Integrated Propulsion Control and Dynamics (IPCD) Research for the NASA Integrated Resilient Aircraft Control (IRAC)

Propulsion Controls and Diagnostics Workshop
Dec. 8-10, 2009

OA Guo
Jonathan Litt
Ph: (216) 433-3734
email: ten-huei.guo-1@nasa.gov
http://www.lerc.nasa.gov/WWW/cdtb
IPCD Team Members

GRC In-House Researchers
- OA Guo
- Jonathan S. Litt
- Shane Sowers, Qinetiq Corporation
- Ryan May, ASRC Aerospace Corporation
- Jeff Csank, N&R Engineering
- Thomas M. Lavelle
- NPSS modeling and simulation group (GRC/RTM)

NRA Partners
- Pratt & Whitney
- Scientific Monitoring, Inc.
- Boeing
- Univ. of Connecticut
IRAC/IPCD Research Overview

- High Level IRAC Concept revisited
- Vision for Enhanced Engine Operation
- Integrated Propulsion Control and Dynamics (IPCD) Research Areas
 - Engine Performance Requirements
 - Engine Simulation and Controller Development
 - Fast Engine Response Research
 - Risk Assessment Tool Development
 - Integration with Flight Control/Simulation
 - Engine Icing Modeling and Control
- Summary
Integrated Adaptive Flight/Structural/Propulsion Control

Adaptive Flight Control
- Decisions Based on Failures/Impairment/Damage,
 Remaining Control/Engine Capabilities, Risks Associated
 with Accommodation/Recovery, Flight Safety Margins
- Combinations of Internal & External Loss-of-Control Factors
- Includes Upset Recovery under Failures/Damage/Disturbance
 Conditions and Adaptive Guidance

Flight Control Commands
- Engine Operation Mode
- Engine Performance Requirements

Engine Status Report
- Engine Failure/Damage Condition
- Engine Performance Limits
- Performance/Life Trade-off Curve

Fast Inverse FEM
algorithm identifies damage and predicts deformations in real time

Direct FEM models
compute internal loads & AE Effects in real time

Strain sensors
provide discrete measurements in real time

Engine Failure/Damage Assessment
- Survival Operation Mode for Damaged Engine
- Optional Operation Beyond Designed Envelope
IRAC System Concept

IRAC Propulsion

Engine Status Report
- Engine Failure/Damage Condition
- Engine Performance Limits
- Performance/Life Trade-off Curve

Flight Control Commands
- Engine Operation Mode
- Engine Performance Requirements

- Engine Failure/Damage Assessment
- Survival Operation Mode for Damaged Engine
- Optional Operation Beyond Designed Envelope
Enhanced Propulsion Research Concept

Past research and experience have shown that propulsion systems can be very effective in helping airplanes recover from adverse conditions:
 – TOC (Throttle-Only-Control) research experience
 – PCA (Propulsion Controlled Aircraft)

However, preliminary studies show that there are many other potentially catastrophic scenarios in which airplanes could be saved if the engines could:
 – Respond faster
 – Generate more thrust for a short period of time
 – Better integrate with the flight control system
IPCD Research Areas

- Engine performance requirements study
 - NASA/ARC Study
 - Boeing Study
- Engine simulation and controller development
 - Past simulation MAPSS, C-MAPSS,
 - Flight data collection for engine dynamics
 - Baseline controller design and stability margins
 - New C-MAPSS40K (was C-MAPSS2)
- Fast engine response control research
 - Engine control limits
 - Innovative configurations and control
 - NRA partners
 - P&W
 - SMI
- Risk assessment tool development
 - Engine health condition
 - Risk of enhanced engine operation
 - Risk Management/trade-off
- Integration with Flight Control
 - Simulation Platform
 - Integration Issues
- Engine icing modeling and control research
Engine Requirements Study

• **Two studies were performed**
 – Scenarios selected
 – P&W/Boeing
 – NASA/ARC

• **Preliminary studies show:**
 – Faster responding engine is critical in many known scenarios
 – The requirements are highly aircraft configuration dependent
Flight Test Data Collection

Flight Test Summary

• 1 data flight
• ~4 flight hours
• 2 performance calibrations
• ~20 throttle transients

Test flight Completed on 12/12/07
Engine Simulation Development History

- **MAPSS (Modular Aero-Propulsion System Simulation)**
 - Military-type turbofan engine
 - Multi-variable Controller
- **C-MAPSS**
 - Very Large (90K class) commercial turbofan engine
 - Includes realistic FADEC-like controller
- **C-MAPSS40K (was C-MAPSS2)**
 - Large (40K class) commercial turbofan engine
 - Includes realistic FADEC-like controller
 - Include engine dynamic and operability margins

See our branch web site for update and download information: http://www.grc.nasa.gov/WWW/cdtb/software/index.html
Fast engine response control research

Approaches:
• Engine Controller Limits Study and Relaxation
• Innovative Configuration/Operation Studies

Two NRA partners:
• Pratt & Whitney
 – Two subcontractors: Boeing and Univ. of Connecticut
 – Flight data analysis
 – Dynamic engine study
 – Engine requirement study
 – Fast response engine study

• Scientific Monitoring, Inc.
 – Fast response engine control
 – New actuator, configuration study
 – Flight simulator (GTM) implementation
High Level Risk Assessment Architecture

- Flight Control System
 - Adaptive Flight Control
 - Vehicle Risk Management
 - Vehicle Risk Assessment
- Engine Control System
 - Engine Controller
 - Actuators
 - Engine
 - Control Mode Selection and Risk Management
- Engine and Controller
 - Sensor Conditioning
 - Engine Condition Monitoring
 - Engine Operability Risk Models
 - Engine Life Prognosis Models
- Engine Life and Operability Prognosis
- Pilots
- Engine Control System
Risk Assessment Tool Development

Engine Life/Risk Study Involving:

– Failure Mode Analysis
 • Structural damage assessment

– Component Life Models
 • Component failure modes for various operating conditions

– Stochastic Life Models
 • Probabilistic distribution
 • Required confidence level
 • Risk trade-offs

– Remaining Life Prediction
 • Engine accumulated usage
 • Probabilistic life estimate for extended operation
Integrated Flight/Propulsion Control

Simulation Platforms:
- GTM
- GRC Flight Simulator
- Boeing Flight Simulator
- Other NASA Flight Simulators

Issues
- Use propulsion system as a redundant set of actuators
 - Direct access by flight controller
 - Engine controller integrity
- Trigger
 - When to invoke emergency control mode
 - FADEC vs. Flight Controller
- Risk management at system level
 - Perceived risk by pilot
 - Aircraft condition
 - Engine Condition
 - Engine enhancement operating risk
 - Decision/optimization methodology
Summary

- Completed C-MAPSS40K, a major engine simulation package for research

- Fast Engine Response team includes in-house researchers and NRA partners

- Risk assessment tool has been developed and the trade-offs of risk and performance are addressed.

- Fast engine response control algorithm to be demonstrated in a flight simulator at the end of 2010.
What is next

• The current IRAC project will be revised in FY11.

• New areas of research include:
 – Loss of Control Research
 – Flight Control Research
 – Verification & Validation
 – Flight Test for Advanced Concepts