Then, as the
value of |v| decreases from 1 to 0, point Py will move
from the mesh point (j + 1/2,n) to point M, the
midpoint of the line segment joining the mesh points
(4,n) and (j4+1/2,n)). On the other hand, point P_
will move from the mesh point (j — 1/2,n) to point
M_, the midpoint of the line segment joining the
mesh points (j,n) and (j — 1/2,n)).

Let
def n_1/2 n-1/2 (1—|v|])az n—1/2
WP S S ) - )
(3.3)
def n At e (1—|v|)ax e
O e e O e Ay
(3.4)

Then u'(P4) is a first-order Taylor’s approximation
of u at point P, evaluated using the marching vari-
ables at (j+1/2,n—1/2) while v'(P_) is a first-order
Taylor’s approximation of u at point P_ evaluated
using the marching variables at (j — 1/2,n — 1/2).
Also note that, by using Eq. (2.10) and the relation

(ut)} = —a(uz) Egs. (3.3) and (3.4) can be sim-
phﬁed as
! n—1/2
u'(Pr)=[u—(1+2v—1|v|)u ]J+1/2 (3.5)
and
’ _ + n—1/2
U(P*)_ [u+(1—2y—|y|)uw]j_1/2 (36)

respectively. Thus one has (i)

n—1/2
u'(Py) = [u— 21/uj]j+1//2 and
1 _ + n—1/2 . _
u'(Po) = [u— 21/uz]],_1/2 if lv|=1 (3.7
and (ii)
n—1/2
u'(Py) = [u —uj]j+1/2 and
u'(P. )=[u+u+]n_1/2 ifr=0 (3.8)
- elj—1/2 :
To proceed, let
yp def v (Py) —u/(P_) Az (u'(Py)—u/(P-)
(ayp oo WP Zw ) oz (u(Py) —w'(P)
21+ |v)) 4 (1+ |v|)az/2
(3.9)
(@t )nder(P+ —u? _ Az u'(Py) —uf
I 14y T 4 1+|1/| A;c/4
(3.10)
A+ \p def uy P_ _ Az
(@7 = 1+|y| 7 ( 1+ Am/4>
(3:11)
< wiym def 4 o\m At
@y ")} = Wo (@f,)7, (@3-)};a) (3.12)

Because the mesh point (j,n) is the midpoint of
the line segment P_P, and the length of P_P,
s (1 + |v[)az/2, Eq. (3.9) implies that (a})7 is
a central-difference approximation of the value of
Ou/dzx at (j,n), normalized by the factor az/4. On
the other hand, Eqgs. (3.10) and (3.11) imply that
(a},)7 and (@} )7 are two (normalized) one-sided
difference approximations of the value of du/dz at
(j,m) with one being evaluated from the right and
another from the left. Moreover, because

@05 =3 [@h)+@pl @
Eq. (2.21) implies that
(ay ") = (47)7 if a=0or[(a3)]] = |(i;_)7]
(3. 14)

With the above preliminaries, a new solver for
Eq. (2.1), referred to as Scheme I in this paper, is
formed by Eq. (2.7) and

(u3)} = (a3 ™)} (3.15)
In the following, we shall prove that Scheme I does
meet the requirements set forth earlier in this sec-
tion.

Consider the limiting case that |v| = 1. Egs. (2.13)
and (3.7) imply that

W(Py) =l and W/ (P) =l (v] = 1)

(3.16)



As a result, Egs. (2.18), (2.19), (3.10) and (3.11)

imply that
(g4 = (ugh)7 (weh)i (vl =1)
(3.17)

Combining Egs. (2.22), (3.12) and (3.17), one con-
cludes that

and (47 _)} =

(@ "7 =7 (v=1)
Thus Scheme I (formed by Egs. (2.7) and (3.15),
reduces to the a-a scheme (formed by Egs. (2.7) and
(2.24)) in the limit of |v| — 1.

Next consider the limiting case that v = 0. Ac-
cording to Eq. (3.8), for this case v'(P;) and u'(P_),
respectively, reduce to the expressions on the right
sides of Eqgs. (3.1) and (3.2). Because (uf)? =
(ug™)} for the a scheme, one concludes that, in the

case that v =0,

(3.18)

uj + (ui"’);1 =u'(Py) (v=0) (3.19)
uf — (ug™)} =u'(P) (v =0) (3.20)
where uj is defined by Eq. (2.7). By using

Egs. (3.10), (3.11), (3.13), (3.19) and (3.20), one has

(U3,)7 = (4g_)7 = (a3)7 = (ug")

(v=0)
(3.21)

Combining Egs. (3.14) and (3.21), one has

(") = (ug")j

(v=0) (3.22)
Thus Eq. (3.15) reduces to Eq. (2.8), i.e., Scheme I
reduces to the nondissipative a scheme, in the limit
of v = 0. QED.

Note that Scheme I can be easily extended to be-
come a 1D Euler solver [3]. However, for an Euler
solver, the local CFL number must be evaluated in
terms of the local flow variables. How it is evaluated
will determined the final form of this solver. In the
Euler extension of Scheme I (and also Scheme II to
be defined later) used by the author, the Euler ver-
sion of u}, (i.e., (um)j, m = 1,2,3, that appear in
[3]), is evaluated using the Euler version of Eq. (2.7)
(i.e., Eq. (4.24) in [3]). The CFL number is then
evaluated in terms of (um)}, m = 1,2,3. The CFL
number thus obtained is used in the Euler extensions
of Egs. (3.3)—(3.6) and (3.9)—(3.11).

The Euler version of Scheme I has been extensively
evaluated using Sod’s shock tube problem. By using
a fixed value of a, say a = 2, It has been shown that
this Euler solver performs much better than the Eu-
ler a-a scheme [3] when the global CFL number (i.e.,
the maximal value of local CFL numbers) becomes
small. Specifically, the new Euler solver can resolve
the shock and the contact discontinuity crisply for

the global CFL number ranging from 1 to less than
0.001. However, in front of the shock, a notable
overshoot can appear in the solution generated by
the new solver. This overshoot generally can be re-
duced only by using a larger value of a. To overcome
this ad hoc nature of Scheme I, in the following, an-
other solver of Eq. (2.1), referred to as Scheme II,
will be constructed through a minor modification of
Scheme 1.
To proceed, let

def
(S:I:)? = . T

Note that, to avoid dividing by zero, in practice a
small positive number such as 1076 should be added
to the denominator in Eq. (3.23). Using Egs. (3.12)
and (3.23), it can be shown that

awtyn = L O]+ [+ (54)1° (@)
- [1+ (s-)F]% +[L+ (s4)7]*

(3.24)

For the case that (s+)7 < 1, Eq. (3.24) implies that

+ L+ (sp)7)(a]

)7

n

| lL+as @ty

(Aw-i-)n J J
v 2+al(s-)} + (s4)7]
(3.25)
By definition, Scheme II is formed by Eq. (2.7) and
(u)j =

[+ F(wD ()70 )7 + [1 + F(vD(s)F1@ )7
2+ f(IvDI(s-)7 + (s4)7]

(3.26)
where

Fllv)) € 0.5/|v]

Note that: (i) the expression on the right side of
Eqg. (3.25) will become that of Eq. (3.26) if each sym-
bol a is replaced by f(|v]); and (ii) to avoid dividing
by zero, a small positive number should be added to
the denominator in Eq. (3.27).

To give the reader a concrete idea about the sim-
plicity and robustness of the CE/SE method in gen-
eral, and the Euler version of Scheme II in particular,
the short and self-contained Fortran program of the
solver is listed in Appendix.

(3.27)

4. Numerical results

In this section, accuracy of the Euler a-a solver
and the Euler version of Scheme IT will be evaluated
using Sod’s shock tube problem. Without exception,
the spatial domain is defined by —0.505 < z < 0.505
with Az = 0.01. Also a solution generated by the
Euler a-a scheme will be referred to as an old CE/SE



solution while that generated using the Euler version
of Scheme II referred to as a new CE/SE solution.

The numerical results at ¢ = 0.2, including density
(p), velocity (u) and pressure (p), are presented for
four different sizes of time step, i.e., (i) at = 4x 1073
(Fig. 4); (ii) at = 4x10~* (Fig. 5); (iii) at = 4x10~°
(Fig. 6); and (iv) at = 4 x 10~° (Fig. 7). The val-
ues of the global CFL number for these four cases
approximately are 0.88, 0.088, 0.0088 and 0.00088,
respectively. Because each marching step advances
a time period At/2, it requires 100, 1,000, 10,000
and 100,000 marching steps for cases (i)—(iv), re-
spectively, to advance to t = 0.2.

From the results shown, it is clear that the old
CE/SE solution deteriorates quickly as the value of
global CFL number drops below 0.1. In sharp con-
tract, the new solution is still quite accurate even
for the worse case (iv). The advantage of the Euler
version of Scheme II over the Euler a-a scheme is
overwhelming.

5. Conclusions and discussions

Generally speaking, a stable numerical marching
for a non-linear problem requires the presence of a
sufficient amount of numerical dissipation. However,
accuracy of the numerical results, especially for an
unsteady problem, will suffer if too much numeri-
cal dissipation is present. As such, a careful con-
trol of numerical dissipation is a must for an accu-
rate and stable non-linear unsteady numerical sim-
ulation. However, a proper control of numerical dis-
sipation is a very difficult task. Although one can
increase the numerical dissipation rather easily, it is
much harder to reduce it when accuracy considera-
tion requires it.

Each CE/SE solver is an extension of a core non-
dissipative scheme. It is this key feature that make
it much easier to reduce numerical dissipation in a
CE/SE simulation. It is also the key reason behind
the successful construction of the Courant number
insensitive CE/SE schemes described in this paper.

As will be shown in future papers, the basic con-
cepts used in the current construction also apply in
a multidimensional space. They are also applicable
to the cases where the use of nonuniform meshes is
required.

it = 100

dt = 0.4d-2
dx = 0.1d-1
ga = 1.4d0
rhol = 1.d0

ul = 0.d0

pl = 1.d0

rhor = 0.125d0
ur = 0.d0

pr = 0.1d0
nxl =nx +1
nx2 = nx1/2
hdt = dt/2.d0
hdx = dx/2.d0
tt = hdt*dfloat(it)
qdt = dt/4.d0
qdx = dx/4.d0
dtx = dt/dx
al =ga-1.d0
a2 = 3.d0 - ga
a3 = a2/2.d0
ad = 1.5d0*al

u2l = rhol*ul
u3l = pl/al + 0.5d0*rhol*ul**2
u2r = rhor*ur
u3r = pr/al + 0.5d0*rhor*ur**2
dob5j=1nx2
q(L,j) = rhol
q(2,j) = u2l
q(3,j) = u3l
q(1,nx2+j) = rhor
q(2,nx2+j) = u2r
q(3,nx2+j) = u3r
dob5i=1,3
gx(i,j) = 0.d0
gx(i,nx2+j) = 0.d0

5 continue

open (unit=_8 file="for008’)
do 400 i = 1,it

m =nx + i- (i/2)*2

do 100 j = 1,m

w2 = q(2,j)/a(1.))

w3 = q(34)/a(14)

21 = -a3*w2**2

22 = a2*w2

31 = al*w2**3 - ga*w2*w3
32 = ga*w3 - ad*w2**2

Appendix £33 = ga*w2
c A Sample Program qt(1,j)=-ax(2,)
implicit real*8(a-h,0-z) qt( j)=-(f21*qx(1,j)+22*qx(2,j) +al*qx(3,j))
dimension q(3,999),qn(3,999), qt(3,)=-(f31*qx(1,j)+£32*qx(2,j) +£33*qx(3,j))

* qx(3,999),qxn(3,999),tq(3), s(1j)=adx*qx(Lj) +dtx*(a(24)+adt*at(2,))
* qt(3,999), 5(3,999), xx(999) ( J)=adx*qx(2,j)+dtx* (f21*(q(1,j)+
c nx must be an odd integer. * qdt*qt(1,j))+£22*(q(2

J)Fadt*qt(2,5))+
nx = 101 * al*(q(3,j) +adt*qt(3,j)))



s(3,j)=qdx*qx(3,j) +-dtx*(£31*(q(1,j) +
* qdt*qt(1,j)) +£32*%(q(2,j) +adt*qt(2.j)) +
* £33*(q(3,) +adt*qt(3,))))
100 continue
if (i.ne.(i/2)*2) goto 150
do120k = 1,3
ax(k,nx1) = gx(k,nx)
an(i,1) = q(k1)
qn(lonx1) = q(k,mx)
120 continue
150 j1 = 1-1i + (i/2)*2
mm=m-1
do 200 j = 1,mm
do 180 k = 1,3
6a(k)=0.5d0*(q (k) +allj+1)+s(k,)-
* 5(k,j+1))
180 continue
x = dabs(tq(2)/tq(1))
y = al*(tq(3) - 0.5d0*x**2*tq(1))
¢ = dsqrt(ga*y/tq(1))
cn = (dtx*(c+x))
dx1 = (1.d0 + cn)*qdx
dx2 = hdx - dx1
do 200k = 1,3
vxl=(tq(k)-q(k,j)-dx2*qx(k,j)-hdt*qt (k,j)) /dx1
vxr=(q(k,j+1)+hdt*qt(k,j+1)-dx2*qx(k,j+1)-
* tq(k)) /dxl
rz = dminl(dabs(vxl),dabs(vxr)) + 1.d-60
sl = dabs(vxl)/rz - 1.d0
sr = dabs(vxr)/rz - 1.d0
alp = 0.5d0/(cn + 1.d-60)
axn(k,j+jl) = (vxI1*(1.d0 + alp*sr) + vxr*
* (1.d0 + alp*sl))/(2.d0 + alp*(sr + sl))
an(k,j+jl) = tq(k)
200 continue
m =nxl-1i+ (i/2)*2
do 300 j = 1,m
do 300k = 1,3
q(kj) = an(k,j)
ax(k,j) = axn(k.j)
300 continue
400 continue
m = nx1 -it + (it/2)*2
mm=m-1
xx(1) = -0.5d0*dx*dfloat(mm)
do 500 j = 1,mm
xx(j+1) = xx(j) + dx
500 continue
do 600 j = 1,m
x = q(2.j)/a(L.)
y = al*(q(3,j) - 0.5d0*x**2%q(1,j))
z = x/dsqrt(ga*y/q(1,j))
write (8,50) xx(j),q(1,j),x,y,z
600 continue
close (unit=8)

50 format(’ x =’,£8.4, tho =",f8.4, u =",{8.4,

*7p =184 M =’ {8.4)
stop
end
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Figure 1. O A surface element on the boundary
S(V) of an arbitrary space-time volume V.
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Figure 4: Solution comparison at CFL = 0.88.
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at CFL = 0.088.
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