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1. Why Data-Driven Model-Based 
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NASA Award No: NNX07C98A

PENN STATE



Necessity of Advanced Combustion Control

NASA Award No: NNX07C98A

PENN STATE

For gas turbine combustors, the design strategies favoring different performance 
indices are usually not compatible. Combustion control adds extra freedom to improve 
and optimize overall performance. A typical example is developing control systems to 
enhance lean combustion stability so that the engines can operate in clean, safe, and 
stable manner. 

Mixed control performance has been reported, including insufficient suppression of slightly-
damped modes. These are the intrinsic deficiencies of phase-shift control principles.

Three adaptive phase-shift controllers (Gatech, UTRC, and Yi&Gutmark). The last one is 
capable of identifying the dominant frequency within one pressure cycle and a half, with an 
estimation error within 5 Hz,  and is free of stability concerns

Model-based control design is a standard routine for control engineers and theorists. Data-
driven models are in particular attractive and practical. 

Enough evidence suggests that model-based controllers can easily outperform the empirical 
ones, and for highly nonlinear systems, a simple nonlinear controller can well outperform linear 
ones. 

No knowledge can be certain if it is not based on mathematicsNo knowledge can be certain if it is not based on mathematics.
(Leonardo da Vinci)



Example 1. Empirical Vs. Model-based Control
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Mean Flow Control of the Goodrich Valve: PD Vs. LQG Control 

Goodrich Magnetostrictive Valve
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Example 2. Linear Vs. Nonlinear Control
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Adaptive control of Large-Vortex Shedding

No Control

N-S Equation:

POD-based
Model 
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Example 2. Linear Vs. Nonlinear Control (cont.)
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2. Fuel Modulation Techniques
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The NASA Combustion Rig

Static/Dynamic Pressure
Temperature
Gas Fuel Bar

Quartz Tube

Liquid Fuel Tubing & Injector

Pressure & Ignitor

Preheated Air

NASA Venturi

NASA Swirler

NASA Fuel
Injector

Quartz Tube

• Visually-observed axisymmetric flame
• Pressure drop within 4% up to 70 SCFM
• Nice blue flame below Ф=0.38
• Somewhat red/yellow flame above Ф=0.38

• Large fuel pressure drop, about 4 times larger

• Jet-like flow with vortex breakdown, not easy to ignite
• Comparable LBO limits with the previous one
• Comparable air pressure drop with the previous one

• Less efficient fuel/air mixing than the previous one 
which has no red/yellow flame up to Ф=0.60
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Experiment Setup
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Motor-Driven High-Frequency Fuel Valve
Fuel 
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Fuel Transfer Function
Flame Transfer Function
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Motor-Driven High-Frequency Air Valve
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Shaft

Air In

Air Out

• Driven by a variable speed DC motor
• Modulation frequency up to 900 Hz
• Inlet velocity modulations above 50% 

up to 800 Hz
• Size 4’’x4’’x2.5’’
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Flame Response to Air Modulations
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3. Combustion Sensing Techniques
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Background of Combustion Sensing

• The instantaneous heat release rate and equivalence ratios are two key parameters for combustion 
analysis and control. Chemiluminescence-based sensors are practical solutions. 

• For premixed gas-fueled combustion, linearity between chemiluminescence yield and heat release 
is valid for slightly turbulent or wrinkled flamelet region. But in the corrugated and broken flamelet
region, nonlinearity cannot be ignored.

• In combustion instability analysis, it is usually assumed that chemilumienscence is proportional to 
the instantaneous heat release rate, which in fact, suffers from several major deficiencies. 
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• Reported is an accurate correlation-function-based method for real-time combustion sensing,   
based on chemiluminescence measurements using PMTs. For the first time in combustion 
literature, the nonlinearity among heat release, chemiluminescence, equivalence ratios, and 
acoustics effects is taken into account



UV and VIS Flame Spectra
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Combustion Sensing Strategy
The above correlation functions are mostly developed from stable combustion, thus they can be used 
to determine the mean heat release rate and the mean equivalence ratio (See JPP, Vol.129, No.5). 
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The estimated mean air consumption rate and the mean equivalence ratio. The air flow rate is 66.7g/s, the preheat 
temperature is 373 K, and the equivalence ratio is decreased from 0.41 to 0.31. 
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Combustion Sensing Strategy (Cont.)
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4. Flame Transfer Functions and 
Control Design Perspective
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Background

• Combustion instability and lean blowout are major technical challenges for liquid-fueled DLE 
combustion. Both phenomena can be attributed to the increased sensitivity in heat release  to 
external disturbances or intrinsic acoustic oscillations at very lean conditions.  

• Active control of both phenomena can be achieved using small-amplitude fuel modulations, 
employing the same control hardware and fuel actuators. However, major differences exist.

• First-principle low-order modeling is challenging. The measured flame transfer functions 
(FTFs), i.e. heat release responses to inlet air and/or fuel modulations, provides an accurate 
description of combustion dynamics around the working conditions where they are derived.

• Acoustic responses are system- and geometry-dependent, but heat-release-based open-
loop FTFs can be used for different types of engines employing the same type of burners. 
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Flame Transfer Functions
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Control-Oriented Low-Order Modeling
The measured flame transfer function provides an accurate description of combustion dynamics. 

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

200 300 400 500 600
Frequency(Hz)

A
m

pl
itu

de

Measurement
Model

-180

-150

-120

-90

-60

-30

0
200 300 400 500 600

Frequency(Hz)

P
ha

se
(D

eg
) Measurement

Model

321

432

1
0

1*
1

5222.0525.1952.11
147.1604.14213.0

)(
)()( −−−

−−−

−

−
−

−+−
−+−

==
zzz
zzz

zP
zCHzW

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 100 200 300 400 500 600
Frequency(Hz)

G
ai

n

75.1 g/s
66.7 g/s
58.4 g/s

-300

-250

-200

-150

-100

-50

0
0 100 200 300 400 500 600

Frequency(Hz)

P
ha

se
(D

eg
)

75.1 g/s
66.7 g/s
58.4 g/s

Equivalence Ratio

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 100 200 300 400 500 600
Frequency(Hz)

G
ai

n

473 K
423 K
373 K

-270

-225

-180

-135

-90

-45

0
0 100 200 300 400 500 600

Frequency(Hz)

P
ha

se
(D

eg
)

473 K
423 K
373 K

Preheat Temperature

Examination of the gain and phases of the measured FTFs at different 
working conditions sheds insight on adaptive robust control design. 
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Fast Control of LBO
LBO limits can be extended by increasing the amount of pilot fuel. But this approach is too slow, not 
suitable for transient LBO. In addition, locally hot regions form and exacerbate emissions. 

Small-amplitude fuel modulations, based on a feedback controller, are capable of quickly attenuating 
small deviations from the equilibrium points within a small fraction of a second. Also detection of 
incipient LBO is not needed. The spatial fuel distribution is not modified, thus favoring low 
emissions.  

Near-LBO combustion dynamics is rather slow, typically below 200 Hz. Thus the requirements of the 
actuator bandwidth and challenges associated with time delay are no longer major technical 
challenges.
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FTFs around Resonant Frequencies
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Ф=0.40 , the air flow rate of 44.5 g/s, and Ti=373 K. Stable combustion is achieved by inserting three baffle plates 
inside the combustion chamber.

The FTFs around the acoustic resonant frequencies are no longer open-loop and linear. In this 
figure, off the resonant frequencies, i.e. around 340 Hz and 670 Hz, differences in both the gain and 
phases are rather small. Considerable differences exit around the acoustic resonant frequencies. 
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Nonlinear Responses of Combustion Instability
Shown here are the quenching and entrainment of self-excited combustion instability with fuel 
modulation approaching the unstable frequency. 

Unstable combustion occurs at Ф=0.40 , the air flow rate of 44.5 g/s, and Ti=373 K. The fundamental resonant 
frequency is 672 Hz, corresponding to one-wave mode of the combustion chamber, 1.05-m-long. 
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Characterization of Combustion Instability
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Characterization of Combustion Instability (Cont.)
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Phase Portrait of Self-Excited Combustion Instability 

Probability Density Function of Pressure Amplitude and Period



5. Conclusions and Suggested 
Future Work
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• Performed systematic investigations of flame response to fuel modulations up to 
1 kHz and to air modulations up to 900 Hz.

• Developed strategies for accurate determination of the instantaneous heat release 
rate and equivalence ratios, which take into account of the nonlinearity 
among heat release, chemiluminescence, equivalence ratios, and acoustics-
induced chemiluminescence oscillations. 

• Proposed that a single adaptive robust controller be used for simultaneously 
control of both combustion instability and lean blowout. 

Suggested Future Work
• Development of high-frequency fuel-modulation technologies

• Quantification of flame response within a large range of working conditions

• Implementation of combustion control experiments
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