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Physics-based instability models
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Outline

• Desired environment for combustion instability control 
development

• Past approach
• Current approach
• Software demonstration
• Discussion

Controls and Dynamics Branch



National Aeronautics and Space Administration

www.nasa.gov

Combustion Instability Control Strategy
Objective:  Suppress combustion thermo-acoustic instabilities when they occur
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Desired Control Development Environment

Physics-based instability models
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Advanced control methods

Integrates:
• Simulation with "enough" physics
• Controller in the form in which it will be experimentally validated

 In an environment that is familiar to the controls engineer
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• Successful active control design requires accurate modeling and
simulation.
–The essential physical phenomena should be correctly captured

• (e.g. self-excitation).
–Characterization and control design necessitate rapid simulation

• (i.e. relative simplicity).
–Simulation must lend itself to implementing a variety of sensing and

actuation strategies.

• The developed simulation method must achieve these goals for
combustor configurations:
– in which the potential instabilities propagate axially
– that contain abrupt changes in cross sectional area

Motivation for Combustion Instability Simulation

Controls and Dynamics Branch
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Detailed, physics-based dynamic 
models

Fundamental understanding of 
combustor dynamics to aid passive, 

active instability suppression
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Allow physics-based control 
method validation

Results from NASA 
Sectored-1D Model of LPP 

Combustor Rig – D. Paxson

Computed
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Reduced-order oscillator 
models

Run fast to allow parametric 
studies in support of control 

system development
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• One-Dimensional
• Perfect Gas

Within Each Sector:

Sector 2

Sector 3

Injector Region

Combustor Region

Sector 1

Simulation Features
• Time-accurate
• Physics-based, Sectored 1-D, Reacting
• Computationally efficient area transitions
• Upstream and Downstream boundary conditions modeled to match rig

Paxson, D.: “A Sectored-One-Dimensional Model for Simulating 
Combustion Instabilities in Premix Combustors,”  AIAA-2000-0313, 

NASA TM-1999-209771, January 2000.
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Adaptive Sliding Phasor Averaged Control
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Kopasakis, G, DeLaat, J.C.; Chang, C.T.:  
“Validation of an Adaptive Combustion Instability 
Control Method for Gas-Turbine Engines.” NASA 

TM-2004-213198, AIAA-2004-4028.
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Active Combustion Instability Control 
Demonstrated Experimentally for a Conventional Combustor

Controls and Dynamics Branch
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Predicted Instability Control Results: Sectored 1-D Model

Baseline, high-frequency configuration

Extended, low-frequency configuration
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Low Emissions Combustor Instability Model Development
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0.04 seconds of simulation data
with f/a=0.029

0.04 seconds of rig data
with f/a=0.029

• Self-sustained instability simulated
• Instability frequency and amplitude closely match experimental values

Combustion Instability Simulation Results
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Combustion Instability Simulation Results for Multiple Operating 
Conditions – Amplitude and Frequency Trends Replicated
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DeLaat, J.C.; Paxson, D.E.: “Characterization and Simulation of the 
Thermoacoustic Instability Behavior of an Advanced, Low Emissions 
Combustor Prototype.” AIAA-2008-4878, NASA/TM—2008-215291
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Results (cont'd)
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Past Approach

• Controller developed and evaluated in MATLAB/Simulink
• Simplified instability model (non-linear oscillator)

• Very limited physics-based simulation evaluation
• Simulation developed and evaluated in FORTRAN
• Code generated from controller and linked to simulation
• Batch runs to test controller functionality

• Limited opportunities for interaction with simulation while running
• Limited opportunities for controller tuning while simulation is 

running
• Modify controller parameters and re-run simulation
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Current Approach

• Controller developed and evaluated in MATLAB/Simulink
• Simplified instability model (non-linear oscillator)

• More extensive use of physics-based simulation evaluation
• Simulation developed and evaluated in FORTRAN
• Simulation inserted into Matlab/Simulink as FORTRAN S-function
• Interactive runs to test controller functionality

• Increased opportunities for interaction with simulation while 
running

• Increased opportunities for controller tuning while simulation is 
running

• Can directly port controller to experimental combustor
• User interface is identical to that used with experimental combustor
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Details of Current Approach
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Software Demonstration
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Discussion

• Similar approaches
• Value of this approach to NASA's partners

– Simulation
– Controller
– Integrated software
– Integrated software/hardware

• Other discussion
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