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Abstract

A new numerical discretization method for solving conservation laws is being devel-

oped. This new approach differs substantially in both concept and methodology from

the well-estabLished methods-i.e., finite difference, finite volume, finite element, and spec-

tral methods. It is motivated by several important physical/numerical considerations and

designed to avoid several key limitations of the above traditional methods.

As a result of the above considerations, a set of key principles for the design of numer-

ical schemes was put forth in a previous report. These principles were used to construct

several numerical schemes that model a 1-D time-dependent convection-diffusion equation.

These schemes were then extended to solve the time-dependent Euler and Navier-Stokes

equations of a perfect gas. It was shown that the above schemes compared favorably with

the traditional schemes in simplicity, generality, and accuracy.

In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver,

are constructed using the same set of design principles. Their constructions are simplified

greatly by the use of a nontraditional space-time mesh. Its use results in the simplest

stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time

level and other three at the lower time level. Because of the similarity in their design, each

of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental

characteristics. Moreover, it will be shown that the present Euler solver is capable of

generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically,

both the incident and the reflected shocks can be resolved by a single data point without

the presence of numerical oscillations near the discontinuity.
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1. Introduction

A new numerical discretization method for solving conservation laws is being devel-

oped [1-8]. This new approach differs substantially in both concept and methodology

from the well-established methods-i.e., finite difference, finite volume, finite element, and

spectral methods [9-13]. It is conceptually simple and designed to overcome several key

limitations of the above traditional methods.

A two-level explicit scheme for solving a 1-D convection-diffusion equation was con-

structed in [1] using this new method. Because the convection speed and the viscosity

coefficient in the above equation are denoted by a and p, respectively, the new scheme is

referred to as the 1-D a-p scheme. In [1], this scheme is subjected to a thorough theoretical

and numerical analysis on stability, dissipation, dispersion, consistency, truncation error,

and accuracy. The 1-D a-p scheme is a two-way marching scheme [5], i.e., the forward

marching scheme can be inverted t 9 become the bacJcw'axd marching scheme. /n other

words, the marching variables at a lower time level can also be determined in terms of

those at higher time levels. The special ease of the the 1-D a-p scheme which solves only

the convection equation is referred to as the !-D a scheme. This scheme is the only two-

leveI explicit scheme known to the authors to be neutrally stable, i.e., free from numerical

diffusion. Note that the solution of a pure convection problem has three fundamental prop-

erties: (i) it does not dissipate with time, (ii) its value at a spatial point at a later time has

a finite domain of dependence at an earlier time, and (iii) it is completely determined by

the initial data at a given time. Because the a scheme is a two-level, exph'cit, and neutrally

stable scheme, the above three properties are also shared by a solution of the a scheme.

Contrarily, (i) a solution of a diffusive scheme will dissipate with time; (ii) the value of

a solution of an imp//dt scheme at any space-time mesh point is dependent on all initial

data, and all the boundary data up to the time level of the mesh point under considera-

tion; and (iii) the unique determination of a solution of a multi-level scheme requires the

specification of the initial data at two or more time levels.

Because the a scheme is free from numerical diffusion and it is a special case of the

a-ft scheme with p = 0, the a-p scheme has a special property that a classical scheme

generally lacks, i.e., as the physical diffusion approaches zero, so does the numerical dif-

fusion. Without this property, numerica/dissipation may overwhelm physical dissipation

and cause a complete distortion of solutions for problems with sma//viscosity.

The 1-D a-it scheme was derived again in [5] using a different type of conservation

element and solution element. In [5], it also was extended to solve the 1-D time-dependent

Navier-Stokes equations of a perfect gas. In spite of the fact that it does not use (i)

any techniques related to the high-resolution upwind methods, (ii) any mesh-refinement

techniques, (iii) any moving meshes, and (iv) any ad hoe parameter, the new Navier-

Stokes solver is capable of generating highly accurate shock tube solutions. Particularly,

for high-Renolds-number flows, shock discontinuities can be resolved almost within one

mesh interval.

The 1-D a scheme is neutrally stable and reversible in time. It is well known that such



a scheme generally becomes unstable when it is extended to model the F_uler equations. It

is also obvious that a scheme that is reversible in time cannot model a physical problem

that is irreversible in time, e.g., an inviscid flow problem involving shocks. As a result,

the 1-D a scheme was modified in [5]. Stability of this modified scheme,_ referred to as

the 1-D a-e scheme, is limited by the CFL condition and 0 _< e _< 1 where e is a special

parameter that controls numerical diffusion. The 1-D a-e scheme is reduced to the 1-D a

scheme (which is free of numerical diffusion) when e = 0.

The 1-D a-e scheme also was extended in [5] to become an Euler solver. The stability

conditions of the Euler solver are similar to those of the 1-D a-e scheme. It was shown in

[5] that the Euler solver is capable of generating _ccurate shock tube solutions within a

wide range of CFL number:. ::=:-=:::_:::-::::: : :: -_ ......

In this report, it will be explained how the 2-D versions of the a-#, the a, and the

a-e schemes can be constructed using the same set of design principles which were used to

construct their 1-D counterparts. Because of this similarity in design, each of these 2-D

versions virtually shares with its 1-D counterpart the same fundamental characteristics.

Moreover, the 2-D a-e scheme will also be extended to become an Euler solver. This ex-

tension is also very similar to its 1-D counterpart. We will not, however, discuss in this

report the Navier-Stokes extension of the 2-D a-# scheme. Because a Navier-Stokes prob-

lem is fundamentally an initial-value/boundary value problem, the above extension (which

is explicit and thus can not transmit information from one end of the boundary to another

end in one time step) obviously cannot model such a problem unless the contribution of

the viscous terms is small compared to that of the convection (inertial) term s . In general,

this implies that the Navier-Stoke extension of the 2-D a-# scheme is applicable only to

high-Reynolds-number flows. In a future report, this extension will be introduced as a

special case of a more general NavierLStokes:solver:

The current method emphasizes sLmp//city, genera//ty, and accuracy. It represents a

clear break from the traditional methods in the basic concept-of-_scmtizati0n. Most of

the considerations that motivate its development and the key differences that separate the

current method from the traditional methods were discussed in [5]. In the following, we

present a more up-t0-date version of the_ disc_i6_.- ;-:: .... :_

(a) A set of physical conservation laws is a collection of statements of flux conservation in

space-time. Mathematically, these laws are represented by a set of integral equations.

The differential form of these laws is obtained from the integral form with the assump-

tion that the physical solution Js smooth. For a physical solution in a region of rapid

change (e.g., a boundary layer), this smoothness assumption is difficult to realize by

a numerical approximation that can use only a limited number of discrete variables.

This difficulty becomes even worse in the presence of discontinuities (e.g., shocks).

Thus, a method designed to obtain numerical solutions to the differential form with-

out enforcing flux conservation is at a fundamental disadvantage in modeling physical

phenomena with high-gradient regions. Particularly, it may not be used to solve flow

problems involving shocks. Contrarily, a numerical solution obtained from a method

that also enforces flux-conservation locally (i.e., down to a computational cell) and
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globally (i.e., over the entire computational domain) will always retain the basic phys-

ical reality of flux conservation even in a region involving discontinuities. For this

reason, the enforcement of both local and globaI flux conservation in space and time

is a tenet in the current development. The concept of space-time conservation element

is introduced to serve this purpose.

Among the traditional methods, finite difference, finite element, and spectral

methods are designed to solve the differrential form of the conservation laws. Note

that the set of integral equations usually solved in a finite-element scheme is equiv-

alent to the differential form of the conservation laws assuming certain smoothness

conditions. However, these integral equations" generally are different from the integral

equations representing the conservation laws. Even if they are cast into a conservative

form, the resulting flux-conservation conditions generally do not represent the physical
conservation laws.

The finite volume method is the only traditional method designed to enforce flux

conservation. A finite-volume scheme may enforce flux conservation in space only,

or in both space and time. As a preliminary to this enforcement, a flux must be

assigned at any interface separating two neighboring conservation cells. In a typical

finite-volume scheme, it is evaluated by extrapolating or interpolating the mesh values

at the neighboring cells. This evaluation generally requires an ad hoc choice of a

special flux model among many models available [14-16]. Generally numerical results

obtained are dependent on which model one chooses. Also this process of interpolation

and extrapolation generally is time consuming and may result in numerical smearing.

Contrarily, by using the concept of space-time solution element, and considering

the spatial derivatives of dynamic variables as independent variables (to be discussed

further shortly), in the current method, flux evaluation at an interface is carried out

without interpolation or extrapolation. It is an integral part of the solution procedure.

(b) The numerical variables used in a spectral method, i.e., the expansion coefficients,

are global parameters pertaining to the entire computational domain. As a result, a

spectral method generally (i) lacks local flexibility and thus may be applied only to

problems with simple geometry, and (ii) is hindered by the fact that it must deal with
a full matrix that is difficult to invert.

By design, only local parameters will be used in the current method. Moreover, the

set of discrete variables in any one of the numerical equations to be solved generally is

associated with only two neighboring solution elements. The exception to this general

rule occurs only in the situation in which numerical diffusion is to be introduced

deliberately (see [5], [6], and Secs. 3 and 4). Even in this special case, only the discrete

variables associated with a few immediately neighboring solution elements will enter

any equation to be solved. Thus, one needs only to deal with a very sparse matrix.

Moreover, the maximum number of solution elements involved in a numerical equation

of the current discretization framework is independent of the order of accuracy of a

particular scheme. Contrarily, the order of accuracy of a classical finite-difference

scheme generally can be increased only by using variables at more mesh points in
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each of its equations. Usually, a side effect of this practice is an increase in numerical

diffusion. Also it may be difficult to implement a hlgh-order _aite-difference scheme

near a boundary because there are no red mesh points outside the boundary. Note

that, in the absence of body force, direct physical interactions occur only among the

immediate neighbors. The current design is also consistent with this physical reality.

(c) Space and time traditionally are treated separately in the time marching schemes.

Generally one obtains a system of ordinary differential equations with time being the

independent variable after a spatial discretization. As an example, elements in the

finite element method usually are used for spatial discretization. These elements are

domains in space only.

Because flux conservation is fundamentally a property in space-time, space and time

are unified and treated on the same footing in the current method. Thus, conservation

elements and solution elements used in the time-dependent version of the current

method are domains in space-time. The sigaificance of this untried approach cannot

be overemphasized. It makes it easier for a numerical analogue to share the same

space-time symmetry of the physical laws (see [2], [5], [6] and the following sections).

(d) In a finite-difference scheme, derivatives at mesh points are expressed in terms of mesh

values of dependent variables by using finite-difference approximations. Accuracy of

these approximations, especially those of higher-order accuracy, generally is excellent

as long as dependent variables vary slowly across a mesh interval. However, it may

not be adequate if these variables vary too rapidly. Thus, in a high-gradient region,

e.g., a boundary layer, accuracy may demand the use of an extremely fine mesh. In

turn, a prohibitively high computing cost may result.

The current method avoids the above pitfall by expressing the numerical solu-

tion within a solution element as an expansion in terms of certain base functions.

As in a spectral method, the expansion coefficients are considered as the indepen-

dent numerJca/ war/aMes to be solved for simultaneously. For simplicity, Taylor's

expansions will be used in the current paper. For this special case, the expansion

coefficients are interpreted as the numerical analogues of the derivatives. Note that:

(i) Because the derivatives are considered as independent variables, their values at

the initial/boundary surfaces may be specified as a part of the initial/boundary con-

ditions. This speci6cation may result in more accurate initial/boundary condd_ions;

(ii) van Leer [17] also has attempted to improve accuracy by introducing two indepen-

dent numerical variables for each independent physical variable, and (iii) the c_rent

solution procedure has no resemblance with those used in compact difference schemes.

(e) With a few exceptions, numerical diffusion generally appears in a numerical solution

of a time-marching problem. In other words, the numerical solution dissipates faster

than the corresponding physical solution. For a nearly inviscid problem, e.g., flow with

a high Reynolds number, this could be very serious because numerical dissipation may

overwhelm physical dissipation and cause a complete distortion of solutions. One may

argue that numerical diffusion can be reduced by increasing the order of accuracy of

the scheme used. However, because the order of accuracy of a scheme is generally
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determined with the aid of Taylor's expansion, and the latter is valid only for a

smooth solution, it has meaning only for a smooth solution. Thus the use of a scheme

of higher-order accuracy may not reduce numerical diffusion associated with high-

frequency Fourier components of a numerical solution. This is the reason that the

Leapfrog scheme, which is free from numerical diffusion, can outperform schemes with

higher-order accuracy in solving some wave equations [18].

In a study of finite-difference analogues of a simple convection equation [2], it was

shown that a numerical analogue will be free from numerical dhT-usion if it does not

violate certain space-time invariant properties of the convection equation. In other

words, numerical diffusion may be considered as a result of symmetry-break/ng by

the numerical scheme. Because of its intrinsic nature of space-time unity, the current

framework is an excellent vehicle for constructing a numerical analogue that shares

the same space-time invariant properties with the physical equation (see [5], [6], and

the following sections).

It is recognized that a certain amount of numerical diffusion may be needed to pre-

vent large dispersive errors [19] that are often caused by the presence of high-frequency

disturbances (such as round-off errors). Therefore, schemes were constructed such that

the numerical diffusion can be controlled by a single adjustable parameter (see [5], [6],

and Secs. 3 and 4). The numerical diffusion is shut off" when this parameter is set to

zero.

(f) High-resolution upwind methods [13], which we consider to be a branch of the finite

volume method, are heavily dependent on characteristics-based techniques. For the

1-D time-dependent case, the characteristics are curves in space-time, and the coeffi-

cient matrix associated with the Euler equations [20] also can be diagonaiized easily.

As a result, these techniques are easy to apply. However, for multidimensional cases,

the characteristics are 2-D or 3-D surfaces in space-time [21]. Moreover, the coefficient

matrices cannot be diagonalized simultaneously by the same matrix [20]. Because of

the above complexites, application of these techniques to multi-dlmensional problems

is much more diffucult. Furthermore, high-resolution methods generally require the

use of ad hoc parameters, e.g., flux-limiters and/or slope-limiters, and other ad hoc

techniques. These ad hoc techniques may lead to numerical diffusion which varies

from one place to another and from one Fourier component to another. In other

words, numerical solutions may suffer annihilation of sharply different degrees at dif-

ferent locations and different frequencies [22]. Also, these techniques generally are

also difficult to extend to a space of higher dimension.

Because the current framework is developed to solve multidimensional problems

(see the following sections), simplicity and generality weigh heavily in its design. Thus,

we do not use the characteristics-based techniques, and also try to avoid the use of ad

hoc techniques. Moreover, the concept of characteristics generally is not applicable

to the Navier-Stokes equations, which are non-hyperbolic in nature. Therefore, the

above decision also makes it easier for the current framework to solve the Navier-Stokes

equations [5].
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This completes the discussion of the motivation for the current development. In sum-

mary, the development is guided by the following requirements: (i) To enforce both local

and global flux consevation in space and time with flux evaluation at an interface being

an integral part of the solution procedure and requiring no interpolation or extrapolation;

(ii) To use local discrete variables such that the set of variables in any one of the numer-

ical equations to be solved is associated with a set of immediately neighboring cells; (iii)

Space and time are unified and treated on the same footing; (iv) Mesh values of dependent

variables and their derivatives are considered as independent:_ables.tohe so_y_ed for
simultaneously; (v) To minimize numerical diffusion, a numerica]-_ogfieShou]_=Con-

structed, as much as possible, to be compatible with the space-time invariant properties

of the corresponding physical equations; and (vi) To exclude the use of the characteristics-

based techn/ques, and to avoid the use of ad hoc _echn/ques as much as possible. It is

the purpose of this report to show that the above requ/rements can be met wi_/2 a simple

un/Sed numer/ca/framework even for mu/tidimensiona/problems.
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2. The a-p Scheme

In this section, we consider a dimensionless form of the 2-D convection-diffusion equa-

tion, i.e.,

-_+a'-_z+a,-_-P\Ox2+-_y2 =0 (2.1)

where a,, %, and p (> 0) are constants. Let zx = x, z2 = y, and z3 = t be the coordinates

of a three-dimensional Euclidean space Es. By using Gauss' divergence theorem in the

space-time E3, it can be shown that Eq. (2.1) is the differential form of the integral

conservation law

s h- d_'= 0. (2.2)
(v)

Here (i) S(V) is the boundary of an arbitrary space-time region V in Es, (ii)

%f(a.u - a.. - . lay, (2.3)

is a current density vector in Es, and (iii) dg = da g with da and g, respectively, being the

area and the outward unit normal of a surface dement on S(V). Note that (i) h-dgis the

space-time flux of h leaving the region V through the surface element d_', and (ii) all math-

ematical operations can be carried out as though Es were an ordinary three-dimensional

Euclidean space. As will be shown shortly, Es will be divided into nonoverlapping space-

time regions referred to as conservation elements (CEs).

Let n denote the time level and

t" d,=t nz_t, n = 0, 4-1/2, 4-1, 4-3/2, .... (2.4)

Let j and k be spatial mesh indices with j,k = 0,-4-1/3, 4-2/3, 4-1,... (see Figs. 1-

4). Let _1 denote the set of mesh points (j, k, n) with j, k = 0, 4-1, 4-2,..., and n =

4-1/2, 4-3/2, =1=5/2, .... These mesh points are marked b_y solid circles. Let _2 denote the

set of mesh points (j,k,n) with j,k = 1/3, 1/3 4- 1, 1/3 4- 2,..., and n = 0,4-1,4-2, ....

These mesh points are marked by open circles. The union of _1 and _2 will be denoted

by _.

Each mesh point (j, k, n+l/2) in f_l (by defmltion, this implies that n = 0, 4-1, 4-2,...)

is associated with three CEs, denoted by CE_l)(j,k,n+ 1/2), _ = 1,2,3 (see Fig. 5(a)). It is

also associated with a solution element (SE), denoted by SE (_)(j, k, n + 1/2) (see Fig. 5(5)).

Similarly, each mesh point (j, k, n + 1) in ft2 is associated with three conservation elements

CE_2)(j,k,n + 1), £ = 1,2,3 (see Fig. 6(a)), and a solution element SE(2)(j,k,n + 1) (see

Fig. 6(b)). Each CE is a quadrilateral cylinder in space-time while each SE is the union of

three vertical planes, a horizontal plane, and their immediate neighborhood. The geometry

of the hexagon ABCDEF, which appears in both Figs. 5(a) and 6(a), is determined by

three positive parameters w, b and h (see Fig. 7(a)). Without any loss of generality, we
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assumethat the line segment joining points D and A in Fig. 7(a) is parallel to the x-axis.

Note that the form of Eq. (2.1) will not change under an orthogonal transformation on the

x-y plane. Thus one always can introduce a set of Cartesian coordinates (z, y) such that

the above line segment is parallel to the x-axis. However, the values of az and ay may

change as a result of such a transformation.

According to Fig. 1, Es can be filled with the CEs defined above. Moreover, it is seen

from Figs. 5(a), 5(b), 6(a), and 6(5) that the boundary of a CE is formed by the subsets

of two neighboring SEs: _

Let the space-time mesh be uniform, i.e., the parameters At, w, b, and h be constants.

Let xj,k and yj, k be the x- and y- coordinates of any mesh points (j, k, n) E fL Let x0,0 - 0

and Y0,0 = 0. Then information provided by Figs. 7(a) and 7(b) implies that

xj,k = (j q- k)w + (k - j)b, yj,_ = (k - j)h. (2.5)

Let 21, 22, n'a, 24, 2s, and 2e be the vectors depicted in Fig. 7(a). They lie on the x-y

p!ane and are the outward unit normals to _, -ffC, -C-D, "DE, EF, and F-A, respectively.

It can be shown that

(h,-b+ w/3,0) 24- -21, (2.6a)
21= v/_2+ (b- w/3)2'

and

25 = -_2, (2.6b)_ = (0,1,0),

as = (-h,b+ w/3,0) 26 = -2s, (2.6¢)
_/h2+ (b+ _/3)2'

For any (j, k, n) • f_, let

de_ _ SE(1)(J'k'n)'SE(j, k, n)

( SE(2)(j, k, n),

if (j,k,n) _ fh;

if (j,k,n) • f_2.

(2.7)

For any (x, y, t) • SE(j, k, n), u(x, y, t) and h(x, y, t), respectively, are approximated by

u*(x, y, _; j, k, n) def n II, n= _,_,,+(,,_)_',d_-_J,_)+( ,)j,_(y-y_,_)+ (_,di',dt-e'),

and

(2.8)

_Z*(X, [/, t;j, ]¢, n) de__.__f[azU*(X, y,t;j,]¢, n)- pOu*(x,y,t;j,k,n)/Ox, (2.9)

where uj",k, (u_)j",k, (uy)jn, k, and (ut)j",k are constants within SE(j,k,n). The last four

coefficients, respectively, can be considered as the numerical analogues of the values of u,



Ou/Oz, 0u/0y, and 0u/0t at (xj,yk,tn). As a result, the expression on the right side of

Eq. (2.8) can be considered as the first-order Taylor's expansion of u(z, y, t) at (z j, yk, t").

Also note that Eq. (2.9) is the numerical analogue of Eq. (2.3).

We shall require that u = u*(z,y,t;j,k,n) satisfies Eq. (2.1) within SE(j,k,n). As a
result,

(ut)j",k = - [az(uz)}',t, + a,(u,)}',k] • (2.10)

Because Eq. (2.8) is a first-order Taylor's expansion, the diffusion term in Eq. (2.1) has

no counterpart in Fxl. (2.10). As a result, the diffusion term has no impact on how

u*(z,y,t;j,k,n) varies with time within SF_,(j, k, n). However, as will be shown shortly,

through its role in the numerical analogue of Eq. (2.2), it does influence time-dependence

of numerical solutions. Note that, for a higher-order scheme, how u*(z, y, t;j, k, n) varies

with time within SE(j, k, n) will be influenced by the presence of the diffusion term. Sub-

stituting Eq. (2.10) into Eq. (2.8), one has

n U n= + ( -b,k [("- - a,(t - t")]

+ (u,b",k[(u- ui,k)-a,(t - t")].
(2.11)

Thus there are three independent marching variables, i.e., ujn,t,, (u=)j",k, and (u,)i",! , asso-
ciated with a mesh point (j,k,n) E 9t. For any (j,k,n + 1/2) E Ctl, these variables will

be determined in terms of those associated with the mesh points (j + 1/3, k + 1/3, n),

(j- 2/3, k + 1/3, n), and (j + 1/3, k- 2/3, n) (see Fig. 8(a)) by using the flux conservation
relations:

_s h* • dg= 0, g= 1,2,3. (2.12)
(CE_')(j,k,.+a/2))

Similarly, the marching variables at any (j, k, n + 1) 6 _2 are determined in terms of those
associated with the mesh points (j - 1/3, k + 2/3,n + 1/2), (j - 1/3, k- 1/3,n + 1/2), and

(j + 2/3, k - 1/3,n + 1/2) (see Fig. 8(5)) by using the flux conservation relations:

fS(CE,C')(j._.,+_)) _*" d_' = 0,
g= 1,2,3. (2.13)

Obviously, EelS. (2.12) and (2.13) are the numerical analogues of Eq. (2.2).

As a result of Eqs. (2.12) and (2.13), the total flux leaving the boundary of any CE

is zero. Because the flux at any interface separating two neighboring CEs is calculated

using the information from a single SE, the flux entering one of these CEs is equal to that

leaving another. It follows that the local conservation conditions Eqs. (2.12) and (2.13)

will lead to a global conservation condition, i.e., the total flux leaving the boundary of any

space-time region that is the union of any combination of CEs will also vanish.

In the following, several preliminaries will be given prior to the evaluation of Eqs. (2.12)

and (2.13). To proceed, note that a mesh line with j and n being constant or a mesh line

with k and n being constant is not aligned with the x-axis or the y-axis. We shall introduce



a new spatial coordinate system (_, _/) with its axes aligned with the above mesh lines (see

Fig. 7(c)).

Let e_ and _'y be the unit vectors in the z- and the y- directions, respectively. Let

_'¢ and _'_ be the unit vectors in the directions of _ and _ (i.e., the j- and the k-

directions-see Figs. 7(a)-(c)), respectively. It can be shown that

and ....

where

and

_¢= [(_ - b)¢, - h¢,]/,_¢, (2.14)

_, = [(_ + b)_x+ hg,]/_,,

_¢d.jiD--tl= V'(_- a),+ kS,

(2.15)

(2.16)

a,1 = = V_(w + 0 2 + h2. (2.1_)

Let the origin of (x,y) also be that of ((, r/). Then the spatial coordinates (z,y) and (Gr/)

of any point in E3 are related by the condition

¢g¢+ _ _ = • _, + __',,. (2.1s)

Substituting EelS. (2.14) and (2.15) into Eq. (2.18), one has

and

Here

def
T= /

a¢ arl /

, (2.21)

and

2w

2w

(w + b)a¢ ,_ _

(w - b),,_ "
2wh

10
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Note that the existence of T -1, the inverse of T, is assured if wh _ O.

With the aid of Eqs. (2.5), (2.20), and (2.22), it can be shown that the coordinates

(_,r})of any mesh point (j, k,n) _ _ are _ven by

= j a_, and 17= k ,_r}, (2.23)

i.e., a¢ and Ar} are the mesh intervals in the _- and the r}- directions, respectively.

Next we shall introduce several coef_cients which axe tied to the coordinate system

(_, r}). Let

( a¢ ) d'----JT-l ( a* )%% . (2.24)

Also, for any (j, k, n) E ft, let

(u¢)J,t dejT t ( *)j,t , (2.25)

where T t is the transpose of T. For those who are familiar with tensor analysis, the

following comments will clarify the meaning of the above definitions:

(a) (a¢, a,7) are the contravariant components with respect to the coordinates (_, r}) for

the spatial vector whose x- and y- components are az and au, respectively.

(b) ((u¢)7,,, (u_)7,k) are the cowariant components with respect to the coordinates (¢,r})
U n nfor the spatial vector whose x- and y- components are ( z)j,k and (uy)j,k, respectively.

(c) Because the contraction of the contravariant components of a vector and the cowariant

components of another is a scalar, Eq. (2.10) can be rewritten as

(2.26)

(d) Under the//near coordinate transformation defined by Eqs. (2.19) and (2.20), (¢-

ja_, 7"]-/cAr}) are the contravariant components with respect to the coordinates (_, r})

for the spatial vector whose x- and y- components axe x-xj,k and _/-yj,k, respectively.

Using the same reason given in (c), Eq. (2.11) implies that

u'(_, _,t;j, k,rO= ,,*((,,1,t;j, k,n), (2.27)

where

u*(¢,r},t;j, k,n) d,t ,= "i,, + ("_)J,, [(¢- J"¢) -a_(t - t")]

+ (_',,)7,,[('7- k,,r})- a,,(_- t")].
(2.28)

Note that Eqs. (2.26) and (2.27) can also be verified directly using Eqs. (2.20), (2.22),

(2.24),and (2.25).

11



(ii)

Next, let (i)

a_ del 6
= A-'-_ a¢, and

def 6.I.

t:l-- = gy/;
q At/

(2.29)

(iii)

and (iv)

and

de_ At a_, and
re= -_-

_ def 9_A_ (A_)2, _t/ def 9ftAt- 8 w 2 h 2 = 8 w = h_ (At/)2'

+. def_(

def Al_ +.

1/17 = T _r/_

def _22h2
and _. = (A_)2,

(2.3o)

(2.31)

(2.32)

where
clef

Ar = 2 X//¢ + h2.
: = = = : =

(2.33)

The coefficients defined in Eqs. (2.29) and (2.30) can be considered as the normalized

counterparts of those defined in Eqs. (2.24) and (2.25). Also note that A_, Ar/, and At,

respectively, are the lengths of the three sides DF, BD, and _ of ABDF depicted in

Figs. 7(a)-(c). Moreover, by substituting Eq. (2.29) into Eq. (2.31), one has

a¢ At 2 a, At 2 v,. (2.34)
a¢ = 3 _'¢' and A,7 =

In other words, (2/3),¢ and (2/3)v, are the Courant numbers in the _- and ,7- directions,

respectively.

(1)+ 0._11)- . be defined byFurthermore, let 0.11 , ," ",

11 --" -- /'/_'
(2.35)

a(1)_d___3:(1-- v¢-- v.)(1 + _.) + _¢+ _. -- _.,13 --

1+

0.g)_ do2:_(1+ _¢)(2- _¢)- 2_.,

(1)-4- def q-(1 + v¢)(1 + v.) + (¢ + (. - (.,0"23 "--

(1)-I- def
0"31 -- 1 + u.,

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

12



and

Note that:

(a)

0._)_ d¢_ =1=(1+ v,s)(1 + v,;) + Q + '_,7- _,',

.(1)+ def_ = +(1 + ,.,.)(2- _,,)- 2_¢,

.(2)4- def
11 = l+v_+v.,

0._2)-.I- def +(1 + PC "t- //,1)(1 -- PC) -- _'_ -- ,_,- -I- _¢,

.(2)4- def13 = +(1 + _ + _,)(1 --_,) --_¢-- _, + _,

1-

.(2)4- def -I-(1 -- V¢)(2 -{- i#() "t- 2_ll,22 --

.(2)4- def23 = +(1 - _)(1 - _,) - _ - _, + _.,
(2)4- def

(7'31 = 1 - v, I,

.(2)4- def32 = +(1 -- _,.)(1 -- re) -- ¢¢-- _n+ _.,

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

0.g)4-_'='±(1 - _,,,)(2+ _,,,)+ 2¢_. (2.52)

Each of Eqs. (2.35)-(2.52) represents two equations. One corresponds to the upper

signs while another, to the lower signs.

(b) The definitions given in Eqs. (2.35)-(2.43) will be used in the first marching step of

the a-p scheme; while those given in Eqs. (2.44)-(2.52) win be used in the second

marching step. It is seen that the expressions on the right sides of the former can

be converted to those of the latter, respectively, by reversing the "+" and "-" signs.

Moreover, for every pair of m and £, ..(1)- and ..(2)- (2)+ and (1)+vmt vmt axe converted to 0.mr 0.mr ,

respectively, if vc, v,_, _¢, _, and _r are replaced by -vc, -v,i, -_(, -_,_, and -_r,

respectively.

Equations (2.12) and (2.13) are evaluated in Appendix A. With the aid of the above

definitions, the results are summarized as follows:

(a) Eq. (2.12) with g = 1:

_(1)+,,+ (1)+ +1 n-l-l/2
[a_I )+u +a12 -, + °'13 U, Jj,k =

(b) Eq. (2.12) with g = 2:

Po 0)- ++ 0)- +]"
L0.11)-u + a,2 u¢ ala u, jj+lla,k+l/a

(2.53)

_(,)+..+.(,)+.+]-+'/==[41)-.+[4'1,+=+o,=-, + -, j,,,
(1)- + (1)- +1"

322 u¢ + 0.23 u, jj_21s,k+113"
(2.54)

13



(c)Eq.(2.12)_th_= 3:

(1/+_ _(1)+.,+ (11+ +1 n+1/2 I(1 +

(d)Zq.(2._3)

(2)+.
O"11

(e)_,q.(2.13)

(f) Eq. (2._3)

,+

with _ = 1:

..(2)+,,+] ,.,+l
• (2)+.,+ -F "13 --_/J --+ O"12 _¢ j,k

with _ - 2:

Ji- (2)+..+ (2)+. +] .+1

a22 _¢ +a23 _"]j,k =

with _ = 3:

I- (2)+. + _(2)+. +]"+1

a32 _ +a33 ""Jj,k =

(1)" + (11-- +]n

(z55)

[_)- _ (2)- + .,(2)- +]"+_/2-I- a12 u¢ + _13 "'7 J j-1/3,k-1/3"

(2.56)

[(_)- (2)- + ,.(2)-+].+1/2
a2] u + a22 u¢ + _2s "" J]+213,k--113"

(2.57)

(2)- + ,_(2)- +] .+]/2
a32 u_; + _'33 _'"Jj-1/3,k+2/3"

(2.5s)
Here (j, k, n + 1/2) • fh is assumed in Eqs. (2.53)-(2.55); while (j, k, n + 1) • ft2 is assumed
in Eqs. (2.56)-(2.58). Also, to simplify notation, in the above and hereafter we adopt a

convention that can be explained using the expression on the left side of Eq. (2.56) as an

exam.pie, i.e., ...._ : ==: :............... :....... : _ : :_ : - _ -::1_?

_(2)+. + (2)+..+1 n+l def [_(2)+° .+1 ,..(2)+(. +_.+1 _(2)+, .+_.+1]a_21)+U Jr o12 "W Jr O"13 -_/jj,k = [_11 "jk I "12 _"( :j,k Jr _'13 _'% :jk J

Consider the speciM case with # --O' It followsfromEq. (2'32)that ....

f¢ = f, = _, = 0. (/_ = O) (2.59)

Combining Eq. (2.59) with Eqs. (2.35)'(2.37), one concludes that a_] ):l:, "12"(1)+, and "13"(_)+

contain a common factor (1 - u¢ - y,). Similarly, each of three consecutive pairs of

coefficients defined in Eqs. (2.38)-(2.52) also contain a common factor. As a result, one

concludes that:

(a) Eq. (2.53) is satisfied by either 1 - Pc - u_ - 0 or

£k •

(b) Eq.(2.5_)is_atisfiedbyeither_+ _¢= 0 or

.+1/_ = [u + (2 -

v¢)u_ - (1 + v,)u
_+1/_,_+1/_

(2.60)

_()_ - (_+ _')_ #-_/_,_+1/_"
(2.61)
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(c) Eq. (2.55) is satisfied by either 1 + v, = 0 or

j,k

(d) Eq. (2.56) is satisfied by either 1 + v¢ + u, = 0 or

:in_¢)._+ (2- _).
j+l/3,k-_/3

(2.62)

_ +'I n+l °+'2
j-1/3,k-1/3

(2.63)
(e) Eq. (2.57) is satisfied by either 1 - u¢ = 0 or

[u + (2 + v¢)u_ -(1- v,1)u +1 #[:1: [u- (2 +

(f) Eq. (2.58) is satisfied by either 1 - v, = 0 or

v¢)u_ + (1 - I/T/)Ut] n+1/2
j+2/3,k--l/3

(2.64)

J-1 +1 n+l/2

(2.65)

Here (j,k,n+ 1/2) Z f/1 is assumed in Eqs. (2.60)-(2.62); while (j,k,n+ 1) E f/2 is assumed

in Eqs. (2.63)-(2.65). The current "a" scheme, i.e., the scheme that solves Eq. (2.1) _th

/_ = O, will be constructed using Eqs. (2.60)-(2.66) instead ofEqs. (2.g3)-(2.gS). Assuming
/_ = 0, Eqs. (2.60)-(2.65) imply Eqs. (2.53)-(2.58). However, the reverse is false unless one
assumes that

[1- (u_+ u_)_](1- u_)(1- u_)# O. (2.66)

Note that the expressions within the brackets in the firstthree equations inEqs. (2.60)-

(2.65),respectively,can be converted to those in the lastthree by reversing the "+" and

"--" signs.

Let sl 1), ,_1), .S_1), Si s), S(22), and s_ 2) denote the expressions on the right sides of

Eqs. (2.60)-(2.65), respectively. Then it can be shown that Eqs. (2.60)-(2.62) are equiva-
lent to

,,+1/2 1 vn)s_l) + + + +

and

+xn+l/2 - (s_ 1) S_ 1))u,: )./,k - _ - ,

% )i,k = _ - ,

where (j,k,n + 1/2) • fh. Also Eqs. (2.63)-(2.65) are equivalent to

(2.67)

(2.68)

(2.69)

,,-÷, (, ],#,k --_ (l+v C+ + -- (l-v,1)s_ ") (2.70)
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and

( +_.+1 1( 2))_,_ = _ 4_- 4 ,

_',7:i,k= "_ - "

where (j, k, n + 1) E f_2.

To proceed, for any (j, k, n) E f_, let

¢(j, k,.) deal

n

(:/u

_'+/j,k

Let the column matrices a--'(tt) and _t), k = 1,2, and t = 1,2,3, be defined by

--_11)def= -1 1--V¢1-- v'7 , and 1)_ -(1+v¢ ,

3 1 -(1 + v,_) ]

(2.71)

(2.72)

(2.73)

(2.74)

 de,1a% =- -1 ,
3 0

and (1/
-(1 + %) ]

(2.75)

and

(1)= -- 0 , atld 1) ded --(1 -[- p'¢) ,

3 -I 2-v_

42) d_.ef --31( l+u¢+v.)_l_l
and _12) dej -- I/_

Vrl

(1)42 "- -- 1 , alld 2) def --(2 "[- Y_) ,

3 0 1 - %

and de,l(1")_=_ o ,
1

16

-(2+_)1

(2.70)

(2.77)

(2.vs)

(ZTO)



f_(k) k = 1, 2, and g 1, 2, 3, be defined byLet the 3 x 3 matrices of rank one "_t , =

the explicit forms of the matrices Q_k) defined above, respectively, can be obtained from

Eqs. (3.50)-(3.55) by letting e = 0.

By their definitions, each of s_ k), k = 1,2, and £ = 1,2,3, can be expressed as the

row matrices --(_l'))t,k = 1:2 and£= 1,2,3, and one of the columnproduct of one Of the

matrices defined in Eq. (2.73). As an example,

(1) (_1))'s 1 - _(j + 1/3, k + 1/3,n). (2.81)

Thus,Eqs.(2.67)-(2.69)canbe expr_sedas

_(j,k,n + 1/2)=Q_I)_(j + 1/3, k + 1/3,n)+Q_')((j- 2/3, k + 1/3, n)
(2.82)

+ QO)_(j + 1/3,k - 2/3, n), (j,k,n + 1/2) E fh.

Similarly, Eqs. (2.70)-(2.72) can be expressed as

_(j,k,n + 1)= Q_2)_(j _ 1/3, k - 1/3, n + 1/2) +Q(22)_(j + 2/3, k- 1/3, n + 1/2)

+ Q(2)_.(j _ 1/3, k + 2/3, n + 1/2), (j,k,n + 1) E _2.

(2.83)
The marching procedure in the a scheme is formed by applying the marching steps defined

by Eqs. (2.82) and (2.83) successively.

As a preliminary for future development, we apply Eq. (2.82) and then Eq. (2.83).
The result is:

_(j,k,n + 1/2) = t,Jl"_(1)"_(2)--.:.t¢2 q U + 1, k, n -- 1/2) + Q_I)Q_2)_(j,k + 1,n - 1/2)

^(1)^¢,).,. - 1/2)+Q_I)Q_2)_(j_ 1, k,n- 1/2)+t_2 t_s qu - 1, k + X,n

,-.(1) ,,(2) -., . - 1/2)+ O_'Q_)¢(j,_- 1,.- 1/2)+ _3 _ au + 1,k- 1,.
rr_O)_(2) r30)_(2)

+,'_1 '_I +'_2 "_2 + Q_I)Q_2))¢(J,k, n- 1/2),

(2.84)

where (j,k,n + 1/2) E fh. Similarly, by applying Eq. (2.83) and then Eq. (2.82), one
concludes that

_'(j, k, n + 1) ,_(2),_(1) _¢. ,_(2),,-_(1) -,¢.=_1 t_2 qu-l,k,n)+t_l tds qu, k-l,n)

,,(2) ,,(1) _, . ..(_- ) ..(1) _, .
+_2 _'1 qu +l,k,n)+_¢2 _,ls qu + l,k- l,n)

(2.85),,_(2),._(1) -.,.+O_)O_l)¢(j,k+ 1,.)+m _ qu- 1,k+ 1,_)
/,,3(2) ¢30) 0(2)_0) r_(2)r_(1)_+,"_1 '_1 + + ¢(j,k,n),•'v2 "_2 "_3 "_3 /
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where (j, k, n + 1) E f_2.

Next we shall consider the flax conservation conditions gqs. (2.53)-(2.58) assuming

_(1)+ and cr(k_)+# > 0. Let /,(1) and/,(2) be the determinants of the matrices formed by a_e

k, t = 1, 2, 3, respectively. It is shown in Appendix A that, for any p,

and

F
_(1)

= 3/3(1 + re)(1 + v,)(1 - v¢ - v_) + 2(1 + v¢)(1 - v¢ - v_)Q
I.

+ 2(1 + u,1)(1 - v¢ - v,)_ + 2(1 + uC)(1 + v,1)_,- + k,_/

=

(2.86)

I
A(2) - 3|3(1 - v¢)(1- _.,)(1+ v¢+ _.,)+ 2(1- _.¢)(1+ _.¢+ _,.)_¢

L

] (2.8r)+ 2(1- ,.,,,)(1+ ,.,¢+ ,.,,,)6,+ 2(1- ,,¢)(1- v,,)6.+ \ 2--g-Y/ "

Because/J > 0, _¢ > 0, _, > 0, and _. > 0, it follows from Eqs. (2.86) and (2.87) that

A(a) > 0 and/`(z) > 0 if

iv¢l_<1, I,.',,I-<1, _d lye+ ,.',,I-<1. (2.88)

In the following dicussions, we assume A(1) _ 0 and/,(_) _ 0.

.(1) .(1) h_l), .(2) .(2) .(2)Let #1 , 82 ' °1 , #2 , and _s denote the expressions on the right sides of

Eels. (2.53)-(2.58), respectively. Let

p_11)deJ [3(1 + u¢)(1 +u,7)+(3+2uC+u,1)_C+(1 +un)(_n-_,.)]//, (1), (2.89)

pgl) dej [--3(1 _L I/T/)(1 __ IV(_-- I/n) -- (3 -- 21/(_ I/_/)_(:-/C(I Jr-Pr/)(_r/ -- _r)] //,(1), (2.90)

,o(_) dd [(2v C + v,_)_C + (2 - v,_)(_,- - _,7)]/a(a), (2.91)

p_])dd [3(1+ .¢)(1 + ..) + (3 + .¢ + 2_.)_. + (1 + .¢)(_¢- _.)]//`(1), (2.92)

p(1) def82 = [(u¢ + 2u,i)_, + (2 - u¢)(_,. - _¢)]//,(1), (2.93)

p_) ded [-3(1 +vC)(1-v¢-v,_)-(3-v ¢ 2u,7)_,_+(1 +v¢)(_¢-¢_.)l/a (1), (2.94)

p(2) def [-3(1 - vC)(1 - u,t) - (3 - 2v¢ - u,)Q + (1 - v,)(_. - _,_)]/a(2) (2.95)21 --"

p_:_) deJ [3(1 - u,_)(1 + v¢ + v,_) + (3 + 2v C + v,_)_¢ + (1 - v,_)(_r - t_,_)]//`(2), (2.96)
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p_) ae__f[(2v C + v_)_¢ + (2 + v_)(_, I - _r)]/A(2), (2.97)

p(2) dd[--3(1--v¢)(1--v_)--(3 v¢ 2v_)_,1 + (1 V¢)(_r--_C)]/A (2) (2.98)

p_)d,j[(_ + 2_)_ + (2+ _)(_¢--_)]/_(_), (2.99)
and

p_2)_,j[3(1- _¢)(1+ _ + _) + (3+ _ + 2_)_ + (1- _)(_ - _)]/_(_).

Then it can be shown that Eqs. (2.53)-(2.55) are equivalent to

_( :(1) 1))?2J,kn+l/2 -- 31 ._1)j i_ "_2 Jr" 8(3 , (2.101)

(+,.+1/2 (1) ,(1)_ (1),(1) (1) ,(1) (2.102)U C)j,k =P2181 -t-/72282 J¢'/723 83 ,

and

(+,,+1/2 (1) ,(1) (1) ,(1) (1) ,(1) (2.103)U_i )j,k = 1731 81 + P32 82 "Jr"P33 83 ,

where (j,k,n + 1/2) • _1. Also Eqs. (2.56)-(2.58) are equivalent to

u.+l 1. : + +

, +_,+1 (2) ,(2) (2) ,(_) (2) ,(2) (2.105)-C/J,k "-P2181 -l-P2282 +P2383 ,

and

( +_.+1 (2) ,(2) (2) ,(2) (2) ,(2) (2.106)u./j,k =PSlSl +P32°2 +PSSS3 ,

where (j,k,n + 1) • _'_2. Eqations (2.101)-(2.103), and Eqs. (2.104)-(2.106), respectively,

can be expressed as Eqs. (2.82) and (2.83) if one defines

\p(k)3t

This follows from the fact that ,(t)s t is the product of the row matrix which appears on

the right side of Eq. (2.107) and one of the column matrices defined in Eq. (2.73). With

the above definition, the marching procedure in the current a-p scheme, i.e., the scheme

which solves Eq. (2.1) with p > 0, is formed by applying the marching steps defined by

Eqs. (2.82) and (2.83) successively. Obviously, Eqs. (2.84) and (2.85) are also valid for the
a-p scheme.

(2.100)
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Note that the a-p scheme can also be used to solve Eq. (2.1) with p = 0 as long as

z_(a) _ 0 and z_(2) _ 0. According to Eqs. (2.32), (2.86) and (2.87), the last two conditions

are reduced to Eq. (2.66) if # = 0. The current a scheme, however, is still applicable even

if Eq. (2.66) is violated.

The a-p scheme has several nontraditional features. They are summarized in the

following remarks:

(a) Both the a and the a-p schemes have the simplest stencil in each of their two marching

steps, i.e., a tetrahedron wit ha vertex at the upper time level and the other three
vertices at the lower time level: :: :

(b) Ear.h of the conservation conditions Eqs. (2.53)'(2.58) represents a relation among the

marching variables associated with on]y two neighboring SEs. This is a fundamental

difference between the current method and other traditional methods.

(c) For both the a and the a-_u schemes, we have

¢(j,k,n + 1) --, as --, o, (j,k,n) e a, (2.108)

if a, p, and ax are held constant. The above property usually is not shared by other

schemes which uses a mesh that is staggered in time, e.g., the Lax scheme [9, p.97].

The proof of Eq. (2.108) follows from Eqs. (2.84) and (2.85), and the fact that, as

At ---, 0,

Q(1)c_(2 ) O(1)f)(2)1 `#2 -40, _0,`#1 `#3

Q(1)f_(2) f_O)f_(2)
3 `#1 ---* O, "-* O,`#3 `#2

Q(2)f}(1) f_(2)t)(1)
1 W2 -_ 0, -'_ 0,`#1 `#3

Q(2)_(1) _ 0, f_(2)f_(1)3 `#1 "#3 `#2 4"-'4O,

Alternatively, Eq. (2.108) can be proved using a line of argument involving flux con-

servation similar to that given in the last paragraph on p.8 of [5].

(d) Both the a and the a-p schemes are so called "two-way" marching schemes [5, p.ll].

In other words, the same flux conservation relations Eqs. (2.12) and (2.13) can be used

to construct the b_ward time marchingyersions of the a and a-p schemes. More

discussions on this subject are given in Appendix C. :: =:_ _

(e) It will be shown in Sec. 5 that the a scheme is stable if

Iv¢l< 1.5, Iv l< 1.5, and + < 1.5. (2.110)

As depicted in Fig. 9, the domain of stability defined by Eq. (2.110) is a hexagonal

region in the v(-v, space. Moreover, it will be shown that (i) Eq. (2.110) can be

interpreted as the requirement that the physical domain of dependence of Eq. (3.1)

should fall within the numerical domain of dependence; and (ii) the a scheme is

neutrally stable, i.e., free from numerical diffusion, if it is stable.
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Also it will be shown that the a-p scheme is unconditionally stable for the pure

diffusion case, i.e., when a = 0. The stability conditions of the a-p scheme with p _ 0

and a _ 0 are more complex. They also will be discussed in Sec. 5.

Finally, it should be emphasized that, with the aid of Eqs. (2.19)-(2.22), (2.24), and

(2.25), the a and the a-p schemes can also be expressed in terms of the marching variables

and the coefficients tied to the coordinates (x, y). In other words, the coordinates (_, _7)

are introduced solely for the purpose of simplifying the current development. The essence

of the a and a-I_ schemes, and the schemes to be introduced in the following sections, is not

dependent on the choice o[ the coordinates in terms of w/z/ch these schemes are expressed.
T .
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3. The a-e Scheme

The a scheme is neutrally stable and reversible in time. It is well known that a

neutrally stable numerical analogue of

+.= _ +.y _ =0, (3.1)uy

such as the a scheme, generally becomes unstable when it is extended to model the Euler

equations. It is also obvious that a scheme that is reversible in time cannot model a physical

problem that is irreversible in time, e.g., an inviscid flow problem involving shocks. In this

section, we consider Eq. (3.1) and attempt to modify the a scheme such that it can be

extended to model the Euler equations.

To proceed, note that the CEs used in Sec. 2 will not be used in this section. As a

result, Eqs. (2.12) and (2.13) will no longer be assumed. Instead, the CEs to be used are

CE(Z)(j,k,n + 1/2)

o + (3.2)

where (j, k, n -I- 1/2) E ftz, and

(3.3)

where (j, k, n + 1) E f12. We shall assume that the total flux leaving the boundary of any

new CE vanishes, i.e.,

s h* . dg= O, (3.4)
(cE¢')(i,_,,+z/2))

and

K*._-'= 0. (3.5)
(CE(1) (.i,k,n-l-l))

Obviously, (i) E3 can be filled with the new CEs, and (ii) the total flux leaving the boundary

of any space-time region that is the union of any new CEs will also vanish.

Moreover, it can be shown that Eqs. (3.4) and (3.5), respectively, are equivalent to

Eqs. (2.67) and (2.70).

Proof: By subtracting the expressions on the right sides of Eqs. (2.53)-(2.55), respectively,

from those on the left sides, and then multiplying the results by 2wh/3, we obtain the fluxes

leaving CE_Z)(j,k,n + 1/2), CEO)(j,k,n + 1/2), and CE(3')(j' k,n + 1/2), respectively (see

Appendix A). Because the flux leaving an interface from the CE on one Side is the negative

of that leaving the same interface from the CE on the other side, it is easy to see that

thea_ leavingCE¢_)(j,k,. + 1/2) (winchis the ,,-_o_a CE_X)(j,k,. + 1/2),e = 1,2,3)
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is the sum of the fluxes leaving CE_l)(j,k,n -b 1/2), _ = 1,2,3. Thus, the flux leaving

CE(1)(j, k, n + 1/2) can be obtained by subtracting the sum of the expressions on the right

sides of F.,qs. (2.53)-(2.55) from that on the left side, and then multiplying the result by

2wh/3. Furthermore, we have

a(k)± ..(k)± ..(t)+
11 -I-,.21 q-_31 =3, k = 1,2, (3.6)

and

a(k)_- _(_)± + a(k)-_ ..(k)+ ..(k)± _(k)+12 +°22 32 ="13 +v2s +o33 =0, k=l,2. (3.7)

With the aid of the above considerations, and the fact that the expressions on the left sides

of Eqs. (2.53)-(2.55) are all evaluated at the same mesh point (j,k,n "b 1/2), it becomes
• • • n+1/2 •

obvious that Eq. (3.4) is eqmvalent to the statement that uj, k is 1/3 of the sum on the
right sides of Eqs. (2.53)--(2.55). By using Eqs. (2.35)-(2.43) and the assumption p = 0,

we arrive at the conclusion that Eq. (3.4) is equivalent to Eq. (2.67). By invoking a similar

argumentinvolvingEns. (2.56)-(2.5S),and (2.44)-(2.52),wealsoconcludethat En. (3.5)
is equivalent to Eq. (2.70). QED.

As a result, Eqs. (2.67) and (2.70) are shared by the a scheme and the current modified

scheme. In this section we shall describe how the other equations in the a scheme i.e.,

Eqs. (2.68), (2.69), (2.71), and (2.72), can be modified such that the numerical diffusion

of the resulting new scheme can be controlled by an adjustable parameter e.

To proceed, for any (j,k,n -t- 1/2) E f_l, let

,.+,/2 d,_( at)"u_+llS,k+l/3 = u + -_u_
.i+z/3,t+l/s

(3.8)

and

' n+l/2 def f At ,_ n

UJ--2/3'k+l/3 -- LU "[- _11 t2 )i-21s,_+113
(3.9)

t n+l/2 def / At ,_ n

Uj+l/3,k_2/3 = _u + --ut . (3.10)2 )i+1/3,k-2/3

t n+I/2 s n+1/2 t n-l-I/2
By their definitions, u.i+i/3,t+x/3 , ui_2/3,t+i/3, and u.i+I/3,t_2/3 can be considered as the

finite-difference approximations of u at (j + 1/3, k + 1/3, n+ 1/2), (j - 2/3, k + 1/3, n-}- 1/2),

and (j + 1/3, k-2/3,n+ 1/2), respectively. With the aid of Eqs. (2.10), (A.10) and (2.31),

Eqs. (3.8)-(3.10) imply that

ttj+l/3,k+l] 3 -- U -- 2 CUt "-[- I/yU /Jj-l-1]3,k+l/3 '
(3.11)

[ (ui_2/3,t+l/3 = u - 2 vCu t + v,Tu /Jj-2/3,k+l/3 ' (3.12)
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and

(3.13)

In Fig. lO(a), P, Q, and R are three points in the ¢-_-u space. Using the coordinates

given in the same figure, it can be shown that these points are on a plane represented by

, ,..+,/2.. k,,,7)-,.+,/2 (3.14)
u = tu¢)j,k (¢ - jA_) + tu,_)j,i ' tri - -t- u.i,k ,

where

u j, k - -_ _u.i+llz,l,+ll3 + uj_21_,k+ll3 + u.i+ll_,k_213 } , (3.15)

and

t xn+l]2 def /' tn+l]2 in+l/2

uc)j, k _- _Uj+l/3,k+l/3 -- uj_213,k+l13) /a_, (3.16)

_ t _n+l/2 def ]' tn+l/2 in+l/2
u,_jj,k = _uj+l/_,k+l/3 - uj+l/3,k__/_j /A_ 1. (3.17)

Equation (3.14) implies that point O depicted in Fi_. 10(a) is also a point on the plane

spanned by P, Q, and R (i.e., the plane that contains P, Q, R). Moreover, for every point

on the plane represented by Eq. (3.14), including point O, we have

(0_) r. e x,+l/_ (_) ,t ,,+1/2 (3.18)= u'Uj,I, , and = _u,_)i,k .
,1 ¢

nq-l/2 t n+112 _ n+112 " eAs a result of the above considerations, u .,_ , (u¢) .,_ , and (u_) .,_ can be consider d
as the finite-difference approximations of u, 0u/0_, and Ou/Or I at t_e mesh point (j, k, n +

• t n-/-112 • • n+112 • •
1/2), respeehvely. Note that u._ generally is different from u._ which _s defined1, 2,

by Eq. (2.67). Furthermore, the former has no role in the future development. Let

. _-I.._n+l/2 def A_, t,,n'4-112

u¢ )i,_ = -_-tu¢)i,_ , and
, ,+_n+l/2 d__efAf](U, _n+112 (3.19)

and

= - s - s and
_"¢ )j,k 3 . o+,_n+112 de, 1 (_1) (31)) (3.20),_, _,_ =_ s -s .

where s_ z), s_ _), and s_ _) are the expressions on the right sides of Eqs. (2.60)-(2.62),

respectively• Because these expressions are functions of the marching var/ables at the nth
. o+_n+l/2 _ o+_n+112

time Ievel, so are (,¢).i,_ and (u,:)i,k . Moreover, Eqs. (2.68), (2.69) and (3.20)
{, t+_n+l/2 e t+_n+l/2 {, o+_n+l/2

imply: that the counterparts of _..¢ _j,_ and Lu_ )j,k in the a scheme are _.¢ _j,_
o+,_n+l/2

and Lu. )j,k , respectively.
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Let

. +..+,/2 de, b.
au¢ )j,} = 2 1_..._ Jj,k - _"_ Jj,k j, (j, k, n --I-1/2) 6 f_l, (3.21)

and

. +..+]/2 d_f rt.,,+a.+l/_ t.,.+an+l/2]
au,s )j,k -- 2 [,.._ Jj,k - _-,_ jj,_ j, (j, k, n + 1/2) E 12].

Then, with the aid of Eqs. (3.11)-(3.13), (3.16), (3.17), (3.19), and (3.20), one has

(3.22)

tau¢,.,+,,-+,12)./,i _-- 3"1 u + 4u_ - 2u +)j_213,.+113 - u - 2u_ - 2u+ J+ID,'+'D ' (3.23)

and

+ n+112 + n+112 .
Thus both (due)j,k and (du n )j,k are functmns of the marching variables at the nth

time level. As will be shown shortly, they play a key role in the first marching step of the
modified scheme.

Next we consider Fig. 10(b). For any (j, k, n + 1) e _22, let

t n-t-1 def /" _t _nh-l/2

Itj_l/3,k_l/3- --- _U -_ --Ut2 )j-1/_,k-_/3
(3.25)

= u + --g-utj-l-213,k--1/3
j+213,k--l13

(3.26)

and

U t n-t-1 def ( _t ,_ nW1/2j-_13,k+213 = u + -_ut) j_ll3,k+213. (3.27)

Ut n+l U I n+l . t n+]By their definitions, j-1/3,k-1/3, 5+2/3,k-_/3, and "1-1/3,k+2/3 can be considered as the

finite-difference approximations of u at (j- 1/3, k- 1/3,n + 1), (j + 2/3, k- 1/3,n + 1),

and (j - 1/3,k + 2/3, n + 1), respectively. With the aid of Eqs. (2.10), (A.10) and (2.31),

Eqs. (3.25)-(3.27) imply that

i-_1_,_-_13 -
j--1/3,k--1/3

(3.28)

jq-213,k--l/3 --
j-l-2/3,k-]/3

(3.29)
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and

 ,o+1 _ 2(v,o + 2j-_13,_+21a - j-l13,k+213
(3.30)

In Fig. 10(b), the points P, Q, and R are on a plane represented by

where

t.' _.+I , .+I u'"+1 (3.31)= _¢_j,_ (¢ - j_¢) + (_.)j,_ (_ - k_) + j,k ,

,.+I d.f l.f ,.+I ,.+I . _ ,.+I '_ (3.32)
u_,k -- ] _,uj-I13,_-I13 + uj+213,_-I/3 + '_.i-I13,_+_131 '

I\n+l def {" In+l .In+l '_
u¢)_,k -- _ u_+_/s,k-_/s - 'Li-1/s,k-1/3) /a_,

and

,,nJrl def ( tn-bl ,n-bl )u,_)j, k = uj_lla,k+2/s - uj_l/s,k_l/s /a,r/.

Moreover, we introduce the current counterparts to Eqs. (3.19) and (3.20), i.e.,

(3.33)

(3.34)

. tq-_n+l def 1_[11! _nq-1

"¢ Jj, k = --_-_ ¢)j,h ,
and [o 1+,_nq-1 def AT']jut _nq-1

_ Jj,k = -_'_ _Jj,k , (3.35)

and

where s{ 2), s (2), and a_2) are the expressions on the right sides of Eqs. (2.63)-(2.65),

respectively. Because these expressions are hmctJoas of the marching variables at the
t o+ _.n+l (.,o+_n+l

(n + 1/2)th time level, so are tu¢ )./,, and __, _j,, . Moreover, Eqs. (2.71), (2.72) and
(. /+_tn+l {,tt+_ln+l [. o+,_n+l

(3.36) imply that the counterparts of _u¢ )j j, and _.._ /j,_ in the a scheme are _,¢ ]j,_

and _.,.+ _,,+1_.., )j,_ , respectively.

With the above preparations, the current counterparts to Eqs. (3.21) and (3.22) are

-- +\n-'bl def [,, _'-.b\n+l ," o+,n+_] (j, k, n + 1) e _2, (3.37)
aUC Jj._ = 2[(u¢ )j,l_ --_u¢ )j,_ j,

+ .+1 dd [" '+'"+_ "'0+_"+1] I) f12, (3.38)(du n)j,i = 2[tu_)i,2 -_,",_ )j,_ J, (j,k,n+ e

respectively.With the aid of Eqs. (3.28)-(3.30)and (3.33)-(3.36),Eqs. (3.37) and (3.38)

imply that

[( +\-+1/= (u 4u_" 2u+_ "+l/a ]gdu+_n+l 1 2u_" 2u -- (3.39)
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and

[( +,.+1,2 (o 2o _,o+ o+1,21(du+V,+l 1 u + 2u'_ + 2u -
, ,I Jj,k = "_ ,1)j_lls,k_lls + ,7 ]j-1/3,k+2/3J

(3.4o)

(,/. q-_,nq-1 -I- n-I-1Thus both _,,,¢ )j,k and ( du,_ )j,k are functions of the marching variables at the (n+ l /2)th
time level.

The modified scheme can now be stated using the above definitions. It consists of two

marching steps. The first is formed by Eq. (2.67),

q-xnq-l[2 __ (,_,oq-',ln.-I-1/2 t, q-\nq-l[2
u¢ )j,t -- t'C /j,t + e(au¢ )j,t , (3.41)

and
4.,,n.i.i/2 __ (,, oq-'tn't"l]2 ,,._ .4-,,nq-112

u_ )j,k -- _'*,7 Jj,t + etau,_ )j,k , (3.42)

where (j, k, n + 1/2) E ill, and e is an adjustable parameter. It was explained earlier that

the expressions on the right sides of Eqs. (3.41) and (3.42) are functions of the marching

variables at the nth time level. Moreover, according to Eqs. (3.21) and (3.22), Eqs. (3.41)

and (3.42) can also be expressed as

,, 4-',,n+1]2 [. t.F3n+l/2 4. nq-1/2- ,ku¢ )j), - _,'*¢ _j,I, + (e - (3.43)

and
, +\nq-1]2 _ (_trh-,in4-1[2 4- nq-1/2-(u,_ )j,_ _ ,I _j,i, + (_ -

respectively.

The second marching step is formed by Eq. (2.70),

(3.44)

+\n+l (. o+_n+l _(du+3n+l
u¢ )j,k ----_"¢ )j,k + x C sj,k , (3.45)

and
(,tW'_n4-1 / o+\n-t-1 + rt+l
-,I/j,t = f,u,_ )j,l_ + e(du,1 )j,t , (3.46)

where (j, k, n + 1) E f/2. It was explained earlier that the expressions on the right sides

of Eqs. (3.45) and (3.46) are functions of the marching variables at the (n + 1/2)th time

level.Furthermore, according to Eqs. (3.37)and (3.38),Eqs. (3.45) and (3.46)can also be

expressed as

(,,+_n+l [o t+_tn+l (e ll2_[du +'_n+l (3.47)"¢/1,k =_"¢ sj,lc -b -- _ /_ C sj,;: ,

and
(, -I-3n-{-1 [o tq-'tn+l= 1/2)(dun )j,k ,_", Ij,i, _,,_ /j,_, + (e - + '*+_ (3.48)

respectively.
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Becausethe modified scheme is characterized by two parameters a and e, hereafter it
is referred to as the a-e scheme.

At this juncture, note that:

(a) With the aid of Eqs. (3.20) and (3.36), it is seen that Eqs. (3.41), (3.42), (3.45), and

(3.46), respectively, are reduced to Eqs. (2.68), (2.69), (2.71), and (2.72) when e = 0.

As a result, the a-e scheme becomes the a scheme when e = 0.

(b) For the special case with e = 1/2, Eqs. (3.43), (3.44), (3.47), and (3.48) are reduced

to the forms that represent the finite-difference approximations defined in Eqs. (3.16),

(3.17), (3.19), (3.33), (3.34) and (3.35). However, Eqs. (2.67) and (2.70), which are

independent of e and therefore always part of the a-e scheme, are the results of the

flux conservation conditions Eqs. (3.4) and (3.5).

(c) With the aid of Eqs. (2.30) and (3.23), Eq. (3.41) can be rewritten as

(d)

,,,+1/2 6 r 0+_n+1/2

uc)i, k - -_tu¢ )j,_

+5 + - 2,,¢- "
(3.49)

n U n nLet (i) uj__ls,l,+lls , ( ¢)j-2/s,k+lls and (u,1)j__/s,k+l/s be identified with the values

of u, 0u/0_ and Ou/Or I at the mesh point (j - 2/3,k + 1/3,n), respectively; and (ii)

uin+llS,_+lls , (u¢)j_+_ls,k+l/S and (u,_)jn+_/s,_+_lS be identified:::=:_::=::with the: values of u,

cOu/Oi and o%/0%? at the mesh point (j + 1/3,k + 1/3,n), respectively. Then it _n

be shown that the expression within the brackets on the right side of Eq. (3.49) is

O(_, at/). Furthermore, because Eq. (2.28) is applicable within SE(j, k, n) only, the

expression that is enclosed within the first bracket on the fight side of Eq. (2.28) is

O(A(, z_t). From the above considerations, one concludes that the addition of the

extra term involving e on the fight side of Eq. (3.49) may result in errors that are

second order in a_, at/, and At. In other words, the addition of the term involving

e does not result in a scheme of lower order of accuracy. A similar conclusion is also

applicable to Eqs. (3.42), (3.45), and (3.46).

Equations (3.16), (3.18) and (3.19) imply that _o,,+_,+_/2x"¢ Ji, k is proportional to the di-

rectional derivative along the ¢-direction on the plane spanned by points P, Q, and R

depicted in Fig. 10(a). According to Eq. (3.21), t,_. +_,,+1/2_""¢ Jj,k is twice the difference be-
t+ n+1/2

tween (u-).- and its counterpart in the a scheme. Note that the variable (duz)_',

that appears in Eqs. (3.2) and (3.10) of [5], plays a role in the 1-D a-e scheme [5]
-I- n-l-l/2 •

similar to that of (du)i,k m the present 2-D a-e scheme. It can be shown that¢
(duz)_ is equal to the difference between two slopes. The first is the slope of a line

spanned by u_._/2 and u_/2, which are defined in Eq. (3.11) in [5]. The second is
the counterpart Of the first inthe 1-D a scheme. Thus the 2-D a-e scheme is a natural

extension of the 1-D a-e scheme. .... _ ....
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Thea-_ _.heme_U take theformof F_s. (2.82)and (2.83)if

-tl) d_f 1 ( 1 -- v¢ -- v.
¢41

=g _ 1-,
1-e

-(1 - v¢ - v.)(1 + re)

-(1 + v¢ - 2_)

-(1 + v¢ - 2e)

-(1 - v¢ - v.)(1 + v.)_

J-(1 + v. - 2e)

-(1 + v, - 2e)

(3.50)

Q_l) def=31 -(1--_) --(2-v C-4e)

0 0

Q_I) def 1
3 1 +v. -(1 + v.)(1 + v_:)

o 0

\-(1 - e) 1 + v¢ - 2e

-(1 + _¢)(1+ _.)_
/

l+v'7-2eO J '

(1 + v,1)_2 - v.)),

-(2 - v. - 4e) /

(3.51)

(3.52)

Q_2) aef I ( 1 + v¢ + v. (1 + v¢ + v.)(1 -- re)= _ --(1 -- e) --(1 -- v¢ -- 2e)

-(l-e) -(1 v C 2e)
-(1 - v. - 2e) ) , (3.53)
-(1 - v. - 2e)

and

Q_a)a.fl(1-v¢--(1-v¢)(2+vC) (1-vC)(1-v,))
= _ 1-e -(2+v C-4e) 1-v,-2e .

0 0 0

=_ 0 0 . .

\1-_ l-v C-2e -(2+v.-4e)

(3.54)

(3.55)

Note that:

(a) The matrices Q_k) defined above are reduced to those defined in Eq. (2.80) when e = 0.

(b) With the above definitions, Eqs. (2.84) and (2.85) are also valid for the a-e scheme.

29



In Sec. 5, it will be shown that (i) the a-e scheme is unstable if E < 0 or e > 1, and

(ii) numerical difbasion increases as e increases, at least in the range of 0 _< e < 0.65. In

order to suppress numerical oscillations near a discontinuity, one may be forced to choose

a large e. However, with such a choice, the smooth part of a solution may become highly

diffusive. To solve this dilemma, in the following, we shall construct a generalization of

the a-e scheme.

To proceed, let (j, k, n + 1/2) E f_l and consider Fig. ll(a). This figure is essentially

identical to Fig. 10(a) except that point O in the latter is replaced by point O* in the
• . • nq-1]2 n+l]2 •

former. The coordinates of point O are (3A¢, kAr/, uj, k ) where uj,_ is that defined

in Eq. (2.67). Thus point O* generally is not on the plane spazme d by points P, Q, and R.

Let planes #1, #2, and #3, respectively, be the planes spanned by the following trios of

points: (i) points O*, Q, and R; (ii) points O*, R, and P; and (iii) points O*, P, and Q.

Then in general these planes differ from each other and from the plane spanned by points

P, Q, and R. In the following, first we shall study the former three planes.

As a preliminary, let

dd ,.+i12 .+I12 (3.56)zl = uj+l/z,k+l/3 -- u j, k ,

def ¢.+I/2 .+I/2 (3.57)
T, 2 -_ Uj_2/3,k+l/3 -- Uj, k ,

def ,n..i-1/2 n+l/2 (3.58)z3 = uj+l/3,t_2/3 - u j,i, ,

(1),n+l/2 def -(2z2 + z3)/a¢, (3.59)u¢ )j,l_ =

(1),,n+1/2 def t
u,_ )j,k = -tx2 + 2Zs)/Z_T/, (3.60)

, (2)_n-F1/2 def (2Zl q_ _C3)/_¢,"¢ ,'j,k -- (3.61)

(2),,n-1-1/2 def
% )j,k = (xl - z3)/_, (3.62)

and

(3),,,nq-1/2 def
)i,,, = -

(3)_,n+l/2 def (2Xl -l- X2)/Ar/.--71 ]j,k

Moreover, let

(,,(0_.+1/2 da t (t),,,+_/2 0¢ [u(t)a"+_12-_z". si, k = rue )j,t _+_ n Jj,k ,

30

(3.63)

(3.64)

t-- 1,2,3, (3.65)



and

((£)_n-t-1/2 def ,,. (t)xn-i-1/20_

uy )i,t: = t,u_ )i,t
,, (0,-+1/2 Or/

+ t,u,7 )./,t O-V'

With the aidof Eqs. (2.20)and (2.22),we have

and

(U(zl)_n+l/2 Aft ,, (E)xn+l]2 /X_ (tt(l)_n+l]2
Jj, k = _tU¢ )./.k + _" '7 Jj,k ,

(U(Oa,,+l/2 (W + b)aff, (0,-+1/2 (w - b)arl a,,+l/2
y Jj, t 2wh Lu¢ )j,t + 2wh (u(O: Ij,k '

Combining Eqs. (3.59)-(3.64)with Eqs. (3.67)and (3.68),one has

0),,-+1/2 23_wu, )j,t = (z_ + zs),

e= 1,2,3. (3.66)

£= 1,2, 3, (3.67)

£ = 1,2,3. (3.68)

(3.69)

,u.)_.+,/2 _ (3b + w)z2 + (3b - w)z3
Jj,k - 2wh '

(3.70)

U(2),tn-[-1/2 3Zl
• s.i,_ = 2--w"

(3.71)

((2)..+1/2 (3b + w)zl + 2wz3 (3.72)
uy )j,t =- 2wh '

(U(3) 3n+I/2 311
z ;j,k -" _W'

(3.73)

and

( (3),,,+1/2 (w - 3b)21 + 2wz2 (3.74)
uy )jj, = 2wh "

With the above preparations, it can be shown that planes #_, £ = 1, 2, 3, are repre-

sented by

,, (t) \n+1/2 (,,(t)_n+l[2 n+1/2u = rue )s,k (¢ - ja¢) +,_, J_,k (,7- k_) + _s,k , e = 1,9,3, (3.75)

respectively, if the coordinates (_, r/) are used. Alternatively, they can be represented by

, (0,,+1/2 (z - z./,k) +" (t),n+_/2 . -+112u = tu, )j,t I,% )j,t (V - V./,k) "t- u i,t , e= 1,2,3, (3.76)
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respectively, if the coordinates (z, y) are used. Using Eqs. (3.75) and (3.76), one concludes

that, at any point on plane # £, £ = 1, 2, 3, we have

(_9_) , (t),n+l/_ (0_) , (t),,_+1/2 (3.77)-- _u¢ )j,k , and "- I,u,_ )j,k ,
,I ¢

I O_It) "--L[U(l)_n+l/2zH,k , and (_) = _-y("(t)_n+l/2Jj,k - (3.78)

and

Note that Eq. (3.77) is the current counterpart to Eq. (3.18) which is applicable to any

point on the plane spanned by points P, Q, and R. Let Vu be the gradient of u. Then

Eq. (3.78) implies that, at any point on plane # _, _ = 1, 2, 3, we have : :

_t)),_ = u + (u(Yt J j,k
(3.79)

To proceed further, we introduce the current counterpart to Eq. (3.19), i.e.,

(0+,-+112 act _, (t),,+l/2 ru(O+_n+_/2 d=a ,a_ru(t)_,+_12
u¢ )i,i, = --_-I,u¢ )j,k and, _ 11 Jj,k 6 x n /j,k •

(3.80)

Then Eqs. (3.16), (3.17), (3.19), and (3.56)-(3.64) imply that

(,,+V,+1/2_1[ _1)+ _(2)+ _3)+] "+1/2_'¢ Jj,k - _ u + u¢ + u j,k '
(3.81)

and

(,t+_n+a/2 _ 1 [ . (2)+ +u(3)+]n+l/_", Jj,k --3 u("l)++"" " Jj,k ' (3.82)

[,j+,_n+ll2
i.e., (i) _.¢ _,_ is the simple average of

( (1)+_nq-1/2 , (2)+_n+1/2 z (S)+,.+_/2 (3.83)u¢ )j,_ , _u¢ ).id, , and _,u¢ )j,_ ,

and (ii) r,,'+a"+_/2___ _j,_ is the simple average of

(U (1)+_nq'l/2 [U (2)+'_n+112 and r. (s)+_-+_/2 (3.84)
11 Yj,k , k rl /j,k , k"_ /j,k "

The first marching step of the generalized a-e scheme will be formed using Eqs. (2.67),

[o,t-l-_nq-1/2
(3.43), and (3.44) except that (i) _,_¢ _i,_ in Eq. (3.43) is replaced by the weighted

average of those given in Eq. (3.83); and (ii) " ,+,n+l/_[u_ )_,_ in Eq. (3.44) is replaced by the

weighted average of those given in Eq. (3.84). The design of these weighted averages will
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be guided by the requirement that the weight assigned to a quantity associated with plane
/n ,_n+l/2

# e is bigger if I,t,t)j,k is smaller. This requirement is similar to that put forward on
p.2S of [5].

For any a > 0, the weighted-average counterparts to (u_ +V_+l/2jj,k and (, ,+_,_+1/2 are-- k'*_ /j,k

0,
U_ + dee (0203)ctU_l)+ -31-(0301)aU_ 2)+ -3I- (0102)aU_ 3)+

(0102)° + (0203)+ (030x) 

ifal = 02 = 03 = 0;

, otherwise,

(3.85)

and

0,'t/'_ TM-- (0203)-"C_ Ur/(1)+ + (0301)0U_2) + ..{.. (0102) a,t/,_3)+ (3.86)

(0102) _ J¢ (0203)_ + (0301) ef

if01 =02 =03 =0;

, otherwise,

respectively. Here, for simplicity, we suppress the indices j, k, and n + 1/2 which are

associated with all symbols in Eqs. (3.85) and (3.86). Because the denominators of the

fractions on the right sides of Eqs. (3.85) and (3.86) vanish if a > 0, and any two of 01, 02,

and 03 vanish, consistency of the above definitions requires the proof of the proposition:

01 = 02 = 03 = 0,//'any two of 01, 02, and 03 vanish.

Proof: As an example, let 01 = 02 = 0. Then Eq. (3.79) implies that u(zt) = u (t) = O,

e = 1,2. In turn, Eqs. (3.69)-(3.72) imply that xl = z2 = x3 = 0. 03 = 0 now follows

from Eqs. (3.73), (3.74), and (3.79). QED.

Next we consider several special cases of Eq. (3.85). We have

u_ 1)+,
u_+ = (2)+

?_3)+'

if01=0, 02>0, and03>0;

if0==0, 00>0, ande3>0;

if03=0, 01>0, and02>0.

(3.87)

Assuming 8t > 0, _ = 1, 2, 3, we have

= / U¢ q- q-(1/83) U¢(1/01 o .... o (3)+ (3.88)

Thus the weight assigned to u_t)+ is proportional to (1�Or) a. By using Eqs. (3.81), (3.85),
and (3.88), one arrives at the conclusion that

U_ + -- U_ +, if 01 -- 02 = 03. (3.89)
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Obviously Eqs. (3.87)-(3.89) are still valid if each symbol _ in them is replaced by the

symbol r/.

On the smooth part of a solution, 01, 02, and 0s are nearly equal. Thus the weighted

averages u w+ and u_ + are nearly equal to the simple averages u '+, and u_+, respectively¢ ¢
(see Eqs. (3.81) and (3.82)). In other words, the effect of weighted-averaging genera//)" is

not discernible on the smooth part of a solution.

un+lNext let (j, k, n + 1) E f_2 and consider Fig. ll(b). The third coordinate 1,_ of point
O* is that defined in Eq. (2.70). Let planes #1, #2, and #3, respectively, be the planes

spanned by the following trios of points: (i) points O*, Q, and R; (ii) points O*, R, and

P; and (iii) points O*, P, and Q. In the following, we shall study these planes.

As a preliminary, let

dd ,n+l . ,+1 (3.90)]/1 --ttj_l/3,k_l/3 --uj, k ,

def . t n-kl _ n+l
Y2 ---- _j+2/3,k--1/_ -- ttj,k ' (3.91)

def I n+l _ n+l
Y3 = Uj_ll3,k_t_2/3 -- Uj, k , (3.92)

(1)._n+l def
_,¢ )_,, = (2y_+ _)/,,_, (3.93)

(l)',n+l def
u, )_,t = (y2 + 2ys)/Ar/,

( (2)_.+1 def
_'¢ )i,k = -(2y_ + y_)/A¢,

(3.94)

and

Moreover, let

and

(.,(2) _n+l def
•". ,,_,t = (ys - y_)/"'7,

(3)'.n+l def
"¢ J_,s, = (y2- y_)/,_:,

(3),n+1 def
u. Li,1, = -(2yx + y2)/,'.r I.

((t),.+l aef, (t),.+l 0¢% )i,t = t u_ Li,k _'x + ((J-u')_"+a]j,k

. (l)'_n+l def/ (l)xnq-1 0_ (. (l)_n+l
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_= 1,2,3,

£ -- 1,2,3.

(3.96)

(3.97)

(3.98)

(3.90)

(3.100)



With the above definitions, Eqs. (3.67) and (3.68) remain valid if each upper index n + 1/2

is replaced by n + 1. As a result, Eqs. (3.93)-(3.98) imply that

(,,(x),_n+l"_ Ji,_ = (y2 + y3), (3.101)

. (1)_.+1 (3b + w)y2 + (3b - w)y3 (3.102)
"y Jj, k = 2wh '

. (2)_,+1 3yl (3.103)
_x Jj,k = - 2--w-'

(.,(2)_.+1 _ (3b + W)yl + 2wy3

"y Li, k -- 2wh ' (3.1o4)

and

. (a)_,+l 3yl (3.105)
t6X Ij,k _" 2W '

. (a)_,+l (w - 3b)yl + 2wv2 (3.106)
"y Li,k = 2wh

With the above preparations, the earlier developments that involve Eqs. (3.75)-(3.89)

can be repeated for the current case with the only change being the replacement of each

upper index n + 1/2 by n + 1. Particularly, (u_+)_,+k' and (u_+)_' +' can be defined using
Eqs. (3.85) and (3.86) with the understanding that each symbol in these equations is

associated with the mesh point (j, k, n + 1).

The generalized a-e scheme, referred to as the weighted-average a-e scheme, can now

be stated. It consists of two marching steps. The first is formed by Eq. (2.67),

+,,,+1/2 /,, w+ _,,+1/2 + n+1/2
u¢)j,k _¢ Jj,k + (e- (3.107)= ll2)(du¢ )j), ,

and
+,,n+l/2 r w+',n+l/2 + n+l/2

u,i )j,k - _,u,7 )j.k + (e --- ll2)(du,i )j,k ,

where (j,k,n + 1/2) e ftl. The second is formed by Eq. (2.70),

+\n+l , w+,,+l (e-l/2"_rdu +'_"+1u¢ )j,k = l,u¢ )i,k + i J_ C Ji, I, ,

and

(3.108)

(3.109)

+_n+l (. w+_n+l
U11)j,k i,uy )j,k + (e-- + n+l= ll2)(du,_ )i), ' (3.110)

where (j, k, n + 1) E _2.

Note that, according to Eq. (3.79), the evaluation of (0t) '_ does not involve a fractional

power if (x is an even integer. Because a fractional power is costly to evaluate, the use of

the generalized a-e scheme is less costly when ot is an even integer.
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4. The Euler Solver

We consider a dimensionless form of the 2-D unsteady Euler equations of a perfect

gas. Let p, u, v, p, and 7 be the mass density, x-velocity component, y-velocity component,

static pressure, and constant specific heat ratio, respectively. Let

-1 = p, .= = _, -3 = p., -4 = p/(7 - 1)+ p(.2 + _=)/2, (4.1)

_ "- U=,

f_: -" (7- 1)ul + (3-7)(u2)il(2u1) -(7- 1)(u3)21(2ul),

Ii = 7_-./_1 - (1/2)(7-1).= [(_=)_+ (_3)_]/(_1) _,

17/ -- U3,

f_ --(7- 1)u4 "t-(3-7)(u3)21(2ul)- ('_- 1)(u2)21(2ul),

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

and

/I = 7.3._/-I - (1/2)(7- 1).3 [(.=)_+ (-3)_-]/(-1)_

Then the Enler equations can be expressed as

(4.9)

--_--+-_+ =0, m = 1,2,3,4. (4.10)

The integral form of Eq. (4.10) in spaze-time E3 is

where

_(v) hm "d_" = 0,
m = 1,2,3,4, (4.11)

h,n =(f,_,f_,um), m- 1,2,3,4, (4.12)

are the space-time mass, x-momemtum component, y-momemtum component, and energy

current density vectors, respectively.

As a preliminary, let

f=m,tde-._--f a fx/atll, and f_,t'teJ O.f_/cgut, m,£ = 1,2,3,4, (4.13)

_ta'J ut/u,, _. = 2,3,4, (4.14)
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and

_2 def (_2)2 ___ (_3)2. (4.15)

Let F x and F y denote the matrices formed by fz andrn,t fire,e, m, g - 1, 2, 3, 4, respectively.
Then

Z

and

( 0 1 0 0

7- 1fi2 __(,_2) 2 (3--7)U 2 (1--7)fi3 7- 1
2

-fi2tis fis fi2 0

(7--1)_2 _2-7u2_4 7U4 7--1

(4.18)

( o o 1 o '_

F y

11_2--(_3) 2 (1--7)'_2 (3--7)_3 7-- 1
7-

2

(1-7)fi2fi3 7fi4 7-12 [2(_s)2+_] 7fi_
(4.17)

Because ]_ and f_, m = 1,2,3,4, are homogeneous functions of degree 1 [23] in ul,

u2, us, and u4, we have

4 4

/_ = _/,_,, u,, and f=, = y_' f,,m,l Ul.

/=1 £----1

(4.1s)

For any (x,y,t) e SE(j,k,n), urn(x,y,t), f,_,(z,y,t), f&(z,y,t), and hrn(x,y,t), re-

spectively, are approximated by u_n(x,y,t;j,k,n), f,_*(x,y,t;j,k,n), f&*(x,y,t;j,k,n),

and h*(x, y, t ;j, k, n). They will be defined shortly. Let

u.(Z,_l,t;a,k,n) def U n n• = ( =b,_ +(urn-)7,_(_-_J,k)+(urn,b,du- ui,_)
+ (u,,,,)_,k(*- t"), m = 1,2,3,4,

(4.19)

where (urn)_,l,, (u,,,)_,,, (um,)_,i,, and (urn,)?k are constants in SE(j,k,n). Obviously,

they can be considered as the n(tmerical analogrues of the values of Urn, Ourn/Ox, Ourn/Oy,

and Ou,n/0t at (xj,yi,,tn), respectively.
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z n y n z n [fY hn x zLet (f,_)j,k, (fYm)j,k, (f_,t)j,_, and _ ,_,t/j,_ denote the values of f,_, fYm, fzm,t, and

fire,t, respectively, when urn, m -- 1,2,3,4, respectively, assume the values of (Urn)in, k,
m -- 1,2,3,4. Let

4

(f_x)j,k = ,t)j,k(Ut,)£k, rn = 1,2,3,4, k-z -_v/

l=l

4

Z lrg Z lrg

(fzy)j,k -- ,t)j,k(UtY)j,k, rn = 1,2,3,4, (4.21)
t=l

4

.- ...-(f_t)j.kzn def= _'_,(fr_,t)j,k(Utt)j,k,,z ,_ r, m- 1,2,3,4, (4.22)

If1

4

y n def y n u n (4.23)= m = 1,2,3,4,

and

Because (i)

4

y n det _ n n (4.24)(fYmu)j,k = _(fmY,t)./,k(ut,)./,t:' m= 1,2,3,4,
t-----1

4

y n def y n t/ n(fYmtlj, k = _'_(f_,t)j,k( t,)j,k, m = 1,2,3,4. (4.25)
g----1

4

= _ m= 1,2,3,4; (4.26)

and (ii) the expression on the right side of Eq. (4.20) is the numerical analogue of that on the

right side of Eq. (4.26) at (xj, yt, fn), (f,_z)jn,_ can be considered as the numerical analogue
z n z n n IF nof the value of Of_/Oz at (x_,vk,t"). Similarly, (f_,_)i,_, (f_,)j,k, (f_,)i,k, (f£y)i,k, and

(fYmt)_,_ can be considered as the numerical analogues of the values of Of_,/Oy, Of,_/Ot,

Of_/'_x, Opm/Oy, and Ofum/Ot at(xj,y_,ta), respectively. As a result, we assume that

fmX*rx - . = (f,_)j,_+(f,'_x).L_(z-x'j,_)+(fm_)j,_(Y-YJ, i),y,t;3, k,n) det _ n , n x n

+(],_t)jnk(t-t'), m= 1,2,3,4,

(4.27)

and

f_m*(x,y,t;3, k,n) dd v n _ n _ n" = (fv=)j,t,+ (f_z)/,k(x - :r.j,_)+ (f_mu)j,i(Y- Yj,k)

n
+(ffmt)j,_(t-tn), rn= 1,2,3,4,

(4.23)
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Also, as an analogue to Eq. (4.12), we assume that

h*(x,y,t;j,k,n) d'd (f_*(z,y,t;j,k,n),f_*(z,y,t;j,k,n),

u*(x,y,t;j,k,n)), m= 1,2,3,4.

(4.29)

Note that, by their definitions: (i) f,_, ]_, fzm,t, and f_,t, m,£ - 1,2,3,4, are functions
n "" Z n _ n • n

of (um),,,k, m = 1,2,3,4; (11) (fr_t);j,_t and (Pmz),j,.t, m = 1,2,3,4, are functions of (Um),,,k
n "'" z n y n •and (u,n=)j,k, m - 1,2,3,4; (In) (fZy)j,k and (fYmy)j,k, _ = 1,2,3,4, are functions of

(um)_,k and (um_)/,t, m- 1,2,3,4; and (iv) (f_t)j,k and Y "" " - = " (f_t)£k are functions of (u,,)i,k

and m = 1,2,3,4.
Moreover, we assume that, for any (z,y,t) • SE(j,k,n), and m = 1,2,3,4,

Ou*(z,y,t;j,k,n) (gf,_*(z,y,t;j,k,n) Of_*(x,y,t;j,k,n) =0. (4.30)
Ot + Oz + Oy

Note that Eq. (4.30) is the numerical analogue of Eq. (4.10). With the aid of Eqs. (4.19),

(4.27), (4.28), (4.20), and (4.24), Eq. (4.30)implies that, for m = 1,2,3,4,

n z n y n6',.,1i,,,= - = -
t=l

z Y
,t utz + fYm utu .

,t j,k
(4.31)

U n n n FI,Thus ( ,,_t)j,, are functions of (um)j,t, (um_)j,k, and (u_u)j, _. From this result and the

facts stated following Eq. (4.29), one concludes that the onIy independent discrete variables
n U n nneeded to be solved in the current marching scheme are (um)i,_, ( m_)i,_, and (umy)j,k.

Consider the conservation elements depicted in Figs. 5(a) and 6(a). The Euler coun-

terparts to Eqs. (2.12) and (2.13), respectively, are (i)

/S(CE_')(_,k,.+_/2)) _ " dg= 0,
£ = 1,2,3, m = 1,2,3,4, (4.32)

where (j,k,n + 1/2) • f_l; and (ii)

_S(CE_')(i,k,.+_)) fi_' " dg= O,
= 1, 2, 3, m = 1, 2, 3, 4, (4.33)

where (j, k, n + 1) • G2.

Next we shall introduce the Euler counterparts of Eqs' (2.24), (2.25), (2.30), and

(2.31). For any (j, k, n) • G, let

f¢ n

f_ n\( /

d f T_I ,t)j,k

Y n\ (YL lJ, 
, m, _ = 1, 2, 3, 4, (4.34)
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and

u,.¢);,k d.f Tt ,,,,)_,k= , m,_= 1,2,3,4, (4.35)
n r_\(u,,,,,)_,k/ \('_,,,,,)i,k/

The normalized counterparts of those parameters deKued in Eqs. (4.34) and (4.35) are

/',Ire'+"Xn def 3_ " r_ /£Tp'l"'_n de' 3_._-tl'- " =: (4:36i:

X,Jrn,tH,k 2--'_(f_m,e)J,k' and -- ,

and
n def &_7 n

( _+. clef_zX_(u,n:)?k' and (u+m,1)j,k-- -'_-(um.)./,k. (4.37)
,*,,,,_,j,k6" " "' "

In the following development, for simplicity, we may strip from every variable in an

equation its indices j, k, and n if all variables are associated with the same mesh point

(j, k, n) G fZ. Let F ¢+ and F "+, respectively, denote the matrices formed by f¢+_,t and

11+f_,t, m, _ = 1, 2, 3, 4. Let I be the 4 x 4 identity matrix. Then the current counterparts

to Eqs. (2.35)-(2.52) are

_._p*_'j z- F¢+_ F,+,

C_)* d'i _(I- F_+- F.+)(I + F¢+),

E(1)-4- de_.f -4-(I -- F _+ -- F'7+)(I + F"+),
13

E(1)-I- def F¢ +
21 = I+ ,

_-_ a.j _:(I + Fc+)(21 - F¢+),

_._>*_°J±(I + F_+)(I+ F"+),

E(1)+ de._f1 + F '+
31 --

r_)* _J _(r + F'+)(_+ F(+),

}]O)-t- clef F.+)(2I F.+),s3 = :_(I +

_-](2)+ def 1 + F ¢+ + F "+
II --

E(2)4- def F¢+12 = =F(I + + F"+)(1- F¢+),

E(2)_ d:_f_:(I+ F ¢+ + F'_+)(I - F"+),
13 --

E_. d.dX- f ¢+,

E(2)± d:J +(1 - F(+)(2I + F¢+),22 -- _

(4.38)

(4.39)

(4.40)

(4.4_)

(4.42)

(4.43)

(4.44)

(4.45)

(4.48)

(4.47)

(4.48)

(4.49)

(4.50)

(4.5_)
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_(2) -1- def2s = _:(I- F_+)(I- F'+),

_(2):t: def Frt+

E(2) -I.- def32 = :F(x- F"+)(s - F¢+),

(4.52)

(4.53)

(4.54)

and E_)=L d_j _(I- F"+)(2I + Fq+) • (4.55)

Note that, for the case _ = 0, Eqs. (2.35)-(2.52) become Eqs.. (4.38)-(4.55),.. (1)_:respectively'(2)±

if (i) 1, v;, and vq, are replaced by I, F ¢+, and F q+ , respectively, and (n) amt and amt
_(2)=E

are repla_:ed by I]_ )=_ and "_mt , m,i - 1,2, 3, respectively.

Equations (4.32) and (4.33) are evaluated in Appendix B. Let g, zT_, and t7+, respec-

tively, be the 4 x 1 column matrices formed by urn, u+¢, and u+m,, m = 1,2, 3, 4. Then the

results can be expressed as:

(a) Eq. (4.32) with _ = 1:

Z'al2 "*( @ 2"513 _q J j,k --

,-,0)-_+ _0)-.-.+]"

(4.56)

(b) Eq. (4.32) with t = 2:

r _0)--.+ vO)-_+]"
r "<'>+'+ "°>+"+i"+'/2- + "' +'+" -"
E(21)q'U'_ - I"22 _¢ "_- #"23 --r/ Jj,i -- Jj-213,1+113(4.57)L

(c)

(d) Eq. (4.33) with _ - I:

_,(2)+._+ x_(2)+_+] .+iE_il)+'E.'_ t" z-a12 "(; "it" z"_13 -W Jj,k

.+i12

[E_21 ) - u q- "-'12_(2)-'7+_'_ + _23)-u:]i_l13,k-l/3
L

(4.59)

(e) Eq. (4.33)with _ = 2:

.._(2)+.-..+ _(2)+ _,+]"+__(l_)+_ + z_2 _¢ + .-,_s -n j_,_ =
_(2)-g+ w(2) __+].+x/2

(4.60)

(0 Eq. (4.33) with t = 3:

_(2)+._t+ _(2)+_.+] n+lE(2)+'l_ Jr X"a32 u,¢ -I- _"_33 --_ J j,k --

.-,(2)-.-. ,-,(2)-;+ .-,(2)--.+] n+xl2

(4.61)
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Here (j, k, n+l/2) • fh is assumed in Eqs. (4.56)-(4.58) while (j, k, n-t-l) • f_2 is assumed

in Fxls. (4.59)-(4.61). Note that the forms of Eqs. (4.56)-(4.61) axe very similar to those

of Eqs. (2.53 )-(2.58 ).

As a result of Eqs. (4.38)-(4.55), we have

11 +'-'21 +.sl =3I, k=l,2, (4.62)
" ' 2. ;

_(k)-_ _,(k)+ _,(_):e _(k)+ _(k)+ _,(k)± _ 0, k = 1, 2. (4.63)12 "_ "'22 + ""_32 "- "-'13 + "-"23 + '_-"33 --

Equations (4.62) and (4.63) are the Euler counterparts of Eqs. (3.6) and (3.7), respectively.

By summing over Eqs. (4.56)-(4.58), and using Eqs. (4.62) and (4.63) with k = 1, one

concludes that, for any (j, k, n + 1/2) • fh,

uj, k = [z, ll u-t- v,0)-,-:,+,_,12"_ +z'13 u,_Jj+l/s,k+l/3

+ (4.64)z.,22 u¢ +_s u,t].j_2/s,k+.,/s

+ is,. _s2 'u¢ +_3s '%J.i+',/s,k-2/sJ'"

As a resins, u j, k can be evaluated in terms of the marching variables at the nth time
level. Similarly, by summing over EelS. (4.59)-(4.61), and using Eqs. (4.62) and (4.63) with

k = 2, one concludes that, for any (j, k, n + 1) • f_2,

_-t-I _. 1{[ !2 T_(2)----*+ .__ ,-_(2)--'*'l-I n_1/2 ;:

[,-,(2)--. v_(2)-.-.+ _(2)- -.+l .+1/2 (4.65)
+ [z'21 u+'_22 "¢ +_23 u,_ Ji+_/s,_,-_/s

[,,-.(2)- ,-. ..,(21- -,,,+ ..-,(_)- ,-+l _+_/2
+[z.s_ u+zss_ u¢ +Z.ss u,_]j__lS,_,+21sj.

__.+_As a result, j,_ can be evaluated in terms of the marching variables_a t the(n ÷ 1/2)th
time level.

For any (j, k, n + 1/2) • fh, the matrices _...,,,_ _i,_, , m, _ = 1: 2, 3, are functions
.,n+_/?

of uj,_ . Thus they are also functions of the marching variables at the nth time level.
[_(_)+_n+_/2

Assuming the existence of the inverse of each of the matrices _'-'ml _i,_ , m = 1, 2, 3,
one can define

= P._ t, -I- z,_ u_ + ".--':_3 "'_ J _+_/s,k+_/s 'J,_ J
(4.66)
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ff2(1)def [(_-_(1)+_n+1/2]
= [k 2_ /i,k J

-1

`"(1)--.+ _(1)-g+]"
[_1_ )-_7 + _22 u¢ + -2s ".1 Ji-,/s.,+_/s (4.67)

and

(4.68)

where the inverse of a matrix A is denoted by [A] -1. As a result of their definitions, frO),

= 1,2,3, can be evaluated using the marching variables at the nth time level.

[_(2)+_,+i m, £ = 1, 2, 3, are functions ofFor any (j, k, n + 1) E f12, the matrices _,nt 5,k ,
_+1j,k • Thus they are also functions of the marching variables at the (n + 1/2)th time level.

¢w(2)+ _n+l
Assuming the existence of the inverse of each of the matrices v_,,1 Jj, k , m - 1, 2, 3, one
can define

= _k"_11 )j,k J Z.al2 U¢ +"13 _*¢lJj_i/3,k_i/3
(4.69)

[( (_)+)"+_]_2(2) ded _-2_21 j,k

--1

,.-,(2)--.+ _(2)--.,+] ,,+_/2_:_)-'_+ z.,22 u¢ + "'2s _ Jj+21s,k.-lls , (4.70)

and

j,k J

-1

[,-,(2)--_ ,,(2)--.+ _(2)-_+] .+x/2
2-31 U -f- 2_32 Ug _- "'33 '_¢/ J j--llS,k+2/3

(4.71)

As a result of their definitions, ,_(2)t , _ = 1, 2,3, can be evaluated using the marching

variables at the (n + 1/2)th time level.

Using Eqs. (4.38), (4.41), (4.44), (4.47), (4.50), (4.53), and (4.66)-(4.71), Fxts. (4.64)
and (4.65) can be recast as

.,,+,/, 1 "+'/2,_') (z+ + "+'/2_#') (i + "+'/'uJ'k 3 [('/" re;+ r"+)J, k += -- -- -- F_ )j,k + Jr" "Frl )j,k g3(1)]

(4.72)
and

_.-F1 1= F"+_"+'_1_) (i- + "+'_) (_'-F',+_°+'_)],i,_, _ [(z+ F_++ ,_,_ + F_ )._.k + ,_.k
(4.73)

respectively. Equations (4.72) and (4.73) are the Euler counterparts of Eqs. (2.67) and
(2.70), respectively.

Furthermore, Eqs. (4.38)-(4.55) imply that:
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(a) At any (j,k,n -{- 1/2) E _1, we have

s,O)+] -i
_"11 J

(4.74)

t..J23 --
(4.77)

[zip+]-' zll)*=± (I+F¢+), (4.78)

and

[ziP]-' zi_)*=• (2I-F.+).

(b) At any (j, k, n + I) 6 f_z, we have

_" 12 "-- :_= --

(4.79)

(4.80)

[_!_)+I-'_(')* (I F.+)_"_13 = ::_ --
L _- j

[_,)+]-'_(_)*=±(21+F'+)_'-"22

(4.81)

(4.82)

_-J23 -- 212
(4.83)

and

[zIp]-'_(.)* (_ F'+)_'32 "-- :_: --

[_(#+]-'_(_'*-, (._+F.+)":-J33 --
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By using Eqs. (4.74)-(4.85), Eqs. (4.56)-(4.61) imply that

n+1/2 = ff(11 ) (4.86)

[e- (2I- F_+)_?+ (z+F,+)_+1"+'/_-_j_,, = g;')

.+_12 = _) (4.88)

[_- (z- F¢+)e_- (z- F,+)=,'+1°+_jj.,= _), (4.so)

j,k

j,k

where (j,k,n + 1/2) • _, is assumed in Eqs. (4.86)-(4.88), while (j,k,n + 1) e f_z is

assumed in Eqs. (4.89)-(4.91). Because s_]), s_]), s O), s_2), s_2), and s (2), denote the

expressions on the right sides of Eqs. (2.60)-(2.65), respectively, a comparison between

these equations and Eqs. (4.86)-(4.91) reveals that the latter are the Euler counterparts

of the former, respectively.

Note that, by multiplying EelS. (4.86)-(4.88) from left with (I - F ¢+ _ _r, +_,,+l/2ji,h,
(rj_w¢+ _n+l/2 ,7+ n+1/2 ....
-T-- )i,k , and (I+F )i,k , respectively, and sumrmng over the resulting equatmns,

one can obtain Eq. (4.72). Similarly, one can obtain Eq. (4.73) from Eqs. (4.89)-(4.91).
Moreover, (i) Eqs. (4.86)-(4.88) also imply that

(4.87)

'l"+'/z 1 (ff1(1) - _2(1)) and ,.+\n+1/2 1 (ff1(1) - ffs(1)) (4.92)¢:_,k =_ ' _%)i,k =_ ,

where (j,k,n + 1/2) E f_l; and (ii) Eqs. (4.89)-(4.91) also imply that

¢Ji,_ =_
.-_+_n+l 1

and _u,_ )i,' = 3 (if(z,_ if(z)), (4.93)

where (j, k, n + 1) _ ft2. By using the above results, and directly substituting Eqs. (4.72),

(4.73), (4.92), and (4.93) into Eqs. (4.86)-(4.91), one concludes that: (i) Eqs. (4.72) and

(4.92) are equivalent to Eqs. (4.86)-(4.88); and (ii) Eqs. (4.73) and (4.93) are equivalent

to Eqs. (4.89)-(4.91).

With the above preparations, an Euler solver can now be defined. It consists of two

marching steps. The first is formed by Eqs. (4.64) and (4.92), while the second is formed

by Eqs. (4.65) and (4.93). As explained earlier, S(_), k -- 1,2, and £ - 1,2,3, become
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-_+1/2 _.+1known after uj, k and j,_ are evaluated using Eqs. (4.64) and (4.65), respectively. This

Enler solver has a two-way marching nature similar to that of the a scheme. As a result, it

must be neutrally stable, (i.e., no numerical diffusion) if it is stable. Because it is reversible

in time, this solver cannot model a physical problem that is irreversible in time, e.g., an

inviscid flow problem involving shocks. Hereafter, this new Euler solver will be referred to
as the Euler a scheme.

At this juncture, note that the Euler a scheme is greatly simplified by the fact that
--m+1/2 .-_rt+l
uj, k and _,j,_ , respectively, can be directly evaluated in terms of the marching variables

at the nth and (n + 1/2)th time levels (see Eqs. (4.64) and (4.65)). As a result, the

_-_+1/2 ff?+zt_0)+_,,+112 r_(2)+v,+1 which are nonlinear functions of ui, _ and j,kmatrices _,"'mt /j,k and t-,rot )j,k ,

respectively, can be evaluated easily. In other words, nonlinearity of the above matrix

functions does not cause a particular problem for the Euler a scheme.

To explain how Eqs. (4.64) and (4.65) arise, note that

and

/s(cEo)(j,_,,+a/2)) Ft* • dg= O, (j, k, n + 1/2) E f/l, (4.94)

s h*.dg=O. (j,k,n+ 1) e a2, (4.95)
(CE(2)(j,_,n+x))

respectively, are the direct results of Eqs. (4.32) and (4.33), the basic assumptions of the

Euler a scheme. According to Eq. (3.2), CE(i)(j, k, n + 1/2) is the hexagonal cylinder

AtBICtDtEIFtABCDEF depicted in Fig. 5(a). Except for the top face AIBtCIDIEIF ',

the other boundaries of this cylinder are the subsets of three solution elements at the

nth time level. Thus, for any m = 1,2,3,4, the flux of h* leaving CEO)(j, k,n + 1/2)

through all the boundaries except the top face can be evaluated in terms of the marching

variables at the nth time level. On the other hand, because the top face is a subset of

SE(j, k, n + 1/2), the flux leaving there is a function of the marching variables associated

with SE(j, k, n + 1/2). Furthermore, because the outward normal to the top f_e has no

spatial component, Eq. (4.29) implies that the total flux of h_ leaving CE(i)(j, k,n 2{-1/2)

through the top face is the surface integration of u_n over the top face. Because the center

of SF__j, k, n + 1/2) coincides with the center of the top face, it is easy to see that the

first-order terms in Eqs. (4.19) do not contribute to the totM flux leaving the top face. It
_" ,,n+l/2

follows that the total flux leaving the top face is a function of tum)j,t only. As a result
-m+1/2

of the above considerations, u j, k can be determined in terms of the marching variables
_.+1

at the nth time level by using Eq. (4.94) only. Similarly, i,t can be determined in terms
of the marching variables at the (n+ 1/2)th time level by using Eq. (4.95) only. Eqs. (4.64)

and (4.65) are the direct results of Eqs. (4.94) and (4.95), respectively.

In an extension currently under development, the mesh used is not unifo_ ifi sp-a_e:

As a result, point G' depicted in Fig. 5(a) generally is not the center of the top face referred
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to earlier. To simplify the development, we have moved the center of SE(j, k, n + 1/2) to

the center of the top face, i.e., away from point G _.

Next we shall construct the Euler a-e scheme, i.e., the Euler version of the a-e scheme.

For this scheme, we shall use the CEs defined in Eqs. (3.2) and (3.3), i.e., Eqs. (4.94) and

(4.95) will be assumed. Thus Eqs. (4.64) and (4.65) will also be part of the Euler a-e

scheme. In the following, we shall describe the rest of the Euler a-e scheme.

As a result of their definitions, evaluation of ffl (k) involves the inversion of the 4 x 4

, and Era1 ) , m = 1,2, 3. To simplify computation, we shall
j,k j,k

assume that

IE(1)+_ n+1/2 (1)+ "

11 )j,k ( Ell )j+l/3,k+l]3'
(j, k, n + 1/2) E f_l, (4.96)

j,k "-" E21 j--213,k+l/3 '
(j, k, n + 1/2) E _'_1, (4.97)

(_11)+) 'n+ 1/2 (y](1)+"_ n
j,k = \ 31 )j+11s,_-213'

(j, k, n + 1/2) e fh, (4.98)

(2)+_"+1 = (_,(2)+_.+112
,]j,k _',z''*11 ]j--1/3,'--113 '

(j,k,n + 1) e £2, (4.99)

and

( 21(2)+'_"+1 = /v,(2)+,_,,+1/2
) j,k _"21 ] j+2/S,k-113 '

_""31 )j,k --" k 31 )i-1/3,k+213'

(j,k,n + 1) e £2,

(j, k, n + l ) G £2.

(4.1oo)

(4.101)

By using Eqs. (4.38), (4.41), (4.44), (4.47), (4.50), (4.53), (4.74)-(4.85), and (4.96)-(4.101),

Eqs. (4.66)-(4.71) imply that (i)

111gtl) _.. _1(1)dej ___ (f "F F¢+)u t - (I Jr- ._"+)ut]j+ll3,k+ll 3 ,
(4.102)

and

g2(1) .._ _--,(1)def [ n= + (21-- ,V --(I +F"+)
,1 .j j-21s,k+ l l3

g3(1) = _.,3(1) dej [___ (_ .if_ F(_+ ) ut Jl'- (21 - F "+) u+l n
,i j j+i/3,k-2/3

, (4.103)

, (4.104)
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where (j,k,n + 1/2) E _1; and (ii) _i: o ....
. - _: _ _ = = = _. •= != : :_: _

_?) =_2)_., [_+(I- F_+__+_ _I- F,+__+1 (4.105)= / ( " _ ! '1 Jj-1/s,k-ll3'

g(_'):_(/)"_[_-(:_+F_+)q +(I-r,+).+l"+'/'= u,_ j i+2/3,k-1/3' (4.106)

_(2) -(2)a_f [ ...+i"+I/_= o3 = _+ (I- F¢+)_ - (2x+F_+)u_j___/_,_+_/, (4.107)
where (j, k, n + 1) E f_2. Note that s-_tk), k - 1,2, and _ = 1, 2, 3, respectively, axe

structually similar to s_ k), k = 1,2, and £ = 1,2,3, which were defined in Sec. 2.

Equation (4.92) coupled with Eqs. (4.102)-(4.104) implies that

(_+_.+1/2 (ffo+_-+_n
C/j,k = _, _ /j,k '

where (j,k,n + 1/2) e g/l, and

/_.+_.+x/2 /_.o+_.+1/2 (4.108)and _,u,_ ) j,, = [u,_ )1,_, '

/ _\n+_/2

Note that: (i) As a result of Eqs. (4.102)-(4.104) and (4.109), (ff_)
\ " /j,k

can be evaluated in terms of the marching variables at the nth time level;

Eq. (4.109) is the Euler version of Eq. (3.20).

Similarly, Eq. (4.93) coupled with Eqs. (4.105)-(4.107) implies that

/ .,.+ \ n-{-I t._o._\n+l

/ _o+\n-bl/2
and U'_ ) _,_

and (ii)

(4.110)

where (j, k, n + 1) E 112, and

fly.} def.__ 2) _ 2)

x " /j,_ 3 , and (uv)3,_ = _

Note that: (i) As a result of Eqs. (4.105)-(4.I07) Rnd (4.111), {ff °+_n+_ and _uv )j,_

can be evaluated in terms of the marching variables at the (n -t- 1/2)th time level; and (ii)

Eq. (4.111) is the Euler ve_sio_of Eq. (3.36).

_arthermore, for any (j, k, n) e 1_, let (u_)_n,_ denote the column matrix formed by
n( m_)j,_, m = I, 2, 3, 4. Then Eq. (4.31) coupled with Eq. (B.5) implies that

At
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With the aid of Eq. (4.112), we shall carry out a development parallel to an earlier one that

involves Eqs. (3.8)-(3.48). As will be shown, equations obtained in the new development

are essentially the 'qmages" of Eqs. (3.8)-(3.48) under the following mapping:

and

u _ _ ff_, ut _ _t, v¢ -.-* F ¢+ v, I ---* F '1+u ---r if,

_ "0 tlrl , U_" ----} U_ U, Uq+ --} U_ +,

--} ff,_+ u_+ --'* ff_+ and u_+ -+ :"'+, , t't/ •

To proceed, for any (j, k, n + 1/2) E _1, let

--.I n+1/2 def [ At ... '_ n

uj+al_,t+a/3 = lkff + --ut2 ) j+ll3,t+ID

... n+1/2 def [" At -. '_ n

Uj__2/3,k+l/3 --" _U'3U TUt) j_2/3,k+l/3

-_t n+1/2 def ( At -., '_ n
Uj+l/3,k_2/3 = if+ TUtJ j+I/3,k_2/3"

With the aid of Eq. (4.112), Eqs. (4.114)-(4.116) imply that

..,.I n+l[2 n

Uj+l/3,k+l]3 = [u- 2(F'+u_ + Frl+_:)]j+l,3,k+l,3

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

and

-,-+,,, [Uj_2/3,k+l/3 = if-- 2 F ¢+ + F_+ j-2/3,k+1]3 '

-,,t n+l/2 n
u,+,13,1,_213= 2 (Fg+tZg +

,! / j j+a13,t,-2/3 "

(4.118)

(4.119)

For each m = 1, 2, 3, 4, the earlier geometric argument involving Fig. 10(a) can be re-
r n+l/2 t n+l/2 t n+l/2

peated here with u.i+l/3,k+a/3 , u.i_2/3,t,+l/3, and u.i+x/3,j,_2D , in Fig. 10(a) being replaced
.-,t n+l/2 -.t n+l/2 -,.t n+l/2

by the m-th eomponents of uj+al3,t+aD , uj_213,k+l/3 and uj+a/3,t,_2/3 , respectively. This
new argument leads to the definitions:

--.t,,n+l/2 def [--.tn+l/2 -.In+1/2 '_

U¢)j, k = _Uj+I/3,k+I] 3 -- Uj_2/3,k+l/3) /A_,
(4.120)

( ...-J' _,.+1/2 def [-.I n+l/2 -., n+l/2 '_

Url)j,k = _Uj+l/3,k+l/3 -- Uj+l/3,k_2/3)
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-t

and

u¢ ]j,_ = -ff-tu¢]j,_ , and tu,_ ]j,k = -ff-tu,]j,_ . (4.122)

Equations (4.120)-(4.122) are the Euler versions of Eqs. (3.16), (3.17) and (3.19), respec-

tively.

Next we introduce the Euler versions of Eqs. (3.21) and (3.22), i.e.,

(_-_-\nq-1/2 d_ef2 rt-_,-i-,n-1-1/2 "+1/21
['tUg )j)k -- \ " ,(ff;'}') , (j)_,n Jr 112)_ _"_1,GUg )j,k

j,k J
(4.123)

and

(,.-_-,n-I-1/2 def [{4i.rq_ _nq-1/2
au,_ )j,k = 2 p,._ sj,k -

(_..+_n+a/2]
u, )i,_ j, (j,k,n+l/2) e ax. (4.124)

Then, with the aid of Eqs. (4.102)-(4.104), (4.109) and (4.117)-(4.122), one has

1 r. 1

[( 4ff_" - 2if+) n - (ff - 2ff_" - 2if+) n /(,..-,+,.+1/_
au¢, /./,k = 3 ,. if+ "/j-213,k+l13 "/.i+_l_,l,+_13J '

(4.125)
and

('---_1" _n+l/2 -- 1 [ (t._ __ 2i_t .._,.4f._:'_ rlaurl )j,k -- g "' / j.-I-113,k--213 "/j+lis,l,+lisJ
(4.126)

,,..._-\n'F1/2 ,,-_n+l12
Thus both tau¢ )j,t and tau,_ )j,k are functions of the marching variables at the nth
time leeel.

Similarly, for any (j, k, n + i) E£2, let

ffwn-l-1 clef ( At ..._nq-1/2j+2/3a__/s = z+ Tu,]
j+21s,k-lls

_d

n-I-1 def ( At _. "_nq-II2
j--1/3,kq-2/3 "- --U'Jr" TUt) j_lf3,k._.2/3

With the aid of Eq. (4.112), Eqs. (4.127)-(4.128) imply that

, (4.128)

(4.129)

,-xls,t-al_ [if- 2 (F<:+lT,_+ F'l+_+_l'l "+1/i
-- 'q ]l j-l/S,k-l/3 '

(4.13o)
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and

11-.I-1/2[ / __

F.+ff+'_],Z,-+1 = _ [F¢+,Z_+./+2/3,k-,/3 L_ 2 T/ /J j-1-2/3,k--1/3 '

[ 71-11-]/2

,Z,,,+l _ (F¢+,Z_-+./-1/3,k+2/3 -- Lif- 2 17 )Jj-1/3,k+2/3'

The Euler versions of Eqs. (3.33)-(3.35), (3.37), and (3.38) are

Zt,ln+l def [-.tn+l .-_.ln+l

(4.131)

(4.132)

(4.133)

(_,\n+l def /';-?tn+l -.tn+l . '_
,,._lJj, k = tt'3_l/3,k_t_2/3 -- %lj_l/3,k_l/3) /_,

(4.134)

u_ )j,k -" "_"k _lj,k ,
[gTtq._n+ldef A_7/_thn+I (4.135)

and t". sj,k =-_-< ,lJj,k,

and

au¢ )j,k = 2L,-¢,j,, - + ,

._-:,+xn+l def [/_I+'%n+l /.,o+_ n+l]

au.)j,_ = 2L_.." Jj,k -ku, )j,_J,

(j,k,n + 1) e f_=,

(j, k, n -_- 1) • _'_2.

(4.136)

(4.13_)

Combining Eqs. (4.1o5)-(4.1o7), and (4.130)-(4.137), one has

(--..'_'1", rl-.t.-1 1[ 21._,_" 21_.:) n'l''l/2 21._'1-_ rl''l" 1 '2 1 (4.138)au¢, )j,k _ "3 (_ dr- Jl- j-1/3,k--1/3 -- (ff-4ff_+ " ] j+2/3,k--1/3] '

and

_.+\.+I/2--+\ .+1/2 (ff + 2ff_ -- 4uta,7+'_,"+a 1 2,7_" 2ut"'",l 'i,k = _ (ff + + '1 )i-l/3,1t-a/3 '7 )i-'13,#<+21_

Thus both (../.,-_'%n+l;tnd (./.,-2-1-'1n+I
t"'*_¢ )j,k k_"rl /j,k areftmctJonso[themarchJngvariablesat the(n+I/2)th

time/eve/.

The Euler a-e scheme can now be stated using the above definitions. It consists of

two marching steps. The first is formed by Eq. (4.64),

(ff+,_ .+1/2 /ff.+,_ .+1/2 ,....._- ,,.+1/2 (4.140)
¢ /i,_ = \ ¢ /j,k +etau¢ )j'* '

and
( -.+\ _*q-I/2 t ..,o+'_"-I-I/2 /. -,-I-xn+l/2
u. )j,k = tu. )j,_ + etau. )J,_, ' (4.141)
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where (j, k, n + 1/2) _ _1, and e is an adjustable parameter. It was explained earner

that the expressions on the right sides of Eqs. (4.140) and (4.141) are functions of the

marching variables at the nth time level. Moreover, according to Eqs. (4.123) and (4.124),

Eqs. (4.140) and (4.141) can also be expressed as

(:_),+1/2,.,+,.+i/, ...+,+I/,= :/2)(d:<)j,_,j,k tu¢ )j,k + (e - (4.142)

and
(_+_n+1]2 ,-._+,n+1/2 _, ..-.+ n+112
u_ ]j,_ "-tu_ )j,k _k_- l/2)(du_)j,k , (4.143)

respectively.

The second marching step is formed by Eq. (4.65),

[_7+ _.+3 / .x n+l ,{,t,,-t+_n+l (4.144)
k ¢}i,k x - /j,_

and

(-.+xn+l ..o+-n+l .tj..-_+_,+: (4.145)% )i,k = (%)Zk + *_""'_ Jj,1, ,

where (j, k, n + 1) E _2. It was explained earlier that the expressions on the right sides of

Eqs. (4.144) and (4.145) are functions of the marching variables at the (n + 1/2)th time

level. V=the_ore, _¢cormngto Eqs.(4.136)and (4.137),r_s. (4.144)and (4.145)can
also be expressed as

= 1/2)(d_¢ )j,k , (4.146)\ c, Jj,I, ','_¢, Ji,1, + (_ - _ .+i

and

(-.+x-+: t.-.._+an+l (e _ .+1un )j,I, = _,"n Ji,1, + - 1/2)(da_ )j,k , (4.147)

respectively.

Note that, because of _he asstu_ptions made in Eqs. (4.96)-(4.I01), the Euler a scheme

is not the special case of the Eu/er a-e scheme with e = O.

Finally we shall construct the weighted-average Euler a-e scheme, i.e., the Euler version

of the weighted-average a-e scheme. The development follows a line of argument similar

to that used in the construction of the weighted-average a-e scheme. Thus only the key

definitions will be given.
___ __

For any (j,k,n + 1/2) e f_l, the Euler versions of Eqs. (3.56)-(3.66), (3.69)-(3.74),

and (3.80) are ....

_1 aa .., n+l/_ -.,+_/_ (4.148)
-- Uj+l/3,k+l/_ -- Uj, k ,

def ...,_rid-l/2 _7n+1/2
£_ = u__2/s,_+:/_ -_j,_ ,
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X3 def ...,t n+1/2 .-mq-1/2
= Uj.t.1/3,k_2/3 -- Uj, k

-_(1),n-{-1/2 def _(2_ 2 -Jr Z'3)/_C,u¢ ]j,k --

_j,k -- -(g2 + 293)/A,7,

-_(2) xn+l/2 def
_'_ Ji,k = (2_ + _)/_,

-.(2),,,+I/2d_i -.

.(3) \n-I-112 def
_¢ Jj,k = (_ - _)/_¢,

( -7 (3) ,in-I- 1/2 def_-_ _j,k = (2_ + _2)/A,7.

u. )j,k = rue )j,k _ +_ ,I s#,k

(_(t)xn-1-1/2 def (ff_#.)_n-#-l/2 COG (ff(t)_n-#-l/2
uy ) j,_ COy coy/j,k _ -t- t rl /j,k _,

(g(1)_.+l/2 3

(ff(,)_,,+112_ (3b + w)_'i -t- (3b- w)_3
I sj,k -- 2wh '

(-,(2),n+1/2 3_1
u _ ) j ,t = "2"ww'

(-.(2),n+I12 (3b -t- W)11 -t- 2w£3

ul )j,t = 2wh '

g(3) V'+_/_ 3_'_
z ]j,k _- 2--WW_

sj,_ = 2wh '
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£ = 1, 2, 3,

£ = 1, 2, 3,

(4.1_o)

(4.1_1)

(4.153)

(4.154)

(4.1_)

(4.1_6)

(4.157)

(4.1_s)

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)



and

u¢ )j,k = -ff-Lu¢ ILk , and =\ Zl Jj, k T '_ _l Jj,k

respectively.

,-_(/)+\nq-1/2 , -.(l)+_nq-1/2
Let the ruth components of the 4 × I column matrices I,u¢ )j,k , Lu_ Jj,k ,

(-.(t)_n+ll2 ,.(t)_n+ll2 , (t)+_n+ll2 _n+112 , (t)_n+1/2
Uz )j,k , and Luy )j,k , be denoted by I,u,,¢ )j,k , (u_)+jj,_ , (u,_)y,k , and

(0 ,.+1/2
u,_).i,k , respectively. Then, for m = 1,2,3,4, and £ = 1,2,3, the ELder versions of

Eqs. (3.79), (3.85), and (3.86) are

0m_ def U 2 ._ I, Ump) , (4.166)

0,
do, (x)÷+(o.3o.,)° t_m¢

(om_o_2)"+ (om20_3)"+ (o,.3om_)°

and

if Omx = Ore2 = Ore3 -_- O;

, otherwise,

(4.167)

0_

(1)+ __ (0m30ml)Ot l/(m2)r/q - -_-(0ml 0m2)" Urn,(3)+(0m20,.3)" u,_
(om_o._)-+ (o._o._3)- + (o,._o,_)o

if 0,,_1 = Ore2 = 0,,,3 = 0;

, otherwise,

(4.168)

respectively. Here (i) a >_ 0, and (ii) each- symbol in the last two equations is associated

with the mesh point (j, k, n + 1/2).

Next we consider the case with (j,k,n + 1) e f_2. The ELder versions of Eqs. (3.90)-

(3.106) are

_1 dd., n+l _-m+l (4.169)
= Uj_l]3,k_l] 3 -- u j, k ,

Y2 dd .-.,n+l _ __.+1 (4.170)= t_j+213,k-l/3 j,k ,

_'3 def -_l n+l _ _.+1= uj_ll3,k+_la j,_ ,

(_.,),.+_ da (2g, + Y3)/"¢,u¢ )j,k = (4.172)
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(#(1)..in+l def-. ,_,k = (_'_+ 2_)/a_, (4.173)

--.(2) _n+l def .,
_¢ Ji,k = -(2g_ + u_)/a_, (4.174)

(,_2) _.n-I-1 def'j,k = (¢3-- ¢_)/"'7,

and

( .-*(3)_n-F1 def
u¢ )._,k = (_2-¢,)/,,_,

-;*(3) _nq-1 def "* A•-,, ,i,k = -(2¢, + y2)/ ,7,

(4.176)

(4.177)

(#(£)_n+1 def /--,(/)xn+l Off {,7(t)3n+l e= 1,2,3, (4.178)

(_t)'_.+l def ,'.-*(t)',n+l _ O_Ji,_ = _u¢ )_.k _ + (_t)_n+_ __Jj, t Oy '

(-'0),-+1 3_'_ )i.t = (¢_+¢_),

= 1,2,3, (4.179)

(4.18o)

(.7(I)a-+, (3b + w)_'2+ (3b- w)_'3 (4.181)
"y Jj,k = 2wh '

(,_(2)a.+i 3ff'x (4.182)
• Ji,k = - 2--w'

2wh (4.183)

and

(#(3)3n-Fl 3_'1
"z /j,} _ _W '

(4.184)

(ff(3)_n+, (w - 3b)_'1 + 2w_2 (4.185)
Jj, t = 2wh '

respectively. Moreover, with the understanding that all symbols axe associated with the

mesh point (j, k, n + 1) G f_2, Eqs. (4.165)--(4.168) remain valid for the current case.
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The weighted-average Euler a-e scheme can now be stated. It consists of two marching

steps. The first is formed by Eq. (4.64),

(a_,).+l/_ ,-_+,.+,/_ -+ .+,/2= ll2)(d,,¢)j,k ,i,a, rue }i,k + (e -
(4.186)

and
/..+xn+l/2 r-.w+xn+l/2 ..-e+ n+l/2

= l/?)(d_ )j,k ,;,% }j,k _u_ )j,k + (e-

where (j, k, n + 1/2) e fh- The second is formed by Eq. (4.65),

(4.187)

and

\ n+l

_+_ _-,.+,.+_ (_ 1/2)(d_)_,_+1CJi,k =t,u¢ Jj,k + -

m

(4.188)

/..,+\n+l [_w+_n+l
= 1/2)(du,i )j,k , (4.189)_,u,1 }j,k _¢',7 Ji,_ + (e - ..-r+ .+1

where (j, k, n + 1) E f_2.

Because (i) a fractional power is costly to evaluate, and (ii) evaluation of (0mr) a does

not involve a fractional power if cr is an even integer, the weighted-average Euler a-e scheme

is more computationally efficient if a is an even integer.
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5. Stability Analysis

The stability of the a, the a-p, and the a-e schemes will be studied using the yon

Neumann analysis. For all (j, k, n) E _, let

_(j,k,n) = _*(n,O¢,O,_)e i(j°¢+k°'), (i def %_, --_ <_ 0_,0_ ----. 7['). (5.1)

where _*(n, 0¢, 0_) is a 3 x 1 column matrix. Substituting Eq. (5.1) into Eqs. (2.84) and

(2.85), one obtains

q'*(n +rn- 1/2,0¢,0,)- [M(1)(0¢,0_)M(2)(0_,0,1)]

and

_'*(n- 1/2, 0¢, 0_), (5.2)

_**(n -I- m,00 0,_) = [M(2)(O¢,O,_)MO)(O_,O,7)]m_*(n,O¢,O,7),

respectively. Here (i) n = 0,:t:1,=1:2,...; (ii) m = 0,1,2,...; and (iii)

(5.3)

M(1)(O¢,0,) +QO)e(,/s)(_2o,+o,) (5.4)

and

M(2)(0¢, 0_) de=fQ_)e_(,/s)(0¢+a,) + Q(2)e-(i/s)(-20,+0,) + Q_2)e-(i/s)(o,-_a,,). (5.5)

(k)
Note that Eqs. (2.84) and (2.85) are valid for the above three schemes ff Qt , k = 1, 2,

and t = 1,2,3, are defined using (i) Eq. (2.80) for the a scheme, (ii) Eq. (2.107) for the

a-p scheme, and (iii) Eqs. (3.50)-(3.55) for the a-_ scheme. Equation (5.2) implies that

the amplification matrix among the half-integer time levels is M(1)(0¢,0_)M(2)(0¢,0_);

while Eq. (5.3) implies that the amplification matrix among the whole-integer time levels

is M(2)(0¢, 0,_)M(1)(0¢, 0,1).

According to a theorem given in Appendix C, the above two amplification matrices

have the same eigenvalues. These eigenvalues may be referred to as the amplification

factors. The amplification factors are functions of phase angles 0¢ and 0 r. In addition,

they are functions of a set of coefficients which are dependent on the physical properties

and the mesh parameters. These coefficients are (i) v¢ and _,_ for the a scheme; (ii) re,

u,, and _ for the a-_ scheme; and (iii) u¢, u_, _¢, _,, and _r for the a-p scheme. Let )_1,

_2, and )_s denote the amplification factors. In the present paper, a scheme is said to be

stable in a domain of the above coefficients if, for all coefficients belonging to this domain,

and all 0¢ and O_ with -_r < 0¢, O_ _< _r,

IA I< IA_I _< 1, and IA_I _< 1. (5.6)

Consider the a scheme. By using its two-way marching nature (see Fig. 12), it is

shown in Appendix C that, for any given v_, y_, 0¢, and 0_,

1  ),2 sl = 1. (5.7)
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It follows from Eqs. (5.6) and (5.7) that the a scheme must be neutrally stable, i.e.,

I iI- IA21- l.hl--L, : < e¢,O,, ...... (5.8)

if it is stable. In other words, the a scheme is free o[ n_ez_cal diffusion [,5, p.18] fllt is

s_able. Moreover, a systema_/c numer/ca/eva/uation of A1, A2, and As, [or d/fferent values

of _, _., 8 0 and 8_, has co_flrmed that She a scheme/s indeed neutrally stabie in the

stability doma/n defined by Eq. (2.110). In the following, we shall discuss the meaning of

this stability domain.

Let (j, k, n 4- 1/2) e f_l. According to Eq. (2.84), the marching variables at (j, k, n 4-

1/2) axe completely determined by those of seven mesh points at the (n - 1/2)th time

level. According to Fig. 13(a), one of them, i.e., the mesh point (j, k, n - 1/2), is located

directly "below" the mesh point (j, k, n 4-1/2). The other six are the vertices of a hexagon.

As a result, in this paper, the inter/or and boundary of the hexagon shall be considered as

the numer/cM domain of dependence of(j, k,n 4- 1/2) at the (n - 1/2)th thne level. Note

that the dashed lines depicted in Figs. 13(a) and 13(b) are the spatial projections of the
boundaries of CEs.

The a scheme is designed to solve Eq. (3.1). For Eq. (3.1), the value of u is a constant

along a characteristic line. The characteristic line passing through the mesh point (j, k, n+

1/2) will intersect a point on the plane t = t "-1/_. The latter, re[erred to as the backward

characteristic projection of the _'ormer at the (n - 1/2)th time/eve/, is the "domain" of

dependence of the former at the (n - 1/2)th time level. It is shown in Appendix C that the

backward characteristic projection is in the interior of the numerical domain of dependence

if and only if Eq. (2.110) is satisfied.

Let (j, k, n + 1) E f12 and consider Fig. 13(b). Using a line of argument similar to

that presented above, it can be shown that the backward characteristic projection of the

mesh point (j, k, n + 1) at the nth time level is in the interior of the numerical domain of

dependence at the nth time level if and only if Eq. (2.110) is satisfied.

At this juncture, note that the concept of characteristics was never used in the design

of the a scheme. Nevertheless, its stability condition is completely consistent with the

general requirement that an explicit scheme for Eq. (3.1) is stable when the domain of

dependence of Eq. (3.1) is a subset of the numerical domain of dependence.

Next we consider the stability of the a-e scheme. Recall that the 1-D a-e scheme [5] is

not stable for any Courant number u if e < 0, or e > 1. Similarly, the results of numerical

experiments indicate that the current a-e scheme, except for some possible isolated points,

is not stable in any domain on the v¢-u, plane if e < 0 or e > 1. For any e with 0 < e < 1,

the a-e scheme has a stability domain on the z,¢-v, plane. The stabilibity domains for

several values of _ were obtained numerically. As shown in Figs. 14(a)-(c), these domains

(shaded areas)vary only slightly in shape and size from that depicted in Fig. 9. They

become smaller in size as e mcreases._ -'_ > :+_ _ : ::

Let A1, A2, and As be defined such that

l.Xsl_<IA21__IA I.
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Then kl can be referred to as the principal amplification factor; while ks and _s referred

to as the spurious amplification factors [11. In general, the principal amplification factor is

the deciding factor in determining the accuracy of computation [1]. Particularly, numerical

solutions may suffer annihilations of sharply different degrees at dii_erent locations and

different frequencies if numerical dii_usion associated with _1 varies greatly with respect

to 8¢, 8_, u¢, and v, 1 [5, p.20]. Assuming Eq. (5.6), then (1 -I,_t[) is a measure of the

numerical diffusion associated with ),t, £ - 1, 2, 3 [5, p.18]. For a given _, let D(e) denote

the stability domain of the a-e scheme on the u¢-u_ plane. Let

max (1 -[Ae]), £ = 1,2,3; 0 < e < 1. (5.10)
-_<e¢ ,0. <:_r; (v¢,_.)ED(_)"

Then, for a given e and each £, (1 - [Ae]) is bounded ualformly from above by xt(e). The

numerically estimated values of Xe(e) are plotted in Fig. 15. From this figure, one con-

cludes that the numerical diffusion, particularly that associated with A1, can be bounded

unLform/y from above by an arbitrary small number by choosing an e small enough. Note

that this property is also shared by the 1-D a-e scheme (see Eq. (3.19) in [5]). Moreover,

the results shown in Fig. 15 indicate that x2(e) and X3(e) are much larger than x_(e) in

the range of 0 < e < 0.5. Thus, in this range, the spurious part of a numerical solution is

annihilated much faster than the principal part. Also it is seen that the numerical diffusion

associated with the principal solution, measured by Xl(e), increases with e in the range of
0<e<0.7.

Finally we discuss the stability of the a-p scheme. Note that this scheme is not defined

if t,O) = 0 or A(2) = 0. One form of A(*) and t, (2) is given in Eqs. (2.86) and (2.87). Another

form is given in Eqs. (A.15) and (A.16). Let/_ = 0. Then AO) = 0 or A (_) = 0 occurs

only on the six straight lines on the u¢-u, plane which are depicted in Fig. 16. The shaded

area depicted in the same figure is the region that satisfies Eq. (2.88). It was explained in

Sec. 2 that the curves of singularity on which A(1) = 0 or a (2) = 0 cannot enter the shaded

region if p > 0. In general, for a given set of _¢ > 0, _ > 0 and _r > 0, the u¢-u, 1 plane

can be divided into two regions by the curves of singularity. The "inside" region R1 is the

maximal connected open set on the u¢-u,_ plane that contains (i) the shaded area depicted

in Fig. 16, and (ii) no point at which aO) -_ 0, or a(2) = 0. The "outside" region R2 is the

rest of the u¢-v,_ plane.

For the a-p scheme, ),e, £ = 1, 2, 3, are functions of the phase angles 8¢ and 8_, and

the coefficients u¢, v_, _¢, _, and _,.. For a given set of _¢, _, and _, the stability domain

on the u¢-v, 7 plane generally covers part of R1 and part of R2. In the following discussion,

only the stability domains in R1 axe considered.

For the special case with a¢ = ay = at, _¢, _, and _r share a common value, say _.

The stability domains (shaded areas) for _ = 10 -_, _ = 10 -3, and _ = 0.1 are plotted in

Figs. 17(a)-(c), respectively.

Next we assume that a_ = ay. Then _¢ = _. Let a be the angle formed by the sides

and _ which are depicted in Figs. 7(a)-(c). Then Eq. (2.32) implies that

= 2(1- cos ) , (5.11)
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where _ is the common value of _¢ and _. The stability domains for two pairs of (_, a)

are depicted in Figs. 18(a) and (b)._ o _!:._-_ i: _ :--_---_= :__ ..... : ........... :_:==----==_

From the results shown in Figs. 17 and 18, and the results of Other numerical exper:

iments, it appears that the a-_ scheme is unconditionally stable when u¢ - u_ - 0. The

last condition is equivalent to a¢ = a_ = 0 or a_ - ay = 0. _ :

: : Z : :

..... L

6O
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6. Numerical Results

In [8], several numerical solutions of Eqs. (2.1) and (3.1) generated using the a-p and

the a-e schemes are compared with the exact solutions or the numerical solutions generated

using traditional methods: These comparisons show that the a-e scheme, which includes

the a scheme as a special case with e --- 0, is an accurate solver for Eq. (3.1). They also

show that the a-p scheme can obtain highly accurate solutions of Eq. (2.1) as long as

the viscosity coefficient p is not too large. Note that a convection-diffusion probelm is

fundamentally an initial-value/boundary-value problem. The current exp//cit a-p scheme

obviously cannot model such a problem unless the contribution of the diffusion term is

small compared to that of the convection term.

The a-e scheme was also generalized in [8] to solve the 2-D inviscid Burgers' equation.

In spite of its simplicity, particularly the fact that it does not use (i) any mesh refinement

technique, and (ii) any moving meshes, this new solver is capable of generating highly

accurate shock solutions. The shock discontinuities are almost resolved within one mesh

intervals.

In this section, accuracy of the weighted-average Euler a-e scheme defined in Sec. 4 will

be evaluated using a steady-state shock reflection problem [24]. The computation domain

and the shock locations (A-'E and E-'F) are depicted in Fig. 19. The lower boundary is a

solid wall. Assuming 7 -" 1.4, the exact Euler solution to this problem is:

(a) In the region ABE,

u=2.9, v=0., p=l.0, p=l.0/1.4. (6.1)

(b) In the region AEFD,

u - 2.6193, v = -0.50632, p -- 1.7000, p = 1.5282. (6.2)

(c) In the region ECF,

u = 2.4015, v = 0., p = 2.6872, p = 2.9340. (6.3)

Note that the Mach number is equal to (i) 2.9 in the region ABE; (ii) 2.3781 in the region

AEFD; and (iii) 1.9424 in the region ECF.

The mesh used in the current numerical calculations is depicted in Fig. 20. Again

a mesh point E _1 is marked by a solid c_cle; while a mesh point E f_2 is marked by

an open circle. The mesh is a special case of that depicted in Figs. 1-4 with b = 0.

Note that (i) only the mesh points E _2_ are present at the inflow boundary, and (ii) the

mesh parameter w is so chosen that only the mesh points E f_2 are present at the outflow

boundary. Moreover, for simplicity, a mesh point and the corresponding marching variable

will be identified by the time-level number n, and two new mesh indices r and s which are

given in Fig. 20 as a pair of integers enclosed in a parenthesis. Note that, for the mesh
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points E F_I, r = 1,2,3,...,R,R+ 1, and s = 1,2,3,...,S. On the other hand, for the

mesh points E _2, r = 1,2,3,...,R,R+ 1, and s = 1,2,3,...,S,S-t- 1. Obviously two

different mesh points at the same time level always have different pairs of r and 8.

In the current numerical calculation, at the time level n = 0, u,,, m = 1,2,3,4, at all

mesh points are calculated using Eq. (6.1). Also we assume that _-

..... ,: ¢= .%-0, ,,, = 1,2,3,4. (6.4)
.... • - 7

The above initial conditions are also assumed at the inflow boundary for all n -- 1, 2, 3, ....

At the upper boundary, for all n = 1/2, i, 3/2, 2, .:., Eq. (6.4) isalso assumed. Moreover,

u,,, m = 1,2, 3, 4, are calculated using Eq. (6[2). _-:_:_ i:!__ _: ........ . i

To impose the proper boundary conditions at the lower boundary, note that the solid

wall boundary conditions at BC (see Fig. 19) are equivalent to the condition that the flow

field below B--'C is the mirror image of that above. By using Eq. (4.1) and the fact that

y = 0 at any point on B-_, it can be shown that the last condition implies that

u,,(x,-y) - um(z,y), m -- 1,2,4, and u3(x,-y) -" -ua(x,y). (6.5)

and

_,,,(_,-y) o_,,,,(_:,_) and Ou,,(_,-y) _.,(_,_)
cOx -- cOx ' Oy -- Oy , m-- 1,2,4, (6.6)

cOu3(z,-y) cOu_(x,y) cOu3(x,-y) Ou3(x,y) (6.7)
cOx. = cOx , and Oy = cOy

Consider the mesh depicted in Fig. 20. Then it becomes clear that the numerical analogues

d F_s.(6.5)-(6.7)are

n }2 _ r$

(..)_÷_,.= (_.)_,., _= 1,2,4, and (._)_÷_,0=-(._)_,., (6.S)

and

n _ n n

(umz)R+l,=(ur,,)l¢,,, and (um_)R+1, =-(u,,y)R,,, m=1,2,4, (6.9)

n n n

(._.)_+,,.=-(._)_,., =d (._.)_+_,.= (._.)_,., (6.10)
respectively. According to Fig. 20, the range of s in Eqs. (6.8)-(6.10)is dependent on

the time level n. Let (i) S + a___efS + 1, and S- a_._dS if S is even; and (ii) S + a___efS,

and S- _f S- 1 if S is odd. Then (i) 8 = 2,4,6,...,S- if n = 1/2,3/2,..., and (ii)

s -- 1, 3, 5,..., S + if n -- 1, 2, .... Furthermore, by using Eq. (B.4) with b = 0, it can be

shown that Eqs. (6.9) and (6.10) are eqivalent to

I )" + n +.(._.)_+_,o= .+_ _,, _ = 1,2,4, (6.11)
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and
n + '_ , and (u3+) '_ -- u , (6.12)
R"t'I,s R,s

respectively. Equations (6.8), (6.11) and (6.12) are the boundary conditions at the lower

wall (a solid wall) in the current numerical calculations. In other words, the marching

variables associated with the mesh points below the solid wall will be determined using

Eqs. (6.8), (6.11), and (6.12).

Next we discuss the outflow boundary conditions. For any n = 1,2,3,..., and r =

1, 2, 3,..., R, we assume that

n n--I/2

(,,,.)r,s+l = , m= 1,2,3,4, (6.13)

=0, m= 1,2,3,4, (6.14)
and _

n t _,n--,/2

(umy)_.s+a = tur,,),,s , rn= 1,2,3,4. (6.15)

When the time-marching solution reaches its steady-state limit, the above conditions can

be considered as a result of the requirement that the partial derivatives of the flow variables

with respect to x are zero at the outflow boundary. By using Eq. (B.4) with b = 0, it can

be shown that Eqs. (6.14) and (6.15) are equivalent to

(+.)" -- - u,_; - u + , m = 1, 2, 3, 4, (6.16)
tt _ r,S+l 2 17 r,S

and

+ . 1( + ),,-1/2=- , rn= 1,2,3,4, (6.17)

where n = 1,2,3,..., and r - 1,2,3,...,R. Equations (6.13), (6.16), and (6.17) are

the outflow boundary conditions in the current numerical calculations. As a result, the

marching variables at the outflow boundary will be determined using these equations.

With the aid of the above initial _d bo-tmdary conditions, the marching variables at

all time levels can be determined using the weighted-averaged Euler a-e scheme. As an

example, at any n --- 1/2, 3]2,..., the marching variables associated with the mesh point

(2,1) (marked by a solid circle in Fig. 20)can be determined in terms of those associated

with the mesh points (1, 1), (2, 1), and (2,2) at the (n- 1]2)th time level (marked by open

circles). As another example, at any n = 1,2,3,..., the marching variables associated

with the mesh point (1,3) (marked by an open circle) can be determined in terms of

those associated with the mesh points (1, 2), (2, 3), and (1,3) at the (n- 1/2)th time level

(marked by solid circles).

According to Fig. 19, the distance between the inflow and the outflow boundaries is

4., while the distance between the upper and the lower botmdaries is 1.. On the other

hand, according to Fig. 20, the above two distances are w. S and 2h. R, respectively. Thus

4 1

w = _, and h = 2"-R" (6.18)
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Beca_.qeb = O, the geometric parameters w, h, and b are determined if R and S are given.

In addition to the initial conditions, the boundary conditions, and the integers R and

S, the other input parameters for the current numerical calculations are e, a, at, and a

positive integer n,. Here we assume that the time marching ends at the ntth time level,

-i: ..... ......i.e., at t = T = _t. ==:: =:: _ _

It is shown in Appendix D that, for any Euler solver constructed in Sec. 4, a local

CFL number v, associated with any mesh point (j, k, n) E G can be defined in terms of

u, v, c, w, h and z_t. Here u, v, and c are the x-velocity, the y-velocity, and the sonic

speed at the mesh point, respectively. Two global CF/) numbers are considered in the

current calculations. The first, denoted by _'e,,,, is the maximum of ve with respect to the

steady-state solution given in Eqs. (6.1)-(6.3). The second, denoted by v,,n, is the largest

value of v, ever reached at any mesh point (j, k, n) E f_, where n = 0, 1/2, 2, 3/2, 2,..., n,.

Excluding the initial and the boundary conditions, v,,,, is dependent on R, S, and zx_

only. On the other hand, ve,n is a function of R, S, z_t, n,, e, and a. According to a series

of numerical experiments, the value of a plays only a minor role on the stability of the

weighted-average Euler a-e scheme. Generally the scheme is stable if

0 < e < 1 and ve,, _< 1. (6.19)

To measure the convergence of a time-marching solution to the corresponding steady-

state solution (note: this steady-state solution generally differs from the exact solution

given in EEls. (6.1)-(6.3)), for any n -- 1, 2,3,..., at, and m = 1,2, 3,4, let

I_ r(s)-{-R-1
d., :
----= - l°g:° RSc,,, k,=2 r=r(,) 1}I(,=)" -y-$

(6.20)

Here, for any m = 1, 2, 3, 4, c,n is the maximal value of {urn{ within the exact steady-state

solution defined by Eqs. (6.1)-(6.3). It can be shown that cl = 2.6872, c2 = 6.4534,

c3 = 0.86073, and c4 = 15.084. Moreover, .............

def _ 1, if 8 is odd; (6.21)y'(8)
= t. 2, otherwise.

According to Fig. 20, the summation which takes plate in Eq. (6.20) involves all the mesh

points at the nth time level excluding those located (i) at t_ inflow boundary, (ii) at

the upper boundary, and (iii) below the lower boundary. Because n -- 1, 2,3,... in,, the

mesh points involved in summation are all marked by open circles in Fig. 20. The values

of um at the inflow and the upper boundaries do not change with time, while {hose at

the mesh points in (iii) are dependent on the values of Urn at other interior mesh points.

Note that the values of Um at the outflow boundary change with time and are dependent

on those at a lower time level. Because the summation involves a total of R x S mesh
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points, the result of this summation divided by R x S is the average value of the change

of Urn at the same spatial mesh point (measured by the absolute' value of this change)

from the (n - 1)th time level to the nth time level per mesh point. This average value is

further normalized using the constant era. If we further assume that the time-marchlng

solution converges to a steady-state solution which is similar to the exact steady-state

solution (such that the normalization by cm makes sense), then E,n(n) more or less can

be interpreted as the average number of correct significant figures in Urn at the nth time

level as compared with the converged value of Urn (which, of course, is not identical to that

given in Eqs. (6.1)-(6.3)).

Because the time marching solution can not reach a steady-state solution before the

boundary conditions are fully felt at all interior points, rapid convergence generally can not

occur before the time has elapsed which allows a fluid particle to travel the full length of

the computation domain. It can be shown that, for the solution given in Eqs. (6.1)-(6.3),

the average value of u over the computational domain is 2.6261. Thus an average fluid

particle requires 4.0/2.6261 = 1.5232 time units to travel from the inflow boundary to the

outflow boundary. The number of time steps corresponding to the above number of time
uints is

de_ 1.5232

ne = At ' (6.22)

i.e., rapid convergence can not occur before n > no.

With the above preliminaries, the numerical results generated using the weighted-

average Euler a-e scheme can now be presented. Six test problems, with different combi-

nations of e, _, R, S, At, and nt, are defined in Table 1. For each problem, the values

of T, v_m_, v_m, and '_e are also given in the same table. In Figs. 22-27, the numerical

results (triangular symbols) of the pressure coefficient cv at n = nt for Problems #1-#6

are compared with the exact solution (solid lines). Here

de,2%= "),21_& -1 ,
(6.23)

with Moo = 2.9 and poo = 1.0/1.4 being the inflow Mach number and pressure, respectively.

Note that: (i) at the mid-section of the computation domain (y = 0.5 in Fig. 19), two

neighboring mesh points at the same time level are separated by a distance = 2w, and (ii)

the mesh points at the rttth time level are marked by open circles in Fig. 20 because nt

is a whole number. In Figs. 22-27, the values of E,,,(rt), rn = 1, 2, 3, 4, are also plotted

against n for all six test problems. In Fig. 28, twenty-six pressure contour levels between

the values of 0.6 and 3.1 with uniform increment 0.1 were used for the contour plots of

Problem #3. Finally, for Problem #3, a 3-D pressure-distribution plot is shown in Fig. 29.

The significance of the results shown in Figs. 22-29 is discussed in the following
remarks:

(a) From Table I and the results shown in Figs. 22-24, it appears that the convergence to

steady-state is much faster with a smaller value of veto (or re,us)- As a matter of fact,
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(b)

(c)

convergence to steady-state can reach a plateau representing some number of correct

significant figures if v_,n is too close to I. From Table 1 and a comparison among

Figs. 22, 25, and 26, one also concludes that slower convergence generally occurs with

a value of e much smaller than 0.5. A comparison between Figs. 22 and 27 reveals

that a change of the value of a from 2 to I also cause a slight decrease in convergence

rate. Because numerical diffusion generally increases with (i) a smaller value of veto,

(ii) a larger value of e, and (iii) a larger value of _, one may conclude that faster

convergence generally occurs with larger numerical diffusion. This trend isconsistent

with the fact that shocks cannot be formed without physical or numerical diffusion.

The effectiveness of the weighted-averaging as a tool to surpress numerical osciUa-

tions near discontinuities is clearly demonstrated by the results shown in Figs. 22-29.

Moreover, the present weighted-averaging does not cause the smearing of shock dis-

continuities and has no discernible effect on the smooth part of the solution_ From

table 1 and a comparison bet_veen Fig. 22 and 27, one also concludes that the increase

of the value of _ from I to 2 has a marginal imp_t on the hum_ e_cal resets.

Comparing the numerical results shown in Figs. 29.-27 with the exact solution, one

concludes that the weighted-average Euler a-e scheme is capable of generating highly

accurate solutions for the steady-state shock reflection problem under consideration.

Also a comparison of the results shown in Figs. 22, 23, and 25-27 reveals that accuracy

of the numerical results generally is not sensitive to the change of the values of Vera,

E, and e. An exception is that numerical results may become more diffusive and thus

shock resolution becomes less sharp if the value of e is too large, e.g., e = 0.8 in

Problem #5. Finally, a comparison of the results shown in Fig. 24 (Problem #3) wi_'th

the results of other test problems reveals that accuracy increases sharply with the

decrease of the mesh size. It is seen that both the primary and the reflected shocks

are resolved by a single data point in Fig. 24.

F
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7. Conclusions and Discussions

A new numerical method is being developed for solving one-dimensional and multidi-

mensional flow problems. This new method represents a clear break from the traditional

methods in the basic concept of numerical discretization. It emphasizes simplicity, gener-

ality, and accuracy. The history of this new method and the considerations that motivates

its development are clearly described in Sec. 1.

In this report, we explain how the same set of design principles which was used to

construct several solvers for 1-D time-marching problems [5] can be used to construct

their 2-D counterparts. Bemuse of the similarity in their design, each of the present 2-

D solvers virtually shares with its 1-D counterpart the same fundamental characteristics.

Furthermore, it has been shown that the 2-D solvers, as in the case of the 1-D solvers,

generally are more accurate than the traditional solvers in spite of the advantage the

present solvers have over the latter'in simplicity and genera//ty. Accuracy of the present

2-D Euler solver is most vividly demonstrated by the pressure-contour plot (Fig. 28) and

the 3-D pressure-distribution plot (Fig. 29) it generates for a famous shock reflection

problem [24]. Both the primary and the reflected shocks are resolved by a single data

point without the presence of numerical oscillations near the discontinuity.

The construction of the 1-D solvers referred to above is simplified by the use of a

mesh which is staggered in time [5]. Its use results in the simplest stencil possible, i.e., a

triangle in a 2-D space-time with a vertex at the upper time level and other two at the

lower time level. Similarly, the construction of the present 2-D solvers is simplified by the

use of a nontraditional space-time mesh which is also staggered in time (Figs. 1-4). Its

use results in the simplest stencil possible, i.e., a tetrahedron (Fig. 8) in a 3-D space-time

with a vertex at the upper time level and other three at the lower time levels.

The meshes used by the 1-D and the 2-D solvers consist of whole-integer and half-

integer time levels with a half-integer time level being sandwiched between two whole-

integer time levels and vice versa. The spatial positions of the mesh points at a whole-

integer (half-integer) time level coincide with those at another whole-integer (half-integer)

time level. However, the spatial positions of the mesh points at a whole-integer time level

shift from those at a half-integer time level. For the mesh used by the 1-D solvers, the

spatial projection of a mesh point at a whole-integer time level is right at the center of

those of two neighboring mesh points at a half-integer time level and vice versa [5]. It

follows that the stencil of the 1-D solvers is always an isosceles triangle, i.e., one cannot

distinguish a stencil with its upper vertex at a whole-integer time level from another with

its upper vertex at a half-integer time level. As a result, each of the 1-D solvers constructed

in [5] is formed by two identical marching steps. Contrarily, for the present 2-D solvers, a

stencil (a tetrahedron) with it vertex at a whole-integer time level is different from another

with its vertex at a half-integer time level (Fig. 8). Thus each of the present 2-D solvers is

formed by two distinctly different marching steps. In spite of their structural differences_

the last two marching steps compensate each other and its combination results in several

important symmetric properties which were discussed in Sec. 5 and Appendix C.
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The Euler a scheme constructed in Sec. 4 is free from numerical diffusion when it

is stable. This scheme is a limiting case of a Navier-Stokes solver currently under devel-

opment, i.e., the former is a special case of the latter when the viscosity vanishes. As

a result, the new Navier-Stokes solver will have a special property that a classical solver

lacks, i.e., as the physical dii_sion (viscosity) approaches zero, so does the numerical dif-

fusion. Without this property, numer/cal dissipation may overwhelm physical dissipation

and cause a complete dls_or_ion of solutions for problems w/_h sma//viscosity. Because

a Navier-Stokes problem fundamentally is an initial-value/bound_-value problem _ i.e.,

information from any spatial point can be felt instantly by other spatial points, the new

Navier-Stokes solver is implicit when the viscosity is present. However, it is reduced to the

Euler a-e scheme, i.e., an explicit scheme, when the viscosity is absent.

Finally, an alternate space-time mesh is depicted in Fig. 30. The intrinsic geometry of

this mesh is determined by four parameters h, r, w, and 6 with 0 _ r _ 1. The use of this

mesh also results in a stencil with the shape of a tetrahedron in a 3-D space-time. In this

Figure, mesh points marked with solid circles are centers of the SEs at the half-integer time

levels; while those marked with open circles are centers of the SEs at the whole-integer time

levels. Also spatial projections of the interfaces which divide CEs are marked with d_h

lines. It is easy to see that each SE is associated with three CEs. According to a dis¢_slon

given in Sec. 4 (p.46), there is an advantage that the center of each_$E be !ocated at the

geometric center of the top face of the union of the three CEs which are associated with

this SE. It can be shown that the mesh has the above property if x = x/_- 4 _ 0.3589.
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Appendk A

The proofs for several results presented in Sec. 2 are given here.

To prove Eqs. (2.53)-(2.58), first we shall evaluate the flux leaving each of six quadri-

laterals that form the boundary of a CE (see Figs. 5(a) and 6(a)). As a preliminary, note

that, in Fig. 5(a),

2wh
area of ABGF = area of CDGB = area of EFGD =

3

In Fig. 6(a), we have

(A.1)

2wh

area of BCGA = area of DEGC = area of FAGE = _ (A.2)

Equations (A.1) and (A.2) can be proved easily using the information provided in Fig. 7(a).

Moreover, because u*(x, y, t; j, k, n) is linear in x, y, and t (see Eq. (2.11)), its average value

over any quadr_ateral/s equal to its value at the geometric center of the quadrilateral.

With the above preparations, flux evaluation can be carried out easily using Eqs. (2.6a)-

(2.6c), (2.9), (2.11), (h.1), and (A.2).

For each quadrilateral, the result of flux evaluation is a formula involving az, ay, uj",k ,

U n n n /_+_n( z)j,k, and (uy)j,k. It can be converted to another formula involving a'_, a +, uj,_, _ ¢ Jj,k,
and + "(u_)Jd," To carry out the above conversion, note that Eqs. (2.24), (2.25), (2.29), and
(2.30) imply that

-h h \%+
and, for any (j, k, n) E f_,

(A.3)

( z)j,_ 3 (u¢)j,k (A.4)

= w+b +. •

Let (uz)j_,k, (uy)j_,_,..., be abbreviated as ux, uy,..., respectively. Then Eqs. (A.3) and
(A.4) imply that

ay "-" -_

hax + ( _ - b) % = .--ff- (a'_ + , (A.6)

haz - (-_ + b) a, = .--ff- (A.7)
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3( _ +), (A.8)-- -- It +ttUx
W

3 +b)u_],_,=_ [(w-b)u,+-(w (a.9)

L

+ + + + (A.10)axux + ayuy = a C u¢ + a,i u_ ,

h,,,+ _--b u,,=_ -T + "_+ h_+b_+ 3 " '
(A.13)

and

h_.- _ + b ,,, = _ h' + +T +- "_ + h' + "3 -
............. (A.14)

The conversion referred to above can be carried out using Eqs. (A.5)-(A.14).
- = ÷_ =+. ::

Consider Fig. 5(a). The results of flux evaluation involving the quadrilaterals that

form the boundaries of CE_l)(j,k,n + 1/2), g = 1,2,3, and (j,k,n + 1/2) E _1, are:

(1) The flux leaving CE_a)(j,k,n + 1/2) through G'F'A'B' is

+,_,,+x/2
2wh (u + u'_ + u3 ")_,k

(2) The flux leaving CE_a)(j,k,n + 1/2) through G'GFF' is

-_-y

wh 3 + "-'3") ¢ + ( h2 4- + 3 J./,k "
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(3) The f_= leavingCZ_I)(j,k,. + 1/2) throughG'B'BG is

3_,[ b2 w2 4wb_ b2 _2"_- -w"h ( h 2 "_- q- T + 3 ] u _ "_- ( h 2 "31- 3

n+I/2

(4) The flux leaving CE_l)(j,k,n + 1/2) through AFGB is

n

3 "

(5) The flux leaving CE_l)(j,k,n + 1/2) through ABB'A' is

T (q + - +_,+-7

3g[
b2W 2 2wb\+ w 2 4b ]_n

wh ( h2 "1- -- T + T )_¢ "_ ( h2 4-b 2 "]" 3 _ )_:J Jj+l/3,k'+l/3"

(6) The flux leaving CE_l)(j,k,n + 1/2) through AA'F'F is

3/_ [ b2 w 2
+_-h L(h2+ +T+

4wb'_ u+ b2 W 2
"--_") _ "4- (h 2 -4- 3

23b)u+_]}jn._l/3,k+l/3"

(7) The flux leaving CE_l)(j,k,n + 1/2) through G'B'C'D' is

_ +,_ n+1/2
2wh (u 2u_ + u"3 ,7 ) j,k

(8) The flux leaving CE_I)(j, k,n + 1/2) through G'GBB' is

b24-_-_" h 2 -1- + --_" -4-

÷o:q)]
4wb'_ + b2 w 2
---_---)u¢ q- (h 2 -4- 3
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(9)

(lo)

(Zl)

(12)

(13)

(14)

The flux leaving CE_)(j, k,n + 1/2) through G'D'DG is

-_(°,-°:)o-_-o,++v

[(,,,+b),,_-(,,, ._,,, .

The flux leaving CE_I)(j, k, n + 1/2) through CBGD is

3

The flux leaving CE(1)(j, k,n + 1/2) through CDD'C' is

-- --vL2a¢ +a +) U+Uff--2u +- At + +

+_ h_+ +y+ _+(h_+ 3

The flux leaving CE_l)(j,k,n + 1/2) through CC'B'B is

+,_ n+1]2

The flux leaving CE_)(j,k,n + 1/2) through G'GDD' is

_. _ __o:]/"+_'_
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3. b),,_-- (,,,- b),,,+]}"+ _g [(_ +
j-2/3,k+a/3"

The flux leaving CE_)(j, k,n + 1/2) through G'D'E'F' is



(15) The flux leaving CE_l)(j,k,n + 1/2) through G'F'FG is

(16) The flux leaving CE(1)(j,k,n -{- 1/2) through EDGF is

(17)

2wh

3

The flux leaving CE_I)(j, k, n +

n

--- (o- t+
1/2) through EFF'E' is

3

+ _-_ [(w + - j+l/s,_-2/s"

(lS) The flux leaving CE(1)(j,k,n + 1/2) through EE'D'D is

{__( )[ At(+ + a+ut) ]2 _ n a_ u_ -4-

Consider Fig. 6(a). The results of flux evaluation involving the quadrilaterals that

form the boundaries of CE_2)(j,k,n -4- 1), _ = 1,2,3, and (j,k,n ,4- 1) 6 _2, are:

(19) The flux leaving CE_2)(j,k,n + 1) through G'C'D'E' is

3 - 's)j,k "

(20) The flux leaving CE_2)(j, k, n ,4- 1) through G'GCC' is

3# [(h2 +b_ !_h --5-+--5--] ¢ +( h_+ + 3 3 / "]-_,k
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(21) The flux leaving CE_2)(j, k, n + 1) through G'E'EG is

{ ?( [ _'(o_+o,+o,+)]

J j,k

(22) The flux leaving CE_2)(j, k, n 4- 1) through DCGE is

(23)

+,_ n+a/_
2wh (u 4- u'_ + u

[ +,)1
,,,h 3 +-_-j''_ + (h'+ + 3 _ ]"',J,.__,,,,.,._,,,:,

(24) The flux leaving CE_2)(j,k,n + 1) through DD'C'C is

3# [ b2 w 2 4wb'_ + b2 w 2+_ (h_+ +_-+_j._ +(h'+ 3

(25) The flux leaving CS_2)(j,k,n 4- 1) through G'E'F'A' is

U, ] j,k "

(26) The flux leaving CE_)(j, k,n 4- 1) through G'GEE' is
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(27)

(28)

(29)

The flux leaving CE_2)(j. k.n + 1) through G'A'AG is

w Zxt3 "6h(a + _ a _ ) u + u-_ + u + -I- --_

n+l

3. b)u_-(,,,- b),,_]}+ _-_[(w+ -
j,k

The flux leaving CF._2)(j. k. n + 1) through FEGA is

_ +,_ n+1/2
2wh (u 2u'_ + u_

3 ) j'+213,k--l/3

The flux leaving CE_2)(j. k. n + 1) through FAA'F' is

At f wh/ + [ at (a._u._ +a+u+)]- T't--_t "_o,+o+,)_- _ +"_t- T

3/_ [ b2-I- _--_ (h2 --b -F
w 2 4wb_ + b2 w 2
T + ---_---}u(: + (h 2 + 3

(30) The flux leaving CE_2)(j.k.n + 1) through FF'E'E is

(31)

(32)

{[ at(a'_u'_+a+u+)]war h(a+_a._) u_u__u+ 43 -6 --

+ 3. -- _b)ut]l n+l]2

The flux leaving ¢E_2)(j,k,n + 1) through a'A'B'V' is

2wh { _ .+1
u - u_ + 2u+_L3 ,t ] j,k "

The flux leaving CE_2)(j.k.n + 1) through G'GAA' is

_ (%+-°_) +_ +_,++T
n+l

3. b)_,j-(w-b)ut]}+ _ [(w+ -
j,k
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(33)

(34)

(35)

(36)

The flux leaving CE_2)(j, k, n + 1) through G'C'CG is

n+l

w_ - -_+ _ ,_'_+(h_+ + _ )_'t
./,k

The flux leaving CE_ 2) (j, k, n + 1) through BAGC is

+\ n+1/2
2wh (u + u_ - 2u,_ l

3 /./-1Is,k+2/3

The flux leaving CE_2)(j, k, n + 1) through BCC'B' is

"1 .+1/2

+ b)u + - (w - b)u +_-_t (w ¢ ,7

_ ......... j-I/s,_+2/s

The flux leaving CE_2)(j, k, n + 1) through BB'A'A is

wh - -.-ff- + -_}u¢ + h2 + + 3 n+l/2

With the aid of Eqs. (2.31), (2.32) and (2.35)-(2.52), Eqs. (2.53)--(2.58) are the results

of (1)-(36) and Eqs. (2.12) and (2.13). QED.

To prove Eqs. (2.86) and (2.87), we evaluate zx(I) and 4 (2) using Eqs. (2.35)-(2.52).

After simplifications, the results are

,_(1)= 313(1 + v¢)(1+ v,_)(1- v¢ - _,_)+ 2(1 + v_:)(1- v¢ - v,7)_¢

+ 2(1 + _.)(1 - _¢ - _)_ + 2(1 + _¢)(1 + _)_.

_ (_¢)2_ (_)2 _ (_.)2 + 2_d, + 2_d. + 2_._.],

(A.15)
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and

A (2) 313(1- v_)(1- v_)(1+ _ + _) + 2(1- _¢)(1+ _¢+ _,)_¢

+ 2(1 - v,7)(1 + v¢ + v,_)_, + 2(1 - v¢)(1 - v,7)_r (A.16)

_ (_)2 _ (_,)2_ (_)2 + 2_, + 2_. + 2_._.].

By comparing Eqs. (2.86) and (2.87) with Eqs. (A.15) and (A.16), it is seen that the proof

of the former is completed if one can prove

(9" q (A.17)

Proof of Eq. (A.17): The area of the hexagon ABCDEF depicted in Fig. 7(a) is 2wh. The

area of ABDF depicted in the same figure is half of that. Thus

the area of ABDF = wh. (A.18)

Moreover, because 4_, A_/, and 4_- are the lengths of the three sides of ABDF,

the area of ABDF

/ 1 A( (A.19)
= _/_( + 4, + 4_)(_ + _, - _)(_¢ + 4_ - _)(_ + 4_ - _).

Combining Eqs. (A.18)-(A.19), one has

(4¢ + ,',r/+ t,r)(4_ + At/- 4r)(_i + ar - Ar/)(z_r/+ Ar - _,¢) = 16w_h 2. (A.20)

A direct result of Eq. (2.32) is

64w4 h4 (A.21)

[-(4_)'- (a_)' -(_r)' + 2(4¢)2(_) 2 + 2(a¢)2(4r) 2 + 2(ay)2(ar)=].

Because

_ (_¢), _ (ay)a _ (at)' + 2(a_)2(4_) _ + 2(4_)2(ar) = + 2(ay)2(4r) =

Equation (A.17) is a direct result of Eqs. (A.20) and (A.21). QED.

(A.22)

77



Appendix B

The proof for Eqs. (4.56)-(4.61) is given here.

As a preliminary, note that Eqs. (4.22), (4.25), and (4.31) can be used to obtain

' )f_, =- f,_,t f_,q_q,+ f_,qUqy
t,q=l

(B.1)

and 4

= _ Y : u f_Y,qUqy) 9

£,q=l

In this appendix, we adopt the _ame convention stated following Eq. (4.37).

from Eqs. (4.34)-(4.37) that _::_: :: : :::_ :::: : ::

f_,,t 2 b w+b / m,t_: '= rn = 1,2,3,4,

Y h x re,t/ :

(B.2)

It follows

(B.3)

and

/ 1) um¢ ....

u_,z 3 m = 1, 2, 3, 4.

=w w+b ' : ==

An immediate result of Eqs. (B.3) and (B.4) is

t=l t=l

By _ing Eqs. (4.18),(4.20)-(4.25),and (B.1)-(B.5), it ,:_ be sho_ that

(B.4)

(B.5)

3 .+),_'_ w (_'_¢+
(B.6)

+ urnz + "_ Ur.y 2u+. +
(B.7)

(B.S)
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b) _ 2f'1+ "lhf_ + (-_- S_- 9_ t=_

(" b) 4_h _ (2/+ f,,+'_---- %, ,.,t + re,t) ut,

-- \ J 'n, t+
9At t=l

b w w b w, hf_,l

9,.t t=l

(B.9)

(B.12)

4

w 16wh

l,q=l

(s'..,_+2f.:,,)r,,+.+ ,_+.+ (B.13)

w 16wh _ /2¢¢+ p+'_ (;¢+ ,+ ;"+" + '_-hs,_,+ (_ +b)s:, = o(,,o---z ,, -_,,+ -,q v,,_',¢ +",'"v'
t,q=l

and

w y "t -_

= 3_--___Z-_L'_'t

, )]_+ + '_+ +

q=l
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Note that each of Eqs. (B.15) and (B.16) represents two equations. One corresponds to

the upper signs; while the other, to the lower signs.

Next we shall evaluate the flux of _tm leaving each of the six quadrilaterals that form

the boundary of a CE (see Figs. 5(a) and 6(a)). The evaluation procedure is similar to that

described in Appendix A. For the current case, the key equations used are Eqs. (2.6a)-

(2.6c), (4.19), (4.27)-(4.29), and (B.6)-(B.16).

Consider Fig. 5(a). The results of flux evaluation involving the quadrilaterals that

form the boundaries of CE_a)(j, k,n + 1/2), g = 1,2,3, and (j,k,n + 1/2) • fta, are:

(1) The auxof g_,lea,_ngC¢,_1)(1,k,n + 1/2) throughC'F'A'B' is

2wh [ + + _ ,+1/2

_um + um¢+ u_j j, k

(2) The flux of h* leaving CE_l)(j,k,n + 1/2) through G'GFF' is

2_h Cf+ 2f_+_ 2_ + + _ r._+ + ,_+.+9 k._,t+ ..,t) ut+ -ut_ l_H,quq¢ + _t,q -q_]
£=1 q=l z j, k

(3) The flux of h*.. leaving CE_)(j,k,n + 1/2) through G'B'BG is

[_, re,t+ m,tJ ut -- u+t¢ + + _ St,q ug¢ + fi,q uq_

g=l q=l I j, k

(4) The flux of _z* leaving CE_l)(j,k,n + 1/2) through AFGB is

F$

(5) The flux of h_, leaving CE_l)(j,k,n + 1/2) through ABB'A' is

,=__rs'+_,,+w +_,j__,- 2_ +_ - E _,,,_"+_,,+ +_;,_+_,_+
_/=1 j4-113,k-[- l [3

(6) The flux of _t* leaving CE_l)(j,k,n + 1/2) through AA'F'F is

2_h (2f¢+ f+-- x re,t+ m,t] ut + u_ - 2u_ - [t<+ + ¢+ +_Ji, q ug¢ + f_,q utl _

t=l q=l j+l/S,k+l/S
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(7) The flux of h* leaving CE(2_)(j,k,n + 1/2) through G'B'C'D' is

2wh + + ,_ n+a/2
3 (urn - 2u,$%¢ + u_)j,k .

(8) The flux of _t* leaving CE_l)(j,k,n + 1/2) through G'GBB' is

29h {t=_ /2f¢+ + f'_+'_ -_, ,,,,t .,tj ["t '.'_ 2u+. + '_. { _'¢+. + .+ ++ V t,q '-q¢ + f_,q ug.
q--1 " j,k

(9) The flux of it m leaving CE_a)(j,k,n + 1/2) through G'D'DG is

2wh

9 {re+ _ f_+ _ + + y]_ / .¢+ + 7+ +m,t re,t] Ut -- U_ -- Ut_ _.ri,q uq¢ + f;,q uq. .

l=l q=l " j_k

(10) The flux of _t_ leaving CE(2a)(j,k,n + 1/2) through CBGD is

2w h $%

(11)

(12)

The flux of £* leaving CE(21)(j,k,n + 1/2) through CDD'C' is

$%

l=1
q=l j_213,k+l] 3

The flux of _t_ leaving CE_l)(j,k,n + 1/2) through CC'B'B is

29h {t=_ [f"+ - f¢+'_\ m,t re,t} [ut ,+",_+"_- E t_,+.+ ,+ +k.,t,q '_q¢ + f_,q uqn
q=l j-213,k-J-l/3

(13) The flux of h* leaving CE_)(j,k,n + 1/2) through G'D'E'F' is

+ + \ ,,+1/2
_ (Um + Um_ -- 2Um_) j, k .

(14) The flux of _t* leaving CE_a)(j,k,n + 1/2) through G'GDD' is

2wh

9
t=l \ m,l re,t]

,,,-,,,_--t, +E/.,+ + ,+ +_]t,q uq¢ + f_,q uq.
q=l j,k
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(15) The flux of h_ leaving CE(sZ)(j,k,n + 1/2) through G'F'FG is

2wh [fg+ 2rt+ _ 2ut_ + + E ('¢+ + "+ +9 \.,,t+ re,t/ ut+ -ut. _si,q %¢ + f_,q %. •
t=l q=! "j,k

(16) The flux of _t_, leaving CE_Z)(j, k, n + 1/2) through EDGF is

2wh ( + n .3 u,_ - u,.¢ + 2u+_)j+zla,__2/3

(17) The flux of _t* leaving CE_Z)(j,k,n + 1/2) through EFF'E' is

9 I2,+'- -','J + - r.,+ + .+ +_It,q uq¢ + f_,q %. .
t=l q=l j+l/3,k--2[3

(18) The flux of h_, leaving CE_l)(j,k,n + 1/2) through EE'D'D is

2wh [re+ 2f"+_ 2._ + + - _ r.¢+ + ,,+. +9 \ ._,t+ .,,t] ut- ut. _,1i,q %¢ + Jt,_ "q.)

t=l ......... q=l ...... j+l/3,k--2/3

Consider Fig. 6(a). The results of flux evaluation involving the quadrilaterals that

form the boundaries of CE_2)(j,k,n + 1), _ = 1,2,3, and (j,k,n + 1) G Qz, are:

(19) The flux of h_ leaving CE_2)(j,k,n + 1) through G'C'D'E' is

n+l

(20) The flux of h_ leaving CE_2)(j,k,n + 1) through G'GCC' is

\ m,t m,tJ [ut--
++ E (_¢+ + '1+ +2u_ + ut. _.:ri.q u¥; + f_,q uq, .

q=l _ j,k

(21) The flux of h* leaving CE_2)(j,k,n + 1) through G'E'EG is

2_h{_C2f¢+ Z.+3[9 \ ,.,t+ re,t) ut
t=Z

kit, q uqg + f't,q uq,

q=l / j,k
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(22)

(23)

(24)

(25)

(26)

The flux of _t* leaving CE_ 2) (j, k, n + 1) through DCGE is

2wh + + _ n+I/2
3 6,,, + Um¢ + U,.,iJj_l13,k_l/3

The ia_ of f,;, Zea_.S ¢E_) (j, k,r,+ _) through DF_,E'D'i_

2wh Ere+ 2f_+ _ 2ut_ u+_ E ['¢+ + '1+ +9 \ m,t + ,n,e/ ut + - - _.l'i,q uq¢ + f_,q u_, 1

t=l q=1 _' j-1/z,k-1/3

The fluxof f,_ le_ng CE_)(j, k,n + _) throughDD'C'C i_

{_ [ 4 )] }n4"112
_ r_,+ fz_) _,_ _.,+ _,_+2< _r.,÷+ ,÷ +_,.rt,q%¢ +/'_,_ uq,_

/=I q=l i j_i/3,k_l/3

The flux of _z_ leaving CE(2)(j,k,n + 1) through G'E'F'A' is

2wh . r,+l

3 (urn + 2u+¢- u+rO.i,k, "

The flux of _z_ leaving CE_2)(j,k,n + 1) through G'GEE' is

2wh { 49 E {'2;¢+ + f'_+ '__. J,.,t ,.,q
t=l

[ ' _.ri,q %¢ + f_,q %,7
q=l " j,k

(27)

(28)

(29)

The flux of _z* leaving CE(22)(j,k,n + 1) through G'A'AG is

[ •2wh ( f,7+ _ re+ '_
kJl,q "_q¢ q- ft,q Uqrt

t=l q=l s j, k

The flux of h* leaving CE(22)(j,k,n + 1) through FEGA is

2wh ( + )r,+_123 u,_ - 2um¢ + u+,l j+213,k-1]3

The flux of _z_n leaving CE_2)(j,k,n + 1) through FAA'F' is

_.rt,q %¢ + .rt,_uq,_)
t=l q-----1 j+213,k--1/3
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(30) The flux of h_n leaving CE(2)(j, k,n + 1) through FF'E'E is

(31)

2wh

9 {' [ ,_ (re+ _ ].+'l _,:i,qut¢ + Jl,l _t_)
l=l q=l j+2/3,k--1]3

The flux of h_ leaving CE_2)(j,k,n + 1) through G'A'B'C' is

2wh + \ n+l
3 (urn-- +u,_¢ + 2um_) j,k .

(32) The flux of h* leaving CE_2)(j,k,n + 1) through G'GAA' is

(33)

2wh { ___._{.f(;+ f,l+ ,_ [ ,t )] }n+,tSt,t uq¢ + ft,q ul_ •
t=l q=l #j,k

The flux of h* leaving CE_2)(j,k,n + 1) through GfC'CG is

2_h {'f'+ 2f 't+ '_ 2u_ -I-ut+,l -t- E ['¢+ + '1+ +kin,t+ re,t/ ut- _1i,quq¢+ y_,quq.
t=l q--1 "j,k

(34) The flux of h_ leaving CE_2)(j,k,n + 1) through BAGC is

2wh ( + + _ .,+1/23 u,,, + u._¢ - 2um,1}j_llS,k+213 .

(35) The flux of h_ leaving CE_2)(j,k,n + 1) through BCC'B' is

2wh { _ ( f'7+ f¢+'_9 t=l \ m,t- m,t]

(36) The flux of _t_, leaving CE(32)(j, k, n + 1) through BB'A'A is

2wh{_-_(f¢+ 2f_+, _T \ _,t + ,_,t/
t=l

+ =+.-E/.,+ + .+ +t]t,i ut¢ + ft,l uq_
q=l j-l/3,k+213

With the aid of Eqs. (4.38)-(4.55), Eqs. (4.56)-(4.61) are the results of (1)-(36) and

Eqs. (4.32) and (4.33). QED.
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Appendk C

In this appendix, first we shall prove the following theorem.

Theorem. Let A and B be two arbitrary n x n matrices. Then AB and BA have the

same eigenvalues.

Proo£ We have (i)

AB = A(BA)A -1 if A -1 exists; (C.1)

and (ii)

AB = B-I(BA)B if B -1 exists. ((7.2)

Thus AB ,,, BA, i.e., AB is similar to BA, if either A, or B, is nonsingular. Because two

similar matrices have the same eigenvalues [25, p.45], the proof is complete if either A, or

B is nonsingular.

Let both A and B be singular. Because the determinant of AB (or BA) is the product

of the determinant of A and the determinant of B, both AB and BA are singular. Thus

0 is an eigenvalue for both AB and BA. We shall prove that a nonzero eigenvalue of AB

must also be an eigenvalue of BA, and vice versa.

Let $ be an eigenvector of AB with the eigenvalue A # 0. Then

AS$= (c.3)

Because A # 0 and, by definition, $ is not a null vector, Eq. (C.3) implies that B$ is not

a null vector too. The last result coupled with another result of Eq. (C.3), i.e.,

BA(B$)= (c.4)

implies that ,X is also an eigenvalue of BA. Conversely, it can be shown that an eigenvalue

A # 0 of BA is also an eigenvalue of AB. QED.

An immediate result of the above theorem is that the amplification matrices that

appear on the right sides of F,qs. (5.2) and (5.3) have the same eigenvalues. Next, as a

part of stability study, we shall investigate the two-way marching nature of the a scheme.

According to Figs. 5(a) and 6(a), there are three CEs located immediately below any

mesh point G' 6 ft. By definition, the mesh indices of these CEs are those of the mesh

point G'. As shown in Figs. 12(a) and 12(b), there are also three CEs located immediately

above any mesh point G 6 ft. However, the mesh indices of these CEs differ from those of

the mesh point G.

In Fig. 12(a), B' 6 ill, D' 6 ill, F' 6 ill, and G 6 f12- The three CEs located imme-

diately above point G have their mesh indices tied to points B', D', and F', respectively.

In Fig. 12(b), A' 6 f12, C' 6 f12, E' 6 f12, and G 6 F_. The three CEs located immediately

above point G have their mesh indices tied to points A', C', and E', respectively.
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From Figs. 5(a), 6(a), 12(a), and 12(b), one concludes that each CE is in contact with

(i) one and only one mesh point e _1, and (ii) one and only one mesh point • f_2. Each

CE is located immediately below one of these two mesh po_ints _d above the other. As an

example, let (j,k,n + 1/2) • D1. Then (j + 1/3, k + 1/3, n) • _2. According to Fig. 5(a),

CE_l)(j,k,n + 1/2) is located immediately below the mesh point (j,k,n + 1/2) and above

the mesh point (j + 1/3, k + 1/3, n). Note that Eq. (2.60) represents a relation among the

marching variables associated with the above two mesh points. A similar interpretation

can be given to each of Eqs. (2.61)-(2.65). In Sec. 2, it is shown that Eqs. (2.60)-(2.65)

are equivalent to the defining equations of the a scheme, i.e., Eqs. (2.67)-(2.72). In the

following, it will be shown that the former also are equivalent to the defining equations of

the backward-marching version of the a scheme.

Let (j,k,n) • g_2 and consider Fig. 12(a). Then (j - 1/3, k- 1/3, n + 1/2) • _1,

(j + 2/3, k - 1/3, n + 1/2) • _1, and (j - 1/3, k + 2/3, n + 1/2) • _1. By making some

substitutions in mesh indices and exchanging expressions on the left and the right sides,

Eqs. (2.60)--(2.62) imply that

n

and

•,+_/2 (C.6)

respectively. Let ._'), $('), and $_1) denote the expressions on the right sides of Eqs. (C.5),

(C.6), and (C.7), respectively. Then these equations are equivalent to

n 1[ ]"i,k = _ (1 - v¢ - v,s)._ 1) + (1 + v¢)_ 1) + (1 + v_)a_ 1) , (c.8)

and

(u.)_,_= _

In otherwords,the n_ng _ables _soc!_ted _ith point _ .¢_ beex_res_di_:term_
of those assodated with points B', D_, and F _. :_:=_ ___ _ i: _ :_ ::i:_ _: ?

Let (j,k,n + 1/2) e _ and consider Fig. 12(b). Then (j + 1/3, k + 1/3,n + 1) e _2,

(j- 2/3, k ÷ 1/3,n+l) • _2, and (j + 1/3, k- 2/3,n+1) • _2. By making some
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substitutions in mesh indices and exchanging expressions on the left and the fight sides,

Eqs. (2.63)-(2.65)imply that

+l n+l/2

j+l/s,k+l/3 '
(o.11)

[+L.-(2+,.,C),_,.+(1-,.',,).,,]j,k= + + - _
(O.12)

and

_ +'l .+I/2

j+l/3,k--2]3 '

(C.13)

respectively.Let_2),_2),and_2)denotetheexpressionsonthefightsidesofEqs.(C.II),
(C.12), and (C.13), respectively.Then these equations are equivalent to

,,+112 = 1

and

u¢ )_,_ - §
(66.15)

(+,..+'/2 1 (._2) _ ._2)) (66.16)u_ )_,k = _

In other words, the marching variables associated with point G can be expressed in terms

of those associated with points A', C', and E'.

The backward marching version of the a scheme consists of two marching steps. The

first is formed by Eqs. (C.14)-(C.16); while the second is formed by Eqs. (C.8)-(C.10). To

express these steps in the forms of Eqs. (2.82) and (2.83), let the column matrices a_ k) and
_.(k)
fit , k = 1, 2, and _ = 1, 2, 3, be defined by

= - -1 , and $1 = l+u_ , (66.17)
oq 3 --1 1 + v_

:.(I)clef1 1 + v¢ "_ ^--.Ct)clef

a: = _- , and _2 = --(2- 1./{:) ,

1 + v.

(C.18)
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and

al 3 1

---- m m I

c_2 3 0

and

, and

and

_._1) dd ( 1 1\-(2-_.)

(
1

_.._2)def
/_2 = 2+ v¢ ,

-(1-_.)1

( ) (i)2,(2)def 1 I -- /I_/ 2,(2) def

- - 0 , and f13 -" -(1-v¢) .
_ 3 -1 2+ v_

Let the 3 x 3 matrices of rank one Q_), k - 1, 2, and _ - 1, 2, 3, be defined by

(c.19)

(c.21)

(C.22)

= at , (C.23)

/._.(t),_ t

_heretherow_trix _t )
(C.10) can be expressed as

_'(j,k,.) = 0_')_'(i- 1/3,k- 1/3,. + 1/2)+ 0_x)_'(j+ 2/3,k - 1/3,. + 1/9)

q-Q,_')_(j- 1/3, k +2/3,n+ 1/2), .... (j,k:n) E ft2.

Similarly, Eqs. (C.14)-(C.16) can be expressed as

_'(j,k,. + 1/9)= 012)_'(j+ 1/3,k + 1/3,. + 1)+ Q_2)#'(j- 2/3,k + 1/3,. + 1)

+ Q_)_'(j+ 1/3,k- 2/3,, + 1), (j, k,n + 1/2)eal.
(c.2s)

Next we shall establish several mathematical relations involving the column matrices

c_t , and _t • To proceed, let

dr)
is the transpose of the column matrix/_t • Then Eqs. (C.8)-

l i 1 + v C 1 + v, IM(1) def --(2-//¢) ! "3L//_ /'

1 + v¢ -(2 - _)/
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i "(1 -t- v() -(1 -t- V.)'_M_) doj 2-,.,_ -(1 +,,,,)/ ' (C.27)
-(1 -I-re) 2 - v,s

and

1 -(1-,.,¢) -(1-,.,,))
M__ '_°J 1 2+,,_ -(1-,,,,) ,

I -(l-re) 2+v_

(c.28)

1 l-v_ l-v, 7 '_M(R_)doj 1 -(2 + _) 1- _, ] . (C.29)
1 1 - v¢ -(2 + v_) /

Note that: (i) ML (1) is the coefficient matrix of the expressions on the left sides o£ Eqs. (2.60)

-(2.62). It is also that of the expressions on the right side of Eqs. (C.5)-(C.7); (ii) M(R1)

is the coefficient matrix of the expressions on the right sides of Eqs. (2.60)-(2.62). It is

also that of the expressions on the left side of Eqs. (C.5)-(C.7); (iii) Mr(2) is the coefficient

matrix of the expressions on the left sides of Ecls: (2.63)-(2.65). It is also that of the

expressions on the right side of Eqs. (C.11)-(C.13); and (iv) M(R2) is the coefficient matrix

of the expressions on the right sides of Eqs. (2.63)-(2.65). It is also that of the expressions

on the left side of Eqs. (C.11)-(C.13).

Moreover, for each k = 1, 2, let (i) A (k) be the 3 x 3 matrix formed by the column

matrices a--'(tk), _ = 1,2,3; (ii) B (k) be the 3 x 3 matrix formed by the column matrices _t),

g -- 1, 2, 3; (iii) ._(k) be the 3 x 3 matrix formed by the column matrices a:'_t), £ = 1, 2, 3;

and (iv) ]}(k) be the 3 x 3 matrix formed by the column matrices/_t , £ - 1, 2, 3.

With the above preliminaries, it is easy to shown that

k = 1,2, (c.30)

and

= = B (k) , k = 1,2. (c.31)

Here [A] -1 and [A]' denote the inverse and the transpose of any matrix A. It follows from

Eqs. (C.30) and (C.31) that

= = I, k = 1,2, (C.32)
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and

-- = I, k = 1,2,

where I is the 3 x 3 identity ma(riX.: _ k

Recall the definitions of the matrices..... ,-,a(_), B(k), •'_(h) and _(k), k = 1, 2.

first parts of Eqs. (C.32) and (C.33) can be expressed as

\ /

(c.33)

Then the

(c.34)

and

(_k))' =,(k)ar = _:t,, k = 1,2, and £,£' = 1,2,3, (C.35)

respectively. Here 6tt, is the Kronecker delta symbol. Also, the second parts of Eqs. (C.32)

and (C.33) can be expressed as

3 : k = : t

t : I,
t

k = 1,2, (C.36)

and

respectively.

t

To proceed further, let

We have

=/', k -- 1, 2, (C.37)

/ioop de_ -1 0

0 -1

(c.3s)

p-1 = p, _d P' = P, (C.39)

and

M_*)=M(R_)P, k = _,2. (C.40)

By taking the transpose of the expression on each side of Eq. (C.40), and using Eqs. (C.30),

(C.31), and (C.39), one concludes that

t = P , k = 1, 2, and _ = 1, 2, 3. (C.41)
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By taking the inverse of the expression on each side of Eq. (C.40), and using Eqs. (C.30),

(C.31), and (C.39), one concludes that

p @), k= =d = (c.42)

Equations (C.34)-(C.37), (C.41), and (C.42) will be used in the following development.

By using Eqs. (2.80), (C.23), (C.34), and (C.35), one has

and

k = 1,2, and _,£' = 1,2,3, (C.43)1 1

and _,g = 1,2,3. (C.44)1 "_l -" Oll'(_l , k = 1,2,

It follows from Eqs. (C.43) and (C.44) that,

Q(k)(5(_) = Q(k)Q(,k) = o, if _ # l'.1 "_l' t g (k = 1, 2, and _, £' = 1, 2, 3.)

With the aid of Eqs. (C.36), and (C.37), Eqs. (C.43) and (C.44) also imply that

3 3

Fhrthermore, by using Eqs. (2.80),(C.23), (C.41), and (C.42), one has

l=l g=l

Q_k) = pO,_k)p, and 0,_ k) = PQ_t)P. (k = 1,2, and £,g'- 1,2,3.) (C.47)

Equations (C.45) and (C.46) can be obtained from a more direct but less revealing

approach. To proceed, we substitute Eq. (C.24) into the expression on the right side of

(2.82). The result is

_(j,k,n + 1/2) ,._(x),._(1) -.,. ,-,(1),r,(1) ...,. 1/2)=_41 _42 q(3+ l,k,n+ l/2)+t41 t_ s qt3,k+ l,n+

,._(1) A(1) -..,. 1/2)+Q(_l)O?)g(i-l,k,n+ 1/2)+_2 ,¢3 qt.7-1,k + 1,n+

.,,._(1) _(1) _e- 1/2)+ Q(_l)O?)_'(j,k-1,,_+ 1/2)+ u3 us q_3+ 1,k- 1,n+

+ (Q1(1)Q_-(_)+ ,_2_(_)_(_)-_2+ ,_a")(_)'5°)_4"(J,k,n_3 J + 1/2),
(C.4S)
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where (j,k,n + 1/21 E fix.By substituting Eq. (2.82)into the expression on the right side

of Eq. (C.24), one has

_'(j, k,n) ._(1)..,(1).,.=_¢, t¢_ qu- 1, k,n)+O_l)Q_')¢(J, k- 1, n)

,(I)_,(i)-.,. ,(I)._(I)-.,.
+_2 _I qu+l,k,n)+td2 _a qu+l,k-1, n)

,_(I),_(z)-.,. ,(z),_(I)-.,.
+t43 h/1 qLT, k+ l,n)+tda t/2 qu-l,k+ l,n)

_r3(1)r_(1) r_(1)_(1) ,50)r_O)_ _.(j, k, n),'["_'_1 "_z +'_2 '_2 +,v3 "_3 /

(C.49)

where (j, k, rt) E f/z. Similarly, Eqs. (C.25) and (2.83) imply that

_'(j, k, n + 1) _,(2)_(2)-.,. ^(2)._(2)-.,..-'t4z td2 qu-l,k,n%l)+_x td3 qu,_-l,n+l)

._(2),(2) ...,. _,(2)_,(2)-._. 1)"_-q'_2 _'_1qu+l,k,n+l)+_2 _3 qu+l,k-1, n+

..(2).(2)... _ 0_2)¢0 - 1,k+ 1,n+ 1)+_4a tgl qu, k + l,n + l) + Q 2)

rn(=)h(2) .-,(2)z(2), m. ¢ i), "

(o._o)

where (j, k, n + 1) E f_2; and ::: ..... _ :

¢(i,k,_+ 1/2)= _*(2)^(2)'"._ qu + 1,k,_+ 1/2)+ O_2)O_2)¢(j,k+ 1,n+ 1/2)
:(2)--(2).. ....+O_=)Q_2)¢(i-1,_,.+I/2)+Q2Q, qO-l,_+ _.n+1/2)

_.(2)_(2) ...,. 1/2)+(_2),a_)_'(/,_-1,,-,+1/2)+,e_,e2_._+1,_-1,,-,+
"_-U'_l/g'e)(2)g_l(2)'_l@ '_2/'e'}(2)/'I(2)"g2+ "_3/'¢}(2)#"}(2)'i'_SJ q'(J, k,n + I/2),

(0._1)
where (j,k,n+ 1/2) e f/_.Because (i)and time levelno can be considered as the initialtime

level,i.e.,one can assignarbitraryvalues to the members of the set {_*(j,k,n0) I(J,k,n0)

f_}; (ii)the column matrices in each of Eqs. (C.48)-(C.51) are associated with the same

time level;and (iii)Eqs. (C.48)-(C.51) are validno matter what values are assigned to the

elements of the column matrices in these equations, a comparison of the expressions on

the leftand the right sides of each of these equations reveals that, in each of Eqs. (C.48)-

(C.51), the firstsix coefficientmatrices on the right side (each of them isthe p r?duct

of two matrices) must vanish; while the last coefficient matrix (the sum of thr_. matrix

products) must be equal to the identity matrix. As a result, Eqs. (C.45) and (C.46) follow

from Eqs. (C.48)-(C.51). QED.

Next Eqs. (C.45)-(C.47) will be used in a study of the amplification matrices of the

a scheme. To proceed, let

/_¢(I)(e¢, e, ) de=.f {_1) g--(i/3)(#¢+@,_) dr. 0_ 1) _--(i]3)C--20¢+0,_) .__ 0_ 1)_-ci]3)(0¢-20n), (C.52)

and
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where i - C_-I, and -_r < 0¢,0_ < lr. Equations (5.4), (5.5), (C.52), and (C.53) coupled

with Eqs. (C.45) and (C.46) imply that

M(k)(O¢,O_)._I(k)(O¢,O_) = ._I(k)(O¢,O_)M(k)(O¢,O_)= I, k = 1,2. (c.54)

In other words, _/(k)(0¢, 0,) is the inverse of M (k) (0¢, 0_) and vice versa. As a result, both

are nonsingular. Equation (C.54) can be used to show that

=I.
(c.55)

Let [M(k)(O¢,O_)]" and [._F(k)(O¢,O_)]*,denote the component-wise complex conju-

gates of M(_)(0C,0,1) and ._/(_)(0¢,0_), respectively. Then Eqs. (5.4), (5.5), (C.52), (C.53)

coupled with Eq. (C.47) imply that

[M(k)(0¢, 8_)] = P [-_/(k)(0¢, 0_)]* P, k = 1,2. (C.56)

Combining E<ls. (C.39), (C.54), and (C.56), one arrives at

M(2)(0¢,

= {.P 0,01"} . { p [._7/(2)(_¢, 0_)]. } -1 (C.57)

Thus

M<2)(0_,O,_)M(')(0¢,6,_) _ [,_/0)(8¢,0,7),_r(2)(0;,0,_)]"

Let _, A2, and A_ be the eigenvalues of the matrix on the left side of F-_I. (C.58). According

to Eq. (5.3), the last matrix is the amplification matrix for any two consecutive whole-

integer time levels. Equation (C.58) implies that _, _2, and _3 are also the eigenvalues

of the matrix on the right side of this equation [25, p.45]. Because the eigenvalues of

the matrix A*, the component-wise complex conjugate of a matrix A, are the complex

conjugates of the eigenvalues of the matrix A, _, _, and ,_, the complex conjugates of

A1, ,_2, and ,_s, are the eigenvalues of the matrix enclosed within the brackets on the right

side of Eq. (C.58). According to Eq. (C.55), the last matrix is the inverse of the matrix

on the left side of Eq. (C.58). Bemuse the eigenvalues of the matrix A -1, the inverse of

a matrix A, are the reciprocals of the eigenvalues of A, one concludes that the set of ,_,

- 1, 2, 3, is identical to the set of 1�At, £ = 1, 2, 3. It does no_ implies that ,k_ = 1/,_t,

- 1,2,3. However, it does implies that the product of ,_, _ = 1,2,3, is equal to the

product of 1/,kt, _ = 1, 2, 3. As a result, we arrive at Eq. (5.7).
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Next we shall prove that the backward characteristic projection of the mesh point

(j, k, n + 1/2) E 1_1 at the (n - 1/2)th time level is in the interior of the numerical domain

of dependence of (j, k, n + 1/2) at the same time level if and only if Ec1. (2.110) is satisfied.

In Fig. 13(c), the mesh point (j, k, n + 1/2) is represented by point O; while its backward

characteristic projection at the (n - 1/2)th time level is represented by point P. Without

any loss of generality, we will assume that j = k = 0. Thus

( = r/= O, and t = (n + 1/2)at, (C.59)

for point O. Note that only the coordinates ((, T/) are given in Fig. 13(a).

To simplify the discussion, Eq. (3.1) is converted to an equivalent form in which _, r/,

and t are the independent variables, i.e.,

o% O% O%

The characteristics of Eq. (C.60) is the family of straight lines defined by

(c.60)

= act + cl, and r/= ant + c2, (C.61)

where cl and c2 are constant along a characteristic, and vary from one characteristic to

another. Because points O and P share the same characteristic line, Eqs. (C.59) and

(C.61) imply that

= -ace, t, t/= -a,_At, and t = (n- 1/2)at, (C.62)

for point P.

The numerical domain of dependence of point O referred to in Sec. 5, a hexagon lying

on the plane t = (n- 1/2)_t, is depicted in Fig. 13(c). The coordinates (i, T/) of the vertices

A, B, C, D, E, and F are also given in the same figure. The six edges of the hexagon and

their equations on the _-r/plane are

AB : ,',tl . _ + ,',_. 17= ,_(,_TI,

_-E : ,',tl . ¢ + _,_ . _ = -,_,_T1,

-ffC : _i = A_,

EF : rl = --A_h

CD : ¢ = -A(,

FA : i = a_.

(c.63)

As a result, a point (_, _/) is in the interior of the hexagon ABCDEF if and only if

+ "¢" ,71< "¢",7, 1,71< .',7, and I¢1< "¢. (C.64)
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Equations (C.62) and (C.64) coupled with Eqs. (2.29) and (2.31) imply that point P is in

the interior of the hexagon ABCDEF if and only if Eq. (2.110) is satisfied. QED.

Next we turn to the a-]_ scheme. Recall that the equations used to construct the

backward marching version of the a scheme, i.e., Eqs. (C.5)-(C.7) and (C.11)-(C.13), are

obtained from Eqs. (2.60)-(2.65) by making substitutions in mesh indices and exchanging

expressions on the left and the right sides. In a similar manner, the backward marching

version of the a-/z scheme can be constructed using Eqs. (2.53)--(2.58) as the starting
(2)-

point. Let h (I) and h(2) be the determinants of the matrices formed by a(k_)- and akl ,

k, _-- 1, 2, 3, respectively. Without going into the details, it can be shown that (i)

r
A(1)

313(1 + v¢)(1 + v,)(1 - v¢ - v,) - 2(1 + re)(1 - v¢ - v,)Q
L

- 20 + vJ(1 - _,_- _,_)_- 20 + _'_)0 + _'_)_,+ \_/

(c.65)

and

[
£(2)

= 3/3(1 - _¢)(1 - v,)(1 + v¢ + v,) - 2(1 - ,¢)(1 + ,¢ + v,)_¢
I.

- 2(1- _',,)0 + _'_+ _'_)_ - 20 - _,¢)(1- ,,j_,. + \_/ ;

(c.66)

and (ii) the bazkward marching version of the a-p scheme exists if

h(1) # 0, and h (2) # 0. (6'.67)

Recall that the forward marching version exists if

AO) .# O, and ,_(2) # O. (C.68)

We assume Eqs. (C.67) and (C.68). Then the matrices 0_ t), k = 1,2, and _ = 1,2,3,

can be constructed such that the backward marching version of the a-# scheme can also be

represented by Eqs. (C.24) and (C.25). By using an earlier argument involving Eqs. (C.48)-

(c.51), Eqs. (C.45) and (C.46) can aJsobe _ablished. Equations (C.54) and (C.55) follows

immediately. However, it should be noted that Eq. (C.47)/s not applicable for the a-#

scheme except for the case/z = 0. Thus Eq. (5.7) generally is not valid for the a-# scheme.
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Appendix D

The definition of the local CFL number v, used in Sec. 6 is _ven here.

In Fig. 21, point P0 is a mesh point (j, k, n) e 12. Without any loss of generality, we

assume that it is also the origin of the z-y plane. As explained in Sec. 5 and Appendix

C (see Figs. 13(a)-(c)), the numerical domain of dependence o£Po on the p!ane with

t = (n - 1)At (i.e., the (n- 1)th time level) is the hexagon ABCDEF depicted ha Fig. 21.

Because b = 0, the coordinates (x, y) of the vertices A, B, (7, D, E, and F are those given

in Fig. 21.

The intersection of (i) the Math cone [26, p_425] with point P0 being its vertex, and

(ii) the plane with t = (n - 1)at, is the circle depicted in Fig. 21. Here a circle, az in the

ease of the hexagon mentioned above, implies its boundary and interior. For the Euler

equations Eq. (4.10), and in the limit of at _ 0, this circle is the domaha of dependence of

point Po on the plane with t = (n - 1)at. Let u, v, and c, be the x-velo¢it_y, the y-velocity,

and the sonic speed at the point P0, respeetively. Then (i) cat is the radius of the eircie,

and (ii) z = -uat and y = -vat are the coordinates of the center of the circle (point/)1)-

The number ue will be defined such that v, < 1 if and only if the domain of dependence

of the Euler equations (i.e., the circle) is within the interior of the numerical domain of

dependence (i.e., the hexagon ABCDEF).

In Fig. 21, we assume that u < 0 and v < 0. Thus z > 0 and y >__0 for point/)1- Also
we have

Od'-__'aresin(w/4  +w2), (0<0<  /21 (9.1/
and

{ areranI_/ul, _ u _ 0;
O' an= r/2, if u = 0 and v _ 0; (D.2)

0, ifu=v=0.

Here we assume that 0 < aretan Iv/ul < _/2. Moreover, the lengths of the line segments

P----o_2,Po---'_3, POP,, and _ are

IP--J_I- (e ÷ I_l)at, (D.3)

and

]P--_I = w, (D.4)

10_1 - 2h sin 8,

respectively. As a result of FXlS. (D.3)-(D.6), we have

(D.s)

d,j IP---J_I (e + I_l)_t (D.7)
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and

_,,, _d IP--jJ [c+ ¢u_ + v_cos(e- e')]_t (D.S)
IP---_I= 2hsine

By their definitions, (i) u,' < 1 if and only if the entire circle is within the domain to the

left of the straight line A--_; and (ii) r,_" < 1 if and only if the entire circle is within the

domain below the straight line B---_. Because z > 0 and y > 0 for point P0, the center of the

circle, one concludes that the entire circle is within the interior of the hexagon ABODEF
if and only if u, < 1 where

def_,,= m= (,,,',,_,"}. (o.9)

By using an argument similar to that presented above, it can be shown that, regardless

of the signs of u and v, the entire circle is within the interior of the hexagon ABCDEF if

and only if v_ < 1 where v_ is defined using Eqs. (D.1)-(D.9).
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Table 1.--Definitions of test problems numbers 1 to 6 and the

g

1 0.5 2

2 .5 2

3 .5 2

4 .2 2

5 .8 2
6 .5 1

corresponding vMues of T, Vems, Vem, and n

R S At _ T Vems

20 60 0.01 600 6 0.585

20 60 .015 400 6 .8775

40 120 .0075 800 6 .8775

20 60 .01 600 6 .585
20 60 .01 600 6 .585

20 60 .01 600 6 .585

Veil1

0.6204

.9305

.9302
.6303

.6212

.6206

n c

152.32

101.55

2O3.09

152.32

152.32

152.32
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Figure 1 .--The relative spatial positions of tile mesh points E "-_1 and the mesh

points E _ (dash lines are spatial boundaries of the conservation elements:

depicted in figs 5(a) and 5(b)).

Figure 2._The spatial mesh indices (j, k) of the mesh points E _'11 (n = +1/2, +_3/2, :i:5/2, --.).

2 : ] i

100



o: 0

2

5
3
4

3

1

_2
3
1

0

k

i 0 0 0

II •

o 0 0

0 0

0 0

-- 0 0 0 0 0

_- ill • • •

0 0 0 0 0

I I 1 I I 1_, , • I I ÷ I I ÷ I , , ,-J

1 2 1 4 5 2 7 8 3 10 11 4
3 3 3 3 3 3 3 3

Figure 4.--The spatial mesh positions of the mesh points marked
by • and those marked by o.
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D"

'\I 'Y

la)

G'=(j,k,n+ 2)

A=(I+ 1, k+3, n)

C=0-2'k+13' n)

E=O. l=,k-_,n)

CE(_) (}, k, n + 1/2) = box ABGFA_'G'F"

CE(1) (j, k, n + 1/2) box BCDGB'C'D'G"

CE(_) O, k, n + 1/2) = box DEFGD'E'F'G"

t

F

i '(B"

B

(b)

D" --..f-
__t
2

D II

I

I

•.--..--I_y

G'= (}, k, n + 2 ) :

B'=(]-! k+ 2 n+ 1)3' 3'

D" " 1 1 n+l)=(j-_,k-- 3'

F'=0+ 2 k- 1 n+l)3' "_'

SL::(1) (j, k, n + 1/2) = the union of four

planes A_B'C'D'E'F ", GBB"G", GDD'G",

and GG"F-F and their immediate

neighborhoods.

Figure 5.--(a) Conservation elements CE_) (j, k'n * 1/2), e = 11 2, :3,

and j, k, n = 0, +1, +_2, ..-. (b) Solution elements SE(1) (j, k, n + 1/2),

j, k, n = 0, ±1, +_2,---).
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D"

F"

xjt
(a)

G'= 0, k,n +1)

1 k+2 n+l
B=(j- --_-, _-, _)

D = (j--_, k- 1 13-,n*-_)

F=(I+ _ k- 1 n 13' _' +_}

CE(12) (j, k, n + 1) = box CDEGC'D'E'G"

CE(22) (j, k, n + 1) = box AGEFA'G'E'F"

CE(_) (j, k, n + 1) = box ABCGA'B'C'G"

t

E" l

/
/

\\\

A-i

A

x/

G'= (j, k,n + 1}

1 k+l n+l)
A'= G + "_, 3'

C'= (j- , k + --_., n + 1)

E'=O+ 1 k_2 n+l)
_, _-,

SE(2) (j, k, n + 1) = the union of four planes

A_'C'D'ET', GG-A"A, GCC"G", and GG"E"E

and their immediate neighborhoods.

(b)

Figure 6.----(a) Conservation elements CE($2) (j, k, n + 1), t = 1, 2, 3,
j, k, = 1/3, 1/3 _+1,1/3 _+2, ---, and n = 0, _+1, +_2, -... Co) Solution

elements SE(2) 0, k, n + 1}, j, k = 1/3, 113 _+1,113 +_2, --., and n = 0,

+1, +_2,...).
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Figure7,4#onielry of the hexagonABCDEF.(a)Relativepositionsof thevertices in termsof (x,y),
_) Relativepositionsofthe verticesin termsof (],k).(¢) Relativepositions of thevertices in terms
of 0;,'_),
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Figure 8._(a) The mesh points (j, k, n + 1/2), (j + 1/3, k + 1/3, n), (i - 2/3, k +

1/3, n) and (j + 1/3, k - 2/3, n) with (], k, n + 1/2) E _1- Co)The mesh points

O,k, n +1), O-1/3, k- l13, n +l12), O+ 2/3, k-113, n + l/2), and O-113,

k + 2/3, n + 1/2) with (], k, n + 1) E D 2.
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Figure 9.--The stability domain of the a scheme.
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Figure 24.--Numerical results and convergence histories for
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computation domain (y= 0.5 in Fig. 19). (b) Convergence histories
foru m, m = 1, 2, 3, 4.
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Figure 25.--Numerica! results and convergence histories for
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computation domain (y = 0.5 in Fig. 19). (b) Convergence histories
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Figure 26.--Numerical results and convergence histories for
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