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Outline

• Aeroengine combustor designAeroengine combustor design 
process is tough (“optimum 
compromise”)

• What’s optimized
• How to test/validate

The emissions challenge• The emissions challenge
• The resulting dynamics challenge
• Active Control as a response toActive Control as a response to 

the dynamics challenge
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Balanced Combustor Design
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Viewgraph borrowed from GE
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Some Typical Operating Parameters

Parameters Take-Off Cruise

PRO All 30 45 30PROverAll 30-45 30

P3 450-675 psia 150 psia

T3 1000 - 1300 °F 800 °F

T4 2400 - 3000 °F 1800 °F

OverAll 0.30 - 0.5 0.25

www.nasa.gov
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How do we assess performance?

www.nasa.gov
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NASA Glenn Combustor Facilities
Flametube => Sector => Annular

Non-
Facility Config.

Pres. 
range, 
psig

Max. 
airflow, 
lb/sec

Non-
vitiated 

heated air, 
˚F

Max. 
exhaust 
temp., ˚F

CE–5B-1 Sector 60 to 275 2 to 12 500 to 1350 3200

CE–5B–2 Flametube 60 to 400 0.6 to 5 500 to 1350 3200

ASCR Leg 1 Sector / 
annular

50 to 900 3 to 50 500 to 1200 3400
annular

ASCR Leg 2 Flametube 50 to 900 1 to 10 500 to 1200 3400

0 60 3 0

www.nasa.gov

CE-13C Flametube 0-60 0.8 1000 3550
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CE5B Stand 1 Flametube / sector (1200 °F 450 psi 30 lbm/s air flow)CE5B Stand 1 Flametube / sector (1200 F, 450 psi, 30 lbm/s air flow)
Newer – Dynamics testing
Newest – Alternate Fuels

www.nasa.gov
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ASCR Stand -1 60 atm Sector Testing Rig.
1300 °F 900 psi 50 lbm/s airflow1300 F, 900 psi, 50 lbm/s airflow

www.nasa.gov
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CE-13C LDI Injector Screening Rig Functional Layout (laying on its side)
1000 °F, 60 psig, 0.8 lbm/s airflow, p g,
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How does a combustor work?

www.nasa.gov
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Legacy Combustor Features

1 Diffuser slows down

2 Fuel nozzle turbulence
5. Primary dilution 
holes provides dilution

1. Diffuser slows down 
flow speed to reduce 
Rayleigh loss

2. Fuel-nozzle turbulence 
speeds up atomization by 
break up liquid into droplets
3 Liner film-cooling

4. Swirling flow forms 
i l i

holes provides dilution
and vortex anchor

6. Secondary dilution holes 
add more air to bring T4 down

www.nasa.gov

3. Liner film cooling 
decouples thermal loading
from pressure casing

recirculation vortex to 
provide flame-holding

add more air to bring T4 down 
and shape T4 profile
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Where Does Pollution Come From?

Moderate
Temperature

High-Temp.
Z

Rich 
CO, uHC Temperature

Dilution Zones
- More NOx

Zones –
NOx

,
soot

Frozen
Chemistry

SOx &

Chemistry

SOx &
aerosols

uHC near liner Turbine
StatorS t d CO
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StatorSoot and CO
oxidation
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And NASA Combustor Programs

www.nasa.gov
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NOx Formation Concept and Avoidance Strategy

NOxNOx
Formation
Rate
(Highly
T t x Residence

ti =
ObNOxious

outputTemperature
Dependent)

x time output

Key to Low-NOx:
1 A id hi h t t b i

www.nasa.gov

1. Avoid high temperature burning
2. Keep the exposure time short 



National Aeronautics and Space Administration

NOx Reduction Combustor Concepts

RQL** Partial-Pre-Mixed* LDIQ

Lean-burn

Rich-burn

www.nasa.gov

**McKinney, 2007
*Dodds, 2008
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Lean-burn Fuel Staging Enables Low NOx at Cruise

NOx flight cycle comparison (GE TAPS vs. traditional RQL combustor)

www.nasa.gov
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Lean Direct Injection – Low NOx Concept

www.nasa.gov
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Current LTO NOx Emissions
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Effect of Fuel Injection Schemes on NOx Emission

www.nasa.gov
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Why do we need combustor control?

www.nasa.gov
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Issues that Affect Combustor Instability / Acoustics

Diffuser
plenum fuel

injector
swirl
vanes primary secondaryliner

fil

turbine
stator

1. Well-defined acoustic 
b d diti

3. Recirculation 5. Multiple 

vanes
dilution
holes

dilution
holes

film
cooling

boundary conditions

2. Perturbations from fuel- 4. Liner film-cooling 

vortex provides 
flame-holding

temperature 
zones

6. Φ’ interaction 

www.nasa.gov

nozzle turbulence
g

provides damping with P’
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Lean-Burning, Ultra-Low-Emissions Combustors 
A M S tibl t Th ti I t bilitiAre More Susceptible to Thermoacoustic Instabilities

1. Higher performance fuel injectors => more turbulence
2. No dilution air => reduced flame holding
3. Reduced film cooling => reduced damping
4. More uniform temperature distribution => acoustically homogeneous

www.nasa.gov

p y g
5. Shorter combustor => higher frequency instabilities
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How do we deal with combustor instabilities?

1. Smart design
2. Modulate air to get out-of-phase cancellation2. Modulate air to get out of phase cancellation
3. Fuel-modulation to get out-of-phase cancellation

HoweverHowever…

Method 1 is preferred, but we’re not sure it’s enough.
Method 2 requires lots of actuation power input and bulk.

Method 2 also may induce diffuser flow separation due to
flow perturbation.flow perturbation.

Method 3 requires the least actuation power and bulk and
produces the most energy change.

www.nasa.gov
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Combustion Instability Control Strategy

Objective: Suppress combustion thermo-acoustic instabilities when they occur

CombustorCombustion

Closed-Loop Self-Excited System

Combustor 
Acoustics

Combustion
Process

Natural feed-back processFuel-air

Φ’

P’
Natural feed-back processMixture

system

A tifi i l t l

SensorControllerActuator

Artificial control process

www.nasa.gov
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Why is instability control so difficult?

Phase inversion
signal

inversion-response

sum

Time delay & phase shift

Low signal to noise ratio What frequency? What phase?

Δt

Low signal-to-noise ratio – What frequency? What phase?

www.nasa.gov
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Synergistic Technologies to Enable 
Ultra-Low Emissions CombustionUltra-Low Emissions Combustion

Manufacturing

Fuel

Fuel Injection
D i

MaterialsProcesses

Ultra-Low 
Emissions

Dynamics
and 

Flameholding
Active 

Combustion 
Control

Combustion

F l A t t

Methods

Facilities for 
Realistic

T t C diti

Feedback
Sensors

Fuel Actuators
Combustor

and
Fuel System

Test Conditions

www.nasa.gov

Dynamics
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Observations

• Small changes can affect major behavioral change
• Combustor should not be considered oneCombustor should not be considered one 

homogeneous medium

www.nasa.gov
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