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MotivationMotivation
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• Combustor control can provide 
optimal tradeoff between low 
emissions and engine reliability/ 
operability
– static and dynamic instability 

(blowout and oscillations)
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Combustion Control Combustion Control 
• Control Needs: Control systems that can 1) provide low emissions

(lean operation) and 2) prevent or recover from loss of dynamic stability
and 3) prevent loss of static stability
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NeedsNeeds
• Goal: fundamental understanding needed to convert signals 

from simple sensors to stability margin estimates and active 
control inputs

• Tasks

Active Dynamic
Stability Control

Static Stability
Margin Sensing

Local Fuel-Air
Sensing

Reliable Combustor 
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Active Control of Combustion DynamicsActive Control of Combustion Dynamics
• State of the art

– widely demonstrated that 
active control can reduce 
instability amplitude

– poorly understood 
variability in effectiveness 

• SPL reductions
range from 3 to 40 dB

– controlled combustors can 
exhibit significant 
amplitude modulation

• Goal
– model factors that limit 

control effectiveness
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Modeling ApproachModeling Approach
( ) ( ) ( ) ( ) ( ) ( )ttptptptptp ccvv σξτετεωζω +−′+−=+′+′′ 22

• Use Culick’s formulation to describe time evolution of combustor modes 
with time delays and noise
• include both “internal” and control induced delays

• Solve for statistical and spectral characteristics of pressure as function 
of control time delays and gain
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AccomplishmentsAccomplishments

• Developed statistical theory of controlled combustion dynamics including time delays 
and noise
– closed form solutions for statistics and spectra of combustor pressure

• Reproduced common experimental observations of controlled combustor dynamics
– e.g., one controller can have significantly different influences on instability, 

depending upon “nominal” combustor dynamics
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Interplay between Interplay between ““NominalNominal”” Combustor Combustor 
Dynamics and ControlDynamics and Control

• Increasing control time delays 
decreases control effectiveness 
and window of controllability

• Controller impact varies with 
internal time delays

•Plots show inverse limit cycle 
amplitude of controlled combustor
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Quantifying Controller PerformanceQuantifying Controller Performance
• Model captures experimentally 

observed
– increase of minimum limit cycle 

amplitude with controller time 
delay

– variation of controller 
performance with internal 
delays

• Future work - add physics
– model predicts much smaller 

amplitude modulation than 
experimentally observed

– currently working on 
incorporating observer 
dynamics 
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Static Stability : LBO Precursors

0 100 200 300 400 500 600 700 800

-0.5

0

0.5

B
an

dp
as

s
ou

tp
ut

0 100 200 300 400 500 600 700 800
0

0.5

1

time [msec]

O
H

 s
ig

na
l

A
co

us
tic

 
Se

ns
or

O
pt

ic
al

 (O
H

*)
 

Se
ns

or

Precursor Events

• Goal: Estimate LBO margin in-situ
• Approach: Occurrence of local 

extinction/re-ignition events = LBO 
precursors
– optical/acoustic detection
– e.g., double thresholding of signals
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LBO Control
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• LBO proximity parameter : event rate (avg number of events/sec)
– more frequent events as LBO is approached

• Can use as input to LBO avoidance controller
– e.g., fuel distribution control

• Static stability can be linked to dynamic instability
LBO margin sensing in the presence of combustion dynamics?
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Precursor Events: Combustion Dynamics
• Two kinds of instability mechanisms 

– Equivalence ratio oscillations (w/ Φ' )
– Flame-acoustic interactions (w/o Φ')

• Low pass filtering (~50Hz) for improved 
precursor detection

• Same event signatures as dynamically 
stable conditions
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Precursor Events: Acoustic Signal
• Precursors not evident in raw acoustic signal
• LP filtering reveals precursor event signature
• Same event characteristic shape as dynamically 

stable conditions
– can use same event sensing algorithm (e.g., 

identification with wavelet filter)
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LBO Sensing
• Robust optical signal 

stability parameter : 
Stability Index (SI)

SI
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Single Nozzle LDI System 

Inlet

Single nozzle 
Injector Quartz flame 

tube

Quartz optical 
windowsCooling flow

Water 
coolingPressure Vessel

Exhaust

• Objective: Examine LBO 
margin sensing in advanced, 
low NOx, elevated pressure 
combustor
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LDI Tests – Jet A
• Initial shakedown at 

atmospheric pressure
• Flame zone has lean 

signature (blue flame)

T3=740 F (667K), Φ=0.46,
Vref = 46 ft/s (14 m/s)

T3=751 F (672K), Φ=0.7, 
Vref=28 ft/s (8.5 m/s)

Movie

T3=740 F, Vref = 46 ft/s, Φ=0.51-0.37
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Summary

• Developed statistical theory of controlled combustion 
dynamics including time delays and noise
– closed form solutions for statistics and spectra of 

combustor pressure
• Reproduced common experimental observations of 

controlled combustor dynamics
– can use to study limits of control effectiveness and 

improve controller design
• Demonstrated robust LBO precursor sensing

– robust event sensing algorithms: multiple combustors, 
with and without dynamics instability

• Currently extending work to NASA single-element LDI 
combustor 


