NASA

NASA Advanced Air Vehicles Program — Commercial Supersonic

S Technology Project - AeroServoEIasticitx =

o

WA TN

NASA Propulsion, Controls and Diagnostics Workshop
Sept. 16-17, 2015, Cleveland, OH



//upload.wikimedia.org/wikipedia/commons/e/e5/NASA_logo.svg
//upload.wikimedia.org/wikipedia/commons/e/e5/NASA_logo.svg

National Aeronautics and Space Administration

Team Members

GRC

George Kopasakis
Joseph W. Connolly
Noulie Theofylaktos
Jonathan Seidel

LaRC
Walter Silva & team

www.nasa.gov 2



National Aeronautics and Space Administration

Outline

APSE Goals

AeroServoElastic System Dynamic Modeling

Propulsion System Dynamic modeling

APSE Integration



National Aeronautics and Space Administration

AeroPropulsoServoElasticity (APSE) Goals

* Develop dynamic propulsion system and aero-servo-elastic/aerodynamic models,
and integrate them together with atmospheric turbulence to study the dynamic
performance of supersonic vehicles for ride quality, vehicle stability, and
aerodynamic efficiency.

» Supersonic vehicles are slender body with
more pronounced AeroServoElastic (ASE)
modes, which can potentially couple with
propulsion system dynamics under various
flight conditions to present performance
challenges.

» Approach for Propulsion System:

o Develop 1-Dimensional (1D) component
models and 2D models where appropriate to
be comparable in frequency range to ASE
models.

o Integrate Propulsion with ASE to form a
closed-loop dynamic system model to study
performance.

Integrated APSE Model
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APSE Dynamics - Frequency Range @

ASE modes extend to about 60 HZ when about half the modes are included in the
model.

For that reason propulsion system dynamics need to extend up to approximately 600

Hz in order to also take into account the phase contribution of the propulsion
dynamics for the closed-loop system.
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ASE Dynamic Model — Langley Research Center

Constructing 3D models to analyze ASE
modes and assess flutter conditions.

Utilizing 3D model to develop state space
models to integrate with propulsion system.
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Fuselage 2nd Bending, 4.46 Hz
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Propulsion System Dynamic Modeling - GRC

Modeling all the components with lump volume dynamics and performance

characteristics, and adding combustor and shaft dynamics and variable geometry
(Inlet Guide Vanes), with lump or quasi-1D inlet and nozzle models
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Higher fidelity models include 2D/3D inlet & nozzles, stage-by-stage for compressors
and turbines, and parallel flow path modeling.
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Engine Component Modeling @

1. Lump volume: Component treated as single volume for axial gas dynamics and
performance characteristics J
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Performance maps
2. Stage-by-stage: Component treated as multiple volumes for axial gas dynamics and

performance characteristics — new methodology

3. Parallel Flow: Component treated as multiple volumes and multiple flow paths for axial
and rotational gas dynamics and performance characteristics — new M.
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omponent Modeling and APSE integration
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APSE Integrated Modeling

External Disturbance: Atmospheric turbulence modeling — discussed previously
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