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Engine Modeling Based on Experimental Data

Background

* A general purpose engine modeling technique has been developed to
support controls development for the APSE project
» The approach allows models to be developed where the engine may be
conceptual in nature
» Engine component characteristic data is generated using preliminary
design tools or best available data from similar engines
* Initial demonstration case was a J85-13 turbojet engine
sCompressor, turbine, and other component performance data
generated using data from in-house cycle codes, design tools
 An additional effort was initiated to utilize data from a 1D dynamic
engine code developed for NASA
« Component data was obtained from experimental data
* Serves as a tool to compare compressor distortion/surge/stall model
against prior experimental data
* Provides validation of general purpose engine modeling approach

Www.nasa.gov s



National Aeronautics and Space Administration

Engine Modeling Based on Experimental Data

Source of Data

* Aerodynamic Turbine Engine Code (ATEC) J85-13 simulation originally
developed by AEDC for NASA
« Component performance maps generated from engine
manufacturer’s cycle deck
» Capability to run surge, stall, post stall and recovery transients
» Maps were modified to account for modifications to baseline engine
configuration to account for modifications made during test programs
» Test data available from prior NASA programs
 Engine distortion response modeling and test data (GE contractor
report NASA CR-134978)
eInlet-engine controls studies (NATO RTO-MP-8 report )
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Compressor Maps

Procedure
ATEC
Compressor Map Excel to
Data File ATEC to Excel MATLAB

*Organized by speed, * Fortran utility to * MATLAB m-file
stage read map and * Reads Excel file

» Speed lines defined generate file for *Generates MATLAB
by polynomial coefs./ import to Excel input file

breakpoints data
Calculations of
pressure/ temp.
coefs at
breakpoints

MATLAB S-
Function

* MATLAB m-file to
generate pressure,
temperature coef.
speed lines from
polynomials

« Interpolation
between speed lines
Extrapolation for
speeds beyond 102%

Resulting Pressure, Temperature Coefficient Maps Combined with Volume Dynamics

Stage 1 Characteristics Stage 2 Characteristics

Volume Dynamics [€—>

VVolume Dynamics

Stage 2

Stage N Characteristics

Volume Dynamics

Stage N
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Compressor Model

» Stage-by-stage compressor model developed
» Compressor element calculates pressure and temperature
characteristics
*\olume dynamics elements between compressor elements through
conservation equations.
Efficiency is computed for reference purposes

-1 :
(7j TR = Stage Temperature ratio

n. = /4 PR= Stage Pressure Ratio
® In(TR)/In(PR)

*Bleed is implemented as a percentage of engine mass flow only for stages
3-5 as in the actual engine. Bleed schedules taken from GE report

Inlet Guide Vanes not modeled, but vanes are full open at ~ 90% design
corrected speed and beyond
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Compressor Results

The new compressor model was integrated with the Tecdyn7 engine
model, replacing the original single-lump compressor. The steady
state results are shown below.

N

% design Air flow
cofrr. Kg/sec
speed
Experiment 100 703.8 544 19.9
Seldner 100 709.6 550 20.0
ATECdyn 100 659 539 19.8
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Stage 1 Pressure and Temperature Coefficient Maps
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Overall Compressor Map

ATECdyn : Tecdyn7 with stage-by-stage compressor model based on ATEC data
Tecdyn7 : Original code with single lump compressor model
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ATEC Derived Data
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Compressor Model Results

Transient Response
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Turbine Model

*ATEC turbine model based on the following parameters

Turbine Corrected Speed = XNFFT =

?\‘Z
I

WS Tt4
P
Turbine Work Done = DHQ = h4T_ hS _ f (TFF, XNFFT)

t4

Turbine Flow Function =TFF =

Turbine Temperature Ratio =TR; = T
t5

Turbine Pr essure Ratio = PR, = % = f(TR,, XNFFT )

t5

*Corrected speed and TFF are computed and used to determine DHQ
Enthalpy drop is computed and used to determine temperature
*Turbine temperature is computed and used to determine PR
*\/olume dynamics based on conservation equations
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Turbine Model

» ATEC code contains turbine maps using data from engine company
cycle deck (based on experimental data)
*Maps contained abrupt changes, requiring smoothing
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Turbine Model

* A turbine model has been developed using the maps from the ATEC code
« Steady state solutions have been obtained, but at speeds greater than
design speed

» Map scaling is currently being investigated.
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Compressor Distortion Response and Surge/Stall Models

» Response to distortion is a key element of APSE controls development
* Distortion can result in engine surge and stall
» Engine model must at least predict reduction in surge margin for
inlet distortion conditions
oA full surge/stall initiation, in-stall operation, and stall recovery
capability is a long term objective

» Modeling Techniques (increasing order of complexity)
*Braithwaite algebraic stall pressure ratio loss model
Parallel Compressor Model

*No circumferential interaction
eInclusion of circumferential terms
2D and 3D models
» Expensive and impractical due to computer time
requirements
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Parallel Compressor Model
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A 2-segment parallel compressor model ) :
g P P overlapped distortion

» The compressor is divided into several separate flow regions or sub-compressors, each with
the same performance characteristics as the original clean compressor.

*Each sub-compressor has its own uniform flow inlet boundary condition that can include
distortion. The mass flow in each sub-compressor is multiplied by a factor that accounts for
the fraction of the inlet flow area that is represented by that sub-compressor.

* Each sub-compressor ends at a common, uniform, static pressure region. There is no cross-
flow between sub-compressors

* The overall compressor is considered to reach its stall point when any one of the distorted
sub-compressors reaches the stall point on its clean compressor map

» The overall compressor pressure ratios are computed as the common exit total pressure
divided by an area-weighted average of the individual sub-compressor inlet pressures. The
overall mass flow is the sum of those for the individual sub-compressors.
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Initial Compressor Model for Stability, Surge Line
Development

« A compressor ‘rig” model was developed that models the engine system
as a compressor subsystem coupled to a plenum and valve.
 Avoids complexity of dealing with combustion, turbine, rotor
dynamics and possible instabilities
* A constant mass flow function at the combustor exit volume
boundary provides a stable BC (turbine is choked during normal
engine operation
*The mass flow can be easily throttled by increasing/decreasing this
value to determine the surge line
e The rig model will be used for clean flow surge line determination
and testing of the parallel compressor model

Model Volume W P
exit

Eight-stage Equivalent P, T,
Compressor FLlG o 55 Combustor W V Ts
Pt, Tt < W
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Compressor Rig Simulation

Propagation of a 25 psf Pressure Pulse Through the Compressor
100% Design Corrected Speed
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Compressor Rig Simulation

Propagation of a 25 psf Pressure Pulse Through the Compressor
Rising edge detall

Multiple Time Series
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Conclusions and Future Plans

 Results from models based on experimental data from the ATEC code verify the
generic modeling approach used is accurate

o Current stage-by-stage compressor modeling tools provide a necessary and solid
foundation for future distortion response/surge/stall model development.

» Data from ATEC code will continue to be useful for extending distortion, surge,
stall models

Future plans:
*Complete incorporation of algebraic and static compressor distortion response
models

Calculate reduced compressor surge line
» Determine and implement interfaces to atmospheric models and NASA LaRC
aeroelastic codes to provide flowfield perturbation boundary conditions.
» Add capability to model turbofan engines
*Revisit compressor distortion response model to account for circumferential
interactions
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