Active Combustion Control

Thomas J. Stueber
NASA Glenn Research Center
Cleveland, Ohio
Team

• NASA GRC Research and Engineering Directorate (L):
 – Communication and Intelligent Systems Division (LC)
 • Intelligent Control and Autonomy Branch (LCC)
 – Joseph R. Saus, Thomas J. Stueber, Randy Thomas, Daniel R. Vrnak
 • Optics and Photonics Branch (LCP)
 – Sarah A. Tedder
 • Smart Sensors and Electronics Systems Branch (LCS)
 – Robert S. Okojie
 – Propulsion Division (LT)
 • Engine Combustion Branch (LTC)
 – Clarence T. Chang, Yolanda R. Hicks, Jeffrey P. Moder, Derek P. Podboy, Kathleen M. Tacina

• NASA GRC Facilities Directorate:
 – Facilities Testing Division (FT),
 • Alan J. Revilock/Jacobs

• Industry Partners
 – Active Signal Technologies (Arthur V. Cooke)
 – Jansen’s Aircraft Systems Controls Inc. (Matt Caspermeyer)
 – Parker Hannifin Corporation (Jeff Melzak)
 – WASK Engineering (Wendel M. Burkhardt)
Outline

• Turbine Issue Being Addressed
 – Combustors 101

• Cleaner Emissions
 – Lean Burn Technology
 – RQL Technology Rich Burn, Quick Mix, Lean Burn (RQL)

• Thermo-Acoustic Instability

• Thermo-Acoustic Instability Reduction

• Active Combustion Control
 – Strategy
 – Challenge
Outline

• Sensor Research
• Fuel Flow Modulator Research
• Active Combustion Control Loop
• Summary
• Questions
The length of conventional combustors is dictated by:
• Residence time required to evaporate the fuel,
• Ensure appropriate mixing, and
• Complete reactions
Combustors 101

Diffuser slows down flow speed to reduce Rayleigh loss.

Fuel-nozzle turbulence speeds up atomization by breaking up liquid into droplets.

Liner film-cooling decouples thermal loading from pressure casing.

Swirling flow forms recirculating vortex to provide flame-holding.

Primary dilution holes provide dilution and vortex anchor.

Secondary dilution holes add more air to lower exit temperature.
Cleaner Emissions

International Civil Aviation Organization (ICAO)
Committee on Aviation Environmental Protection (CAEP)
To formulate policies, standards, and practices related to aircraft noise and emissions.

*Much of the international focus has been on the reduction of NOx. Produced when air passes through high temperature/high pressure combustion.

*NOx reduction technologies include:
 • Increase bypass ratio
 • Lean burn technology
 • Rich Burn, Quick Mix, Lean Burn (RQL) technology

Lean Burn Technology

• Excess air is introduced into the engine along with the fuel.
 – Premix air and fuel upstream of the combustor.
 – Excess air reduces combustion temperature and this reduces the amount of NOx produced.
 – Results in excess oxygen available. Therefore, combustion process is more efficient and more power is produced from the same amount of fuel.

• A mixture closer to stoichiometric can produce knocking and higher NOx emissions

• Leaner mixtures may not combust reliably and cause misfiring.
RQL Technology

- Premise that primary zone operates most effectively with a rich mixture. This zone will incorporate a rich-burn condition (> stoichiometric).
 - Rich burn condition minimizes the production of NOx due to low temperatures and low population of oxygen.
 - Additional oxygen is needed to oxidize the high concentrations of carbon monoxide and hydrogen.

- A substantial amount of air is injected through the wall to mix with the primary zone effluent and create a lean-burn condition.
 - Lean burn effluent exiting the combustor.
Thermo-Acoustic Instabilities

- Result of fluctuating heat release coupling with combustion chamber acoustics.
 - Growth of pressure fluctuation amplitudes can be detected
 - Pressure fluctuation frequency may be approximate to combustor acoustic resonant frequency.
 - *Exact mechanism is not well understood and different hypotheses exist.

Thermo-Acoustic Instability Reduction

1. Smart Combustor Design
 • Passive control of instability
 • Redesign of combustor geometry
 • Shorten can,
 • Lengthen can,
 • Add baffles,
 • ...
 • Preferred and readily acceptable solution

2. Modulate airflow for out-of-phase cancellation
 • High-pressure, -temperature, and -mass flow air.
 • May adversely affect compressor balance.

3. Modulate fuel for out-of-phase cancellation
 • Requires low-actuation power
Active Combustion Control Strategy

Instability
Out-of-phase
Resultant
Active Combustion Control Challenge

Very low signal to noise ratio
Combustor Dynamic Control Challenges

• Combustor
 – Test rig configuration
 – Fluid dynamic sensitivity
 – Staging flexibility
 – Fuel sensitivity
 – Thermo-acoustics
 – Part-load operability

• Sensing
 – Sensible phenomenon
 – Sensor
 – Sensor survival

• Control
 – Control Design Model
 – Noise rejection
 – Phase matching

• Actuation
 – Response speed
 – Size
Previous Accomplishments

- Georgia Tech Modulator
- S1D_Matlab Simulation
Active Combustion Instability Control Via Fuel Modulation

Advanced control methods

High-temperature sensors and electronics

Physics-based instability models

High-frequency fuel delivery system and models

Realistic combustors, rigs for research
Low Emissions Combustor Prototype with Observed Instability, as installed in NASA CE5B-Stand 1

Range of Combustor Operating Conditions

- **Inlet Pressure (psia)**: 65 – 250
- **Inlet Temperature, °F**: 400 – 1000
- **Air Flow, lb/min**: 0.9 – 4.0
- **Fuel Flow, lb/min/hr**: approx. 100 – approx. 400

2 1-element traversing probes

5-element probe

dynamic pressure transducer, P_{4DyNDn}, semi-infinite coil

dynamic pressure transducers, P_{31}, P_{32}

2 dynamic pressure transducers, P_{4DyNDn}, semi-infinite coil
E. Closed-Loop Combustor Data for Development of Combustion Control Simulations

CE5B-STAND 1 SIMULATION LAYOUT

Blockage ratio = 0.83

\[P_0' = 1.01 \]
\[T_0' = 1.00 \]
\[\rho'u' = 0.005 \]

Airflow

28.4 in. | 1.34 in. | 35.7 in.

Water spray

\[P_{4\text{DynDa}} \]
\[P_{4\text{DynUp}} \]
Active Combustion Control, Combustion Dynamic Model Development

PROBLEM: Lean direct injection combustors are susceptible to thermal-acoustic instabilities that can limit the performance envelope of a turbine engine.

OBJECTIVE: Develop control laws to modulate fuel-flow into the combustor to mitigate growth of thermal-acoustic instabilities.

APPROACH: Develop a software tool to computationally predict an instability and then mitigate the instability using feedback control laws. First step involved translating legacy combustor simulation code to a format suitable for controls development. Second step is to apply closed loop control laws to the simulation. Third step is to apply control laws to a fuel modulator and combustor.

SIGNIFICANCE: A computational platform that can readily be interfaced with a feedback controller would streamline control law development prior to running combustion experiments. Previous code is very impressive and fast; however, that version of the software is also difficult to modify the process and interface it with modern control design tools. The process value is increased by reformatting the code to run in a simulation that can also readily accept control laws. Furthermore, while reformatting the code, considerations can be incorporated to streamline potential modifications when efforts change to entertain a unique combustor or design changes.

PROGRESS TO DATE:
Acoustic validation of MatLab based code. Simulation reproduced acoustic validation calculations as published by Paxson AIAA 2000-0313.

The above illustration is the final pressure profile after 40 simulation seconds. Green trace illustrates the contour of the simulated acoustic pipe with normalized diameter. Blue trace is final normalized pressure distribution. This illustration is regularly updated during simulation to see wave development.

Pressure and airflow velocity profiles for simulation time spanning 20 simulation seconds. Periodic wave pattern can be identified in these illustrations. These results match simulation results published by Paxson.
B. Demonstration of Combustion Instability Control

Adaptive Sliding Phasor Averaged Control (ASPAC) able to prevent instability growth

Fuel/air ratio

Filtered Combustor Pressure

Controller off

Controller on
NASA GRC Fuel Modulators

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Design Point</th>
<th>FN Range</th>
<th>Envelope</th>
<th>Weight</th>
<th>Max Power In</th>
<th>Max Pressure In</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTV</td>
<td>Magneto-strictive Exterior Installation</td>
<td>FN=110</td>
<td>20 to 110</td>
<td>12”x18”x2”</td>
<td>20 lbs</td>
<td>6 amps</td>
<td>1500 psi</td>
<td>300 °F</td>
</tr>
<tr>
<td>AST</td>
<td>Magneto-strictive Exterior Installation</td>
<td>FN=5</td>
<td>3 to 8</td>
<td>4”x18”x4”</td>
<td>10 lbs</td>
<td>6 amps</td>
<td>1500 psi</td>
<td>300 °F</td>
</tr>
<tr>
<td>JASC</td>
<td>Translating-Rotary Flute w/stationary flow port</td>
<td>FN=4</td>
<td>3 to 5</td>
<td>2.6”x5.6”x2.6”</td>
<td>3.5 lbs</td>
<td>6 amps</td>
<td>1500 psi</td>
<td>300 °F</td>
</tr>
<tr>
<td>WASK</td>
<td>Piezoelectric Interior Installation</td>
<td>FN=4</td>
<td>1 to 8</td>
<td>2”x4.5”x1”</td>
<td>1 lbs</td>
<td>1 amp</td>
<td>1500 psi</td>
<td>1800 °F</td>
</tr>
</tbody>
</table>

Dr. Yedidia Neumeier
Chief Technology Officer
yedidia@plumcombustion.com

Dr. Arthur V. Cooke
President
arthur@activesignal.com

Matt Caspermeyer
Engineer
matt.caspermeyer@jase-controls.com

Wendel Burkhardt
Owner
wendel.burkhardt@waskengr.com
- Piezoelectric Actuator
- Fuel Flow Device
- $F_N^{(nominal)} \approx 3.0$
- $Bw \approx 1K \text{ Hz}$
In-line Electromagnetic Actuator

- Electro-magnetic Actuator
- Fuel and Water Flow Device
- $F_{N(nominal)} \approx 5.0$
- $B_w \approx 100$ Hz
Active Combustion Control - Fuel Modulator Development

High Bandwidth fuel flow modulation is essential for suppression of thermo-acoustic instabilities.

- JASC Device Drive Electronics
- Jansen Aircraft Systems Controls, Inc. (JASC) SBIR Phase II Fuel-Flow Modulator
- Georgia Tech Fuel-Flow Modulator
- Active Signal Technologies, Inc., Fuel-Flow Modulator
- WASK Engineering, Inc. SBIR Phase I Prototype Model Fuel-Flow Modulator
Active Combustion Control Loop

Objective: Suppress combustion thermo-acoustic instabilities when they occur.

Closed-Loop Self-Excited System

- Combustion Process
- Combustor Acoustics

Natural feed-back process

Artificial control process

Fuel-air Mixture system

Actuator -> Controller -> Sensor
Active Combustion Control Loop

Closed-Loop Self-Excited System

- Fuel Valve
- Fuel-air Mixture system
- Flame
- Combustor Acoustics

Natural feedback process

ASPAC Algorithm

- Fuel Valve Command
- Phase Shift Controller
- Filter
- Sensed Combustor Pressure

Adaptive Sliding Phasor Averaged Control (ASPAC)
Active Combustion Future Plans

Complete buildup of Fuel Flow Modulator Test Facilities:
• CE7a water circuit,
• aCE7a water circuit, and
• Mobile Characterization Platform fuel circuit.

Perform Open Loop Controls Testing In CE13c and CE5 Flame Tubes:
• JASC modulator 1QFY16,
• Okojie modulator 2QFY16, and
• Parker modulator 3QFY16.

Perform Closed Loop Control Testing in CE13c and CE5.
Summary

- Increase Efficiency,
- Decrease Bad Emissions.
- Thermo-Acoustic Instability
 - Challenge
 - Strategy
- Future Work
 - Sensor Development
 - Actuator Development
 - Control Algorithm Development
References

References

Questions?