Active Turbine Tip Clearance Control Research

OA Guo
Intelligent Control and Autonomy Branch
September 16-17, 2015
Team

- **NASA GRC Research and Engineering Directorate (L):**
 - Communication and Intelligent Systems Division (LC)
 - Intelligent Control and Autonomy Branch (LCC)
 - OA Guo, Dan Vrnak, Jonathan Kratz
 - Optics and Photonics Branch (LCP)
 - Mark Woike
 - Vantage Partners, LLC
 - Jeff Chapman
 - Propulsion Division (LT)
 - Turbomachinery and Turboelectric Systems Branch (LTE)
 - Mike Hathaway
 - Materials and Structures Division (LM)
 - Mechanisms and Tribology Branch (LMT)
 - Margaret Proctor

- **Industry Partners**
 - TBD
Outline

• Why turbine tip clearance control?
• List of challenges
 – Tip clearance estimation and measurement
 – Engine dynamics
 – Tip clearance dynamic modeling
 – Benefits and trade-offs
• Turbine tip clearance modeling for future engines
 – Goals
 – Modeling assumptions
 – Future development
• Summary
Why turbine tip clearance control?

Turbine tip clearance is important …

– Fuel efficiency is directly tied to turbine tip clearance
 • Roughly 1% increase in fuel efficiency for 10 mil decrease in turbine tip clearance for current large commercial engines

– Larger turbine tip clearance = Higher EGT
 • Roughly 10 ºC decrease for every 10 mil decrease
 • Higher EGT consumes engine life (LCF and others)

Tip clearance changes with…

– Engine aging
 • Turbine tip clearance changes over the life of the engine, typically 20-50 mils

– Engine dynamics
 • Engine accel and decel will change the tip clearance

Goal of turbine tip clearance control is to have a tighter control of the tip clearance at cruise condition while having a controlled mechanism to avoid rubbing during transient operations.

Glenn Research Center

at Lewis Field
Typical tip clearance variations during operation
List of challenges in active tip clearance control

- Tip clearance estimation and measurement
 - New and degraded tip clearance
 - Measurement? Estimate?
- Tip clearance dynamics
 - Engine transient performance modeling
 - Tip clearance model based on engine transient
- Actuator and Control mechanism
 - Fast response mechanism
 - Control strategies
- Benefits and trade-offs
 - Can we quantify the benefit
Turbine Tip Clearance Modeling Goals

• Simulate the turbine tip clearance dynamic for the current engine
• Identify parameters needed for tip clearance prediction
 – Material property
 – Seal Configuration
 – Operating conditions (Temperature, Speed..)
 – Etc.
• Apply the model for future engine configuration such as N+2/N+3 to learn:
 – The parameters that would affect the tip clearance
 – Turbine tip clearance dynamic during the transient
 – Sensor and actuator requirements for advanced tip clearance control
First Principles Based Clearance Model

Shroud/Case Growth
- Mechanisms
- Pressure
- Temperature

Rotor Disk Growth
- Mechanisms
- Rotation
- Temperature

Blade Growth
- Mechanisms
- Rotation
- Temperature

Deflection

ΔClearance

Engine Simulation

Outputs:
- N_{shaft}
- $P_{Compressor}$
- $T_{Compressor}$
- $P_{Turbine}$
- $T_{Turbine}$

Results: Deflections & Clearance

Results: Throttle & Shaft Speed

G/I

Max

Time (seconds)

0 10 20 30 40 50 60 70 80 90 100

0.7
0.95
1.2
1.45
1.7 $\times 10^4$

N (rpm)

Throttle

0 10 20 30 40 50 60 70 80 90 100

0 50 100 150

Deflection (mils)

Clearance (mils)

0 10 20 30 40 50 60 70 80 90 100

Cold Ground

Dynamic

Nasa Glenn Research Center at Lewis Field
Turbine Tip Clearance Modeling Assumptions

• HPT blade tip clearance is primarily a function of deformation in 3 components

\[TC(t) = TC_{nominal} + (\delta_{shroud} - \delta_{rotor} - \delta_{blade}) \]

• Considered Deflection Effectors
 • Temperatures
 • Pressures
 • Centrifugal force

• Modeling assumptions
 • All deformations are elastic and axisymmetric
 • Component surfaces are exposed to convection
 • For strain purposes, component temperature is assumed to be constant throughout material
 • Component heat transfer is 1-D for the rotor and shroud and 0-D for turbine blades
 • Material properties are constant (may be updated as necessary)
 • Heat transfer from HPT rotor to blade is negligible
 • Thermal expansion of the shroud is independent of the casing
Virtual Platform

- Tip clearance model was integrated with C-MAPSS40k to create a virtual test bed for active tip clearance control research and design.

- C-MAPSS40k offers an all inclusive high-bypass, dual-spool turbofan simulation:
 - 40,000-lb thrust class
 - MATLAB/Simulink
 - Steady state and dynamic operation
 - Realistic control system

- Enables testing of advanced tip clearance control methods with full engine simulation:
 - Control algorithm development
 - Actuation system testing

Glenn Research Center at Lewis Field
System Simulation

Steady State

Pinch Point
Intelligent Control of Turbine Tip Clearance

- Transient Performance Model
- Structural Deformations – Casing & Blades
- Dynamic Material Models
- Active Shape and Vibration Control
- Coupled Thermo-electro-mechanical Response

Intelligent Controller

Interdisciplinary Transient Simulation

- Aerodynamic Loads
- Performance Losses
- Clearance Derivatives

Engine Model

- Casing & Blades

Smart Structures

- Dynamic Material Models
- Active Shape and Vibration Control

Turbine

- Coupled Thermo-electro-mechanical Response

Tip Clearance Measurement

- Tip Clearance Calculation
Summary

• Fast-response active clearance control identified as a critical technology for improving performance and increasing engine on-wing life.

• A Matlab based simulation has been used to successfully simulate the transient behaviors of the turbine tip clearance.

• The simulation package can be further developed for future engine configurations for tip clearance research to study:
 – Impacts of different engine configurations
 – Impacts of different material
 – Sensor requirements
 – Actuator design and requirements
 – Active tip clearance control strategies
References

