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APSE Task Objective

Develop appropriate vehicle models and controls to study the dynamic
performance of supersonic vehicles

Team:
NASA Langley — Develop the structural vehicle models
NASA Glenn - Develop the propulsion system models

Controls and Dynamics Branch (RHC): George Kopasakis, Joseph Connolly

Inlet and Nozzle Branch (RTE): David Friedlander

Multidisciplinary Design Analysis Optimization Branch (RTM): Jonathan Seidel, Jeff Chin
Antenna and Optical Systems Branch (RHA): Noulie Theofylaktos

Thermal Systems Branch (DET): Xiao-Yen Wang
University of Colorado: PhD Research Kyle Woolwine
Ohio State University: PhD Research Joseph Connolly

Both — Develop integrated model and perform
APSE studies

Integrated APSE Model
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Dynamic Engine SIM
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Feedback Control Design GUI
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-- Purpose of new control design GUI is to maximize
control system performance (stability vs. disturbance
rejection & response time).

-- Only information needed is plant transfer function and

how fast the plant is driven (plant actuation system

response) Step response of CMAPPS fan control system
designed using the GUI

-- Robust feedback control designs obtained with couple
clicks (normally in the first try) — Robustness also due to
auto GUI design of 2 dominant natural controller
frequencies.

--- Low natural frequency for stability/robustness & for
high disturbance rejection in mid frequency range

--- High natural frequency for fast response & for high
disturbance rejection /

-- GUI control design more tolerable to unmodeled T —
dynamics and tighter stability margins Tie Secands)
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Nozzle Dynamic Characterization @
Objective:

Develop a dynamically accurate nozzle model to integrate with the rest
of the propulsion system

Approach:

-- Develop CFD model to capture shock dynamics

-- Determine the minimum grid resolution necessary for dynamic
accuracy based on developed dynamic accuracy criteria

Nozzle frequency domain response characterization

Magnitude

Nozzle CFD flow field
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Note: Pictures manipulated to remove controlled information
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Integrated AeroPropulsoServoElastic (APSE) Model

Early assessments indicate that closed

loop coupling of propulsion and vehicle

AeroServoElastic dynamics could be
significant enough, that it may not be
possible to ignore.
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Dynamic Propulsion System Modeling and Other Potential Applications

Assessments of Compressor Stability Margin — realistic dynamics of stall

» Test-bed to validate engine Cycle Deck designs, geometry sensitivity due to flow
impedances and compressor/turbine dynamic feedback loop, and choked dynamics.

» Test-bed to derive exit nozzle area control schedule and design controls to stabilize
exit nozzle feedback loop

» Test-bed for isolated compressor/plug system to derive compressor IGV control
schedules

» Perform assessments of the effect of flow distortion on dynamics

Using dynamic engine models as test-beds can substantially reduce costs by performing
early design validation studies and by reducing test time of real engine hardware
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Future Work @

Increasingly develop more detailed APSE simulations towards developing in the
near future dynamic test-beds in simulation of component systems and a
complete integrated vehicle model to conduct APSE performance studies such as
ride quality, flight dynamics and vehicle stability, and flight efficiency.
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