Active Combustion Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

John DeLaat
Controls and Dynamics Branch
Ph: (216) 433-3744
email: jdelaat@nasa.gov
Team Members

- **Controls and Dynamics Branch**
 - Dan Paxson: Dynamic Models
 - George Kopasakis: Control Methods
 - Joe Saus: Actuators
- **Combustion Branch**
 - Clarence Chang: Combustion Science
- **Engineering Directorate**
 - Dan Vrnak: Control Software
- **Supersonics Project**
 - Dan Bulzan – Supersonics (and Subsonics) Combustion API
- **Other NASA Participants**
 - Sensors, Materials, Combustion and Flow Diagnostics
- **Non-NASA Participants**
 - General Electric, Pratt & Whitney, UTRC, Honeywell, Penn State, Virginia Tech, Georgia Tech
OUTLINE

• Motivation: Low Emissions Combustors
• NASA’s Overall Combustors Effort
• Thermo-Acoustic Instability => Active Control
• Technical Challenges and Approach
• Early Results, Enabling Technologies
• Recent Results
• Modeling – Dan Paxson
• Current Efforts, Future Plans
• Opportunities for Collaboration
Fundamental Aeronautics, Supersonics
High Altitude Emissions

Objectives

• Develop the necessary technologies to enable low emissions (gaseous and particulate) combustion systems to be developed for supersonic cruise applications.
• Develop and validate physics-based models to enable quantitative emissions and performance predictions at supersonic cruise conditions using Combustion CFD simulations.
• Develop and validate high temperature sensors for use in intelligent engines.

Also - Fundamental Aeronautics, Subsonics, Combustion
• Combustion Chemistry and Turbulence Modeling
• Particulates Sampling and Modeling
• Alternate Fuels

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
90% NOx Reduction Combustion: Multi-Point Lean Direct Injection

1. Energetic quick-mixing before auto ignition at high power condition
2. Lean and uniform front end makes less CO and NOx initially
3. Less CO initially, shorter combustor needed
4. Shorter combustor, shorter residence time, less additional NOx
5. Multiple injection points allow temporal and spatial fuel/air control
 - allows active fuel-shifting control to improve operability
Ultra-Lean-Burning Combustors Are More Susceptible to Thermo-Acoustic Instabilities

1. High-performance fuel injectors: more turbulence
2. Reduced film cooling: reduced damping
3. More uniform temperature and composition
4. No dilution holes: reduced flame-holding
Combustion Instability Control Strategy

Objective: Suppress combustion thermo-acoustic instabilities when they occur

Closed-Loop Self-Excited System

- **Combustion Process**
- **Combustor Acoustics**

Fuel-air Mixture system

Artificial control process

- **Actuator**
- **Controller**
- **Sensor**

Natural feed-back process

- Φ'
- P'
Synergistic Technologies to Enable Ultra-Low Emissions Combustion

- Fuel
- Fuel Injection Dynamics and Flameholding
- Manufacturing Processes
- Materials
- Active Combustion Control Methods
- Fuel Actuator
- Feedback Sensor
- Combustor and Fuel System Dynamics

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Active Combustion Control - Technical Challenges

• Combustor dynamics largely unmodeled

• Noisy environment

• Liquid fuel – introduces additional unmodeled dynamics including time delay (atomization, vaporization, …)

• Actuation system – enough bandwidth and authority, not just valve (also feedline, injection, …)

• Simplified models needed for control design evaluation

• Control methods that can:
 – identify instability
 – suppress instability in presence of large time delay, substantial noise, unmodeled dynamics

• Realistic experimental testbeds (combustor, actuation system)
Active Combustion Instability Control Via Fuel Modulation

High-frequency fuel valve

Advanced Control Methods

Fuel delivery system model and hardware

Fuel delivery system model and hardware

Research combustor rig and models
Combustion Dynamics Modeling

- Reduced-order oscillator models
 - Run fast to allow parametric studies in support of control system development

- Simplified Quasi-1D dynamic models
 - Allow physics-based control method validation

- Detailed, physics-based dynamic models
 - Fundamental understanding of combustor dynamics to aid passive, active instability suppression

Results from NASA Sectored-1D Model of LPP Combustor Rig – D. Paxson

Penn State Injector Response Model Plot

Glenn Research Center
Controls and Dynamics Branch at Lewis Field
High-Bandwidth Fuel Actuator Characterization Testing – J. Saus

Valve, Feed-system Characterization Rig at NASA GRC

Glenn Research Center
Controls and Dynamics Branch

at Lewis Field
High-Bandwidth Fuel Actuator

GaTech high-response fuel valve in characterization rig in CE7A

Frequency Response Dynamic Characterization Data

Fuel Delivery System Dynamic Response

Stroboscopic Image of Dynamic Fuel Injection
Adaptive phase shifting control:
“Adaptive Sliding Phasor Averaged Control” – G. Kopasakis

Pressure from Fuel modulation

Boundary of effective stability region

Overall combustor pressure

Boundary of restricted control region

Pressure from instability

Fuel lines, Injector & Combustion

Phase Shift Controller

Filter

Fuel Valve

Acoustics

Instability Pressure

White Noise

NL

Combustor Pressure

Flame

Pressure from instability

Pressure from Fuel Modulation

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Model-Based Control:
“Multi-Scale Extended Kalman Control” – D.K. Le

- Sensed combustion pressure
- Multi-Scale Tones Analysis
- Phase Drift Estimation
- Phase-Adjusted Reconstruction
- Time-Scale Averaged Pressure Variance
- Parameter Tuning
- EK States Predictor
- Damper
- Suppression
- Fuel modulation command
Active Combustion Instability Control Demonstrated Experimentally

Large amplitude, low-frequency instability suppressed by 90%

Liquid-fueled combustor rig emulates engine observed instability behavior at engine pressures, temperatures, flows

High-frequency, low-amplitude instability is identified, while still small, and suppressed almost to the noise floor.

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Additional Test Results:
Harmonic-focused control provides over 90% reduction in pressure spectral peak for large, low-frequency instability

Uncontrolled –vs- Controlled Instability Pressure

97% Reduction

~75% in peak amplitude reduction
Additional Test observations: Open-loop 100 Hz fuel valve perturbations shows substantial interference with 315Hz instability

Uncontrolled

Open-loop perturbations at 100Hz
Recent Results
– Lean, Low-Emissions Combustor Instability Characterization

- Increasing fuel flow increases 530Hz combustion instability, preventing full-power operation

- Continuing research to demonstrate instability control/suppression:
 - Apply advanced NASA modeling, control, actuation methods

Active Control may extend lean, low-emissions combustor operation
Simulation of Combustion Instabilities:
A Sectored-One-Dimensional Approach

Daniel E. Paxson
NASA Glenn Research Center
Cleveland, Ohio
216-433-8334
Daniel.E.Paxson@nasa.gov

Propulsion Controls and Diagnostics Workshop
Cleveland, Ohio, November 2007
Discussion Outline

- Motivation
- Simulation Methodology Description
- Results
- Comments
Motivation

• Low emission combustors may be susceptible to thermo-acoustic combustion instabilities.
• One possible solution to the this problem is active control.
• Successful active control design requires accurate modeling and simulation.
 – The essential physical phenomena should be correctly captured (e.g. self-excitation).
 – Characterization and a control design necessitate rapid simulation (i.e. relative simplicity).
 – Simulation must lend itself to implementing a variety of sensing and actuation strategies.

For combustor configurations in which the potential instabilities propagate axially, but which contain abrupt changes in cross sectional area, the method to be described can achieve the simulation goals.
Description-Simplifications

Within Each Sector:

- One-Dimensional
- Perfect Gas
Description-Governing Equations

\[
\frac{\partial \bar{w}}{\partial t} + \frac{\partial \bar{F}(\bar{w})}{\partial x} = \bar{S}(\bar{w}, x)
\]

\[
\bar{w} = \begin{bmatrix}
\rho \\
\rho u \\
\frac{p}{\gamma (\gamma - 1) \rho u^2 + \rho u^2}
\end{bmatrix}
\]

\[
\bar{F} = \begin{bmatrix}
\rho u \\
\rho u^2 \\
\frac{p}{\gamma - 1} + \rho u^2
\end{bmatrix}
\]

\[
\bar{S}(\bar{w}, x) = \begin{bmatrix}
\frac{\partial}{\partial x} \left(\frac{\varepsilon_t}{\text{Re}^*} \frac{\partial u}{\partial x} \right) + \sigma_2 u \| u \|^0.75 \\
\frac{\partial}{\partial x} \left(\frac{\varepsilon_t}{\text{Re}^*} \frac{\partial u}{\partial x} \right) \frac{u^2}{2} + \frac{T}{\gamma - 1} + q_0 R + Q_{ht} \\
\dot{m}_r + \frac{\partial}{\partial x} \left(\frac{\varepsilon_t}{\text{Re}^*} \frac{\partial z}{\partial x} \right) - R + \dot{m}_s z_s
\end{bmatrix}
\]

R = \frac{K_0 \rho z (\zeta_1 - \zeta_2 z)}{1 - \left(\frac{T_{\text{ign}}}{T_i} \right)} \begin{cases}
1; & T_i > T_{\text{ign}} \\
0; & T_i < T_{\text{ign}}
\end{cases}

Q_{ht} = \alpha (T_{\text{inf}} - T_i)

- Reactive Euler Equations with Source Terms
- MacCormack’s Method
 - Fast
 - Second Order Accurate
- Artificial Viscosity
 - Baldwin-MacCormack
 - Density Instead of Pressure
- Uniform Grid Spacing
 - Relatively Course
 - Requires Some “Tuning” (e.g. eddy viscosity, reaction rates)
- Sectors Joined With Compatible Boundary Conditions
 - Multi-block Approach
 - Nothing “Stored” @ Interface
• Theoretical resonant frequencies are integer multiples of the fundamental.
• Q-1-D and Sectored models agree
• 100 numerical cells.
Validation-Valveless Pulsejet

- Coupling between heat release and acoustic modes is self-excited.
- No external, forced excitation.
- Geometry approximates a functional pulsejet.
- Frequency is correct.
- 200 cells.

Rayleigh Integral, $Ra = q_0 \int R' p'dx$

Non-Dimensional Time

0.000 0.005 0.010 0.015 0.020 0.025

-0.005 -0.000 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.0 1.0 2.0 3.0 4.0 5.0

Glenn Research Center
Controls and Dynamics Branch

at Lewis Field
Comparison With Experiment
GRC CE-5 LPP

- Exhaust modeled as mass extraction.
- Cooling spray modeled as a high heat transfer region.
- Flame position adjusted with turbulent diffusivity distribution.
- Noise added at inlet boundary.
- 350 cells, CPU time=1600 integration time.
Comparison With Experiment
Low Pressure, Low Mass Flow, Low Inlet Temperature

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Comparison With Experiment
High Pressure, High Mass Flow, High Inlet Temperature
Comparison With Experiment
GRC CE-9 SNR

- Weak oscillations @ approx. 500 Hz.
- "Pink" noise at injector (momentum source)
- Helmholtz-like.

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field

- Strong oscillations @ approx. 300 Hz.
- Strong oscillations @ approx. 350 Hz.
- Simulation preceded testing (i.e. predictive)
2.5 second simulation with linear fuel flow increase corresponding to f/a ratio change from 0.025-0.03.

60 seconds of rig data during which f/a ratio increases from 0.028 to 0.03.

- Dump tank cooling spray simulated with a choked (reflective) boundary condition.
- Amplitude variation with f/a matched.
Comparison With Experiment
GRC CE-9 SNR with Active Control Applied

High Frequency Instability

Simulated Control

Low Frequency Instability

Measured Control

Glenn Research Center
Controls and Dynamics Branch

at Lewis Field
Sectored 1-D Model Concluding Remarks

- The sectored-one-dimensional technique has successfully simulated instabilities in a variety of combustors with complex geometries.
- Simulations run far from real-time, but fast enough for control design.
- Simulated plant responses to control match measured responses.
- Some success shown in prediction of instabilities, but “tuning” of some parameters is still required.
- More work is therefore needed to model complex phenomena in a 1-D compatible fashion.
Active Combustion Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

Current Directions and Future Plans

John DeLaat
Controls and Dynamics Branch
Ph: (216) 433-3744
email: jdelaat@nasa.gov
Current Directions and Future Plans

NRA Cooperative Agreements

- Penn State and Virginia Tech
 - Active fuel nozzle, flame transfer function

- Georgia Tech
 - Integrated control of:
 - Dynamic stability margin
 - Static stability margin
 - Dynamic stability mitigation

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Current Directions and Future Plans

• Current platform - lean combustor concept (not LDI)
 – Actuator research for small “pilot” flows
 – Dynamic model validation
 – Instability control demonstration

• Future platform - LDI Multi-point injection
 – Fundamentals rig in CE7C
 – High pressure testing in CE5, ASCR
 – Control methods that exploit multipoint injection
 – Multidimensional models

• Incorporate technologies from NRA’s

• Harmonic, sub-harmonic models and control
Opportunities for Collaboration

- Requirements definition and feedback (engine, HW mfrs)
- Realistic testbeds for technology transfer
- Control methods integration and field testing
- Modeling methods field testing
- Multidimensional models development
- Actuator systems, associated models development, field testing

- NRA’s, SBIR – Watch solicitations. Future topics TBD
- SAA’s – Have one in place, others welcome

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Concluding Remarks - Long Term Goal for Active Combustion Control

• Improve fundamental understanding of the combustor processes
 \textit{in order to...}

• More effectively integrate multi-point combustor design, controls, sensor, and actuator technologies
 \textit{to provide...}
 – An intelligent fuel/air management system with temporal and spatial fuel modulation for
 • Instability avoidance/suppression
 – Thermoacoustics, blowout
 • Pattern factor control
 • Emissions minimization

\textit{to enable...}

➤ Combustors with extremely low emissions throughout the engine operating envelope
References

