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Background: Public Benchmarking of 

Engine Health Management Methods 

Algorithm 
#1 

Algorithm 
#2 

Algorithm 
#3 

EHM System 

Designer 

• NASA Glenn sponsored a survey of advancements in 
aircraft Engine Health Management (EHM) 
technologies with Scientific Monitoring, Inc. 

 

• Survey results showed that often … 
– Terminologies are different 

– Algorithms are different 

– Applications are different 

– Presentations are different 

 

•  No basis of comparison 
 

• Recommendation: Define and put forth standardized 
EHM benchmark problems to compare the merits of 
different EHM approaches 
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• Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) 
– An aircraft engine gas path diagnostic benchmarking problem created to 

facilitate the initial development and comparison of candidate diagnostic 
methodologies 

– Constructed with support from industry and other government organizations 
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Propulsion Diagnostic Method Evaluation 

Strategy (ProDiMES) Overview 

Engine Fleet Simulator User’s 

Diagnostic 

Solutions 

Evaluation 

Metrics 
Diagnostic 

assessments 
Sensed parameter 

histories 

1a. Engine fleet simulator: Enables user to specify 

the type and number of gas path fault cases. 
2. Solution providers apply 

their individual diagnostic 

solutions 

3. Evaluation Metrics: 

Defined and applied to 

provide a uniform 

assessment of performance 

 

 

Results Outputs 

4. Results: archived 

in common format 

Fault occurs 

Independent 

Development 

and 

Evaluation 

“Ground truth” information 

ProDiMES Public Benchmarking Process 

Blind Test Case Data User’s 

Diagnostic 

Solutions 

Evaluation 

Metrics & 

“Ground 

Truth” 

Information 

 

 

Results Outputs 

Fault occurs 

1b. Blind test cases: User has no a priori 

knowledge of fault existence or fault type 

Blind Test Case 

Side-by-Side 

Comparison 

Diagnostic 

assessments 
Sensed parameter 

histories 

“Ground truth” “Ground truth” information 
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• Simulated problem coded in MATLAB 

• Available through the NASA Glenn Software Catalog 
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ProDiMES: Gas Path Fault Types 

and Sensed Parameters 

 Fault ID Fault Type 

0 No fault 

1 Fan 

2 LPC 

3 HPC 

4 HPT 

5 LPT 

6 VSV 

7 VBV 

8 Nf 

9 Nc 

10 P24 

11 Ps30 

12 T24 

13 T30 

14 T48 

15 WF36 

16 P2 

17 T2 

18 Pamb 

ProDiMES Simulates 18 fault types 
• Turbomachinery, actuator, and sensor faults 

• Faults vary in magnitude 

• Faults vary in evolution rate (abrupt or rapid) 
index symbol description units 

1 Nf physical fan speed rpm 

2 Nc physical core speed rpm 

3 P24 total pressure at LPC outlet psia 

4 Ps30 Static pressure at HPC outlet psia 

5 T24 total temperature at LPC outlet ºR 

6 T30 total temperature at HPC outlet ºR 

7 T48 total temperature at HPT outlet ºR 

8 Wf fuel flow pps 

9 P2 total pressure at fan inlet psia 

10 T2 total temperature at fan inlet ºR 

11 Pamb ambient pressure psia 

ProDiMES Sensed Parameters 
• 8 engine gas path measurements including fuel flow 

• 3 environmental parameters (P2, T2, Pamb) 

• Collected each flight at takeoff and cruise 
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Engine Fleet Simulator 
Sensed parameter 

histories 

Fault occurs 

“Ground truth” 

information 
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ProDiMES: Diagnostic Solutions and Metrics 

• Diagnostic solutions: designed to process sensed parameter histories and 
produce a diagnostic assessment for each engine, each flight 

 

• Metrics: A provided Matlab metrics evaluation routine compares diagnostic 
assessments against ground-truth fault information and automatically 
calculates and archives results. Metrics include: 

– Fault detection performance 

• True positives 

• True negatives 

• False negatives (missed detections) 

• False positives (false alarms) 

– Fault classification performance 

• Correct classification rate 

• Mis-classification rate 

• Kappa Coefficient 

– Diagnostic latency 

• # of flights required to diagnose a fault 

 

• Emphasis placed on early correct diagnosis of faults 
– Fault detection and classification metrics only evaluated within finite “diagnostic window” of time 

(diagnostic window = 10 flights for abrupt faults and 15 flights for rapid faults) 
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User’s 

Diagnostic 

Solutions 

Evaluation 

Metrics 
Diagnostic 

assessments 
Sensed parameter 

histories  

 

Results Outputs 

“Ground truth” information 
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ProDiMES: Blind Test Case Data 

• Includes data from approximately 10,000 engines 

• A target false positive detection rate (false alarm rate) of 
once per 1,000 flights is specified 

• Blind test case diagnostic assessments are submitted to 
NASA for evaluation 

• Participants receive their own blind test case metric results, 
plus the anonymous results of other participants 
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Blind Test Case Data User’s 

Diagnostic 

Solutions 

Evaluation 

Metrics & 

“Ground 

Truth” 

Information 

 

 

Results Outputs 

Fault occurs 

Diagnostic 

assessments 
Sensed parameter 

histories 

“Ground truth” “Ground truth” information 
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Review of gas path diagnostic methods 

applied to ProDiMES 
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engine 

sensed 

parameters 

fleet 

average 

engine 

model 

exponential 

moving 

average 

baseline 

engine 

parameters 

ybaseline 

+ 

- 

y 
difference 

calculation 

yema 
detect 

threshold 

exceeded 

? 

yema 

record 

no-fault 

found, & flight 

number 

2. Trend 

Monitoring 

3. Fault 

Detection 

4. Fault 

Isolation 

single 

fault 

isolator 

record 

fault type, 

& flight 

number 

yes 

no 

1. Parameter 

Correction 

parameter 

correction 

5. Recording 

Results 

engine 

operating 

conditions 

All four gas path diagnostic methods applied to ProDiMES followed 

similar functional steps consisting of trend monitoring, fault detection, 

and fault isolation. However, the underlying approaches applied to 

implement those steps varied.  

Example Gas Path Diagnostic Process  
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Summary of Gas Path Diagnostic Methods 

Applied to ProDiMES 
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1) Weighted least squares single fault isolation (NASA) 
 Model-based fault isolation approach 

2) Probabilistic neural network single fault isolation (NASA) 
 Data-driven fault isolation approach 

 Applies same fault detection logic as diagnostic method #1 

3) Performance analysis tool (University of Liège) 
 Applies model-based sparse estimation fault isolation approach 

 Ad hoc logic included to improve detectability of some fault types 

4) Generalized observer/estimator for single fault isolation (Wright 

State University) 
 Nonlinear model-based diagnostic approach 

 Ad hoc logic included to improve detectability of some fault types 

Reference: Simon, D.L., Borguet, S., Léonard, O., Zhang, X., (2013), “Aircraft Engine Gas Path Diagnostic Methods: 

Public Benchmarking Results,” ASME-GT2013-95077, 2014 ASME Turbo Expo Conference, San Antonio, TX, June 3-7. 
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Blind-Test-Case Metric Results: 

Detection Performance 
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Diagnostic 

method 
FPR 

 (average # flights 

per false alarm) 

1 & 2 0.09203% 1087 

3 0.09240% 1082 

4 0.09352% 1069 

Diagnostic 

method 
TPR 

1 & 2 44.7% 

3 50.9% 

4 51.9% 
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Fault Magnitude

Diagnostic method #1

Diagnostic method #2

Diagnostic method #3

Diagnostic method #4

False Positive Rate (FPR) 

True Positive Rate (TPR) 

• All methods satisfy the false positive rate requirement of < 1 false alarm per 1000 flights 

• True positive rate (TPR) diagnostic latency results show (as expected) 
– Abrupt faults are easier to detect than rapid faults 

– Larger faults are easier to detect than small faults 

• Diagnostic methods #3 and #4 provide better fault detection than method #1 & 2 

True Positive Rate (TPR) 

Diagnostic 

method 

Latency (average # 

flights) 

1 & 2 4.86 

3 4.02 

4 4.24 

Average Detection Latency 
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Blind-Test-Case Metric Results: 

Classification Performance 
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• Diagnostic method #3 provides the best Kappa coefficient and correct classification rate (CCR), followed 
by methods #4, #2, and #1 

• Diagnostic methods #1 and #2 provide the best (lowest) misclassification rate (MCR) results 

• Results show that certain faults are easier to classify (i.e., HPC, HPT, LPT, VSV), while others are more 
challenging (i.e., VBV, Nc, P2, Pamb) 

 

Diagnostic 

method 
CCR MCR 

1 43.4% 1.35% 

2 43.7% 1.04% 

3 46.7% 4.15% 

4 45.2% 6.78% 
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Diagnostic method #1

Diagnostic method #2

Diagnostic method #3

Diagnostic method #4

Correct Classification Rate  (CCR) and 

Misclassification Rate (MCR)  

Correct Classification Rate 

Diagnostic method Kappa coefficient 

1 0.588 

2 0.590 

3 0.627 

4 0.617 

Kappa Coefficient 



www.nasa.gov 

Blind-Test-Case Metric Results: 

Overall Metric Rankings 
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Diagnostic 

method 

FPR 

rank  

TPR 

rank  

Detection 

latency 

rank 

Kappa 

coefficient 

rank 

CCR 

rank 

MCR 

rank 

1 3rd 3rd 3rd 4th 4th 2nd 

2 3rd  3rd  3rd  3rd  3rd  1st 

3 2nd 2nd 1st 1st 1st 3rd 

4 1st 1st 2nd 2nd 2nd 4th 

• Diagnostic method #4 provides the best detection performance 

• Diagnostic method #3 provides the best classification performance 

• Diagnostic method #2 provides the best (lowest) mis-classification rates 

 

• Question: What diagnostic performance is obtained by pairing the best 
performing fault detection strategies with each fault classification method? 

Diagnostic Method Ranking for Each Metric 
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Blind-Test-Case Metric Results: 

New Detection-Classification Pairings 
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• Classification methods #1 and #2 are found to give slightly better CCR, MCR 
and Kappa coefficient results. 

• Demonstrates the importance of applying a common detection approach when 
comparing classification strategies. 

Detection 

approach 

Classification 

approach 
FPR 

(average # 

flights 

per false 

alarm) 

TPR CCR MCR 
Kappa 

Coefficient 

1&2 

1 0.09203% 1087 44.7% 43.4% 1.35% 0.588 

2 0.09203% 1087 44.7% 43.7% 1.04% 0.590 

3 0.09203% 1087 44.7% 40.8% 3.87% 0.570 

3 

1 0.09240% 1082 50.9% 47.8% 3.14% 0.634 

2 0.09240% 1082 50.9% 47.7% 3.20% 0.633 

3 0.09240% 1082 50.9% 46.7% 4.15% 0.627 

4 

1 0.09352% 1069 51.9% 48.6% 3.35% 0.641 

2 0.09352% 1069 51.9% 49.0% 2.99% 0.643 

3 0.09352% 1069 51.9% 45.0% 6.90% 0.616 

4 0.09352% 1069 51.9% 45.2% 6.78% 0.617 

Legend:  Blue font = original detection/classification pairing 

               Red font = new detection/classification pairing 

New Detection-Classification Pairing Results 
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Lessons Learned and 

Recommendations for Improvement 

• Lessons Learned 

– An inherent coupling exists between fault detection and fault classification 

performance—establishing a common detection approach allows different 

classification approaches to be more readily compared 

– Adding additional diagnostic logic was found to help improve the 

diagnosis of fault types with low signal-to-noise ratios 

– Analytical (model-based) and empirical (data-driven) classification 

approaches were found to provide similar diagnostic performance when 

applied to ProDiMES 

 

• Recommendations for Improvement 

– Add more realism to the problem (e.g., data dropouts, measurement 

covariance and flight-to-flight variation based on actual data) 

– Include intermittent fault types and overhaul/maintenance actions 

– Offer ProDiMES as a conference challenge problem to help further the 

development and evaluation of diagnostic methods 
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Summary 

• The Propulsion Diagnostic Method Evaluation 

Strategy (ProDiMES) provides a means to conduct an 

initial comparison of candidate gas path diagnostic 

methods 

• The tool was found to provide a suitably challenging 

problem 

• Common problem, terminology and metrics were 

acknowledged as beneficial 

• Several potential enhancements identified for 

inclusion in a possible future release of the software 
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ProDiMES can be requested through the NASA Glenn Software 

Catalog: https://sr.grc.nasa.gov/public/project/28/  
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Diagnostic Methods #1 and #2 
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Results 

Diagnostic Process Applied for Diagnostic Methods #1 and #2 

– Method #1 single fault isolator: Weighted least squares 

• Each potential fault type is individually considered, and the fault 
type that best matches the observed fault signature in a weighted 
least squares sense is classified as the fault type. 

 

– Method #2 single fault isolator: Probabilistic neural network 

• Applies a radial basis neural network trained off-line using the 
MATLAB newpnn function. Returns the fault type of highest 
probability given the observed fault signature as an input.  

engine 

operating 

conditions 
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Diagnostic Methods #3: Performance 

Analysis Tool 
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Performance Analysis Tool Architecture 

• Trend monitoring: Estimates and trends 
progressive engine deterioration applying a 
constant gain extended Kalman filter. 

 

• Fault detection: Applies a likelihood ratio 
test to determine if a statistically significant 
change in residuals has occurred within the 
recent past sliding window of data. If so, a 
fault detection occurs. 

 

• Fault isolation: Performed applying a 
sparse estimation approach which 
promotes larger variation in fewer elements 
of the estimated health parameter vector. 
The entity with the largest estimated 
magnitude is isolated as the fault type. 

 

• Note: ad hoc detection logic was added to 
improve the detectability of the P2 and 
Pamb sensor faults 

Trend monitoring 

Engine to monitor 

Performance model 

Unit delay 

Kalman filter 

+ 

+ 

Fault detection u(k) 

Fault isolation 

Fault type 

- 

 x̂ k-1

 x̂ k

 ŷ k

r(k) y(k) 

Sliding window applied for fault detection 
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Diagnostic Methods #4: Generalized 

observer/estimator for single fault 

isolation 
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Generalized observer/estimator for 

single fault isolation architecture 

• Fault detection: Applies a model-based 
Fault Detection Estimator (FDE), which 
calculates residuals between sensed and 
expected engine outputs. Each residual is 
individually compared against defined 
thresholds for fault detection purposes. 

 

• Fault isolation: Applies a model-based 
bank of Fault Isolation Estimators (FIE’s), 
each designed for an individual fault type. 
Upon fault detection, the FIE that 
produces the smallest residuals against 
engine sensed outputs is classified as the 
fault type. 

 

• Note: ad hoc (specialized) FIE’s for P2, 
T2, and Pamb sensor faults are included 
to accentuate the diagnosis of these fault 
types.   

Engine 

FDE 
Fault Detection 

Decision Scheme 

FIE Fan 

FIE LPC 

FIE HPC 

… 

FIE T2 

FIE Pamb 

Fault Isolation 

Decision 

Scheme 

u y 

Activation 


