NASA Logo - Web Link to NASA.gov

+ Text Only Site
+ Non-Flash Version
+ Contact Glenn

Go
ABOUT NASA NEWS AND EVENTS MULTIMEDIA MISSIONS MyNASA WORK FOR NASA
Computer drawing of an airliner with lift, thrust, drag and weight
 vectors. Aircraft moves in direction of largest force.

This slide shows some rules for the simplified motion of an aircraft. By simplified motion we mean that some of the four forces acting on the aircraft are balanced by other forces and that we are looking at only one force and one direction at a time. In reality, this simplified motion doesn't occur because all of the forces are interrelated to the aircraft's speed, altitude, orientation, etc. But looking at the forces ideally and individually does give us some insight and is much easier to understand.

In an ideal situation, an airplane could sustain a constant speed and level flight in which the weight would be balanced by the lift, and the drag would be balanced by the thrust. The closest example of this condition is a cruising airliner. While the weight decreases due to fuel burned, the change is very small relative to the total aircraft weight. In this situation, the aircraft will maintain a constant cruise velocity as described by Newton's first law of motion.

If the forces become unbalanced, the aircraft will move in the direction of the greater force. We can compute the acceleration which the aircraft will experience from Newton's second law of motion

F = m * a

Where a is the acceleration, m is the mass of the aircraft, and F is the net force acting on the aircraft. The net force is the difference between the opposing forces; lift minus weight, or thrust minus drag. With this information, we can solve for the resulting motion of the aircraft.

If the weight is decreased while the lift is held constant, the airplane will rise:

Lift > Weight - Aircraft Rises

If the lift is decreased while the weight is constant, the plane will fall:

Weight > Lift - Aircraft Falls

Similarly, increasing the thrust while the drag is constant will cause the plane to accelerate:

Thrust > Drag - Aircraft Accelerates

And increasing the drag at a constant thrust will cause the plane to slow down:

Drag > Thrust - Aircraft Slows


Activities:
Button to Display Grade 6-8 Activity Button to Display Grade 6-8 Activity Button to Display Grade 6-8 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 11-12 Activity

Guided Tours
  • Button to Display Previous Page Basic Aircraft Motion: Button to Display Next Page
  • Button to Display Previous Page Gradual Climb: Button to Return to Guided Tour Page
  • Button to Display Previous Page Flaps and Slats: Button to Return to Guided Tour Page
  • Button to Display Previous Page Spoilers: Button to Return to Guided Tour Page


Navigation ..

Button to Display Aerodynamics Index Button to Display Propulsion Index
Beginner's Guide Home Page

 

     First Gov Image


+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Budgets, Strategic Plans and Accountability Reports
+ Freedom of Information Act
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

 

NASA Logo   
Editor: Nancy Hall
NASA Official: Nancy Hall
Last Updated: May 05 2015

+ Contact Glenn