Outline

• Team Members
• Compressor Flow Control Overview
• Flow Control Actuation Systems & Experimental Results
• Fluidic Actuators
• High Temperature Shape Memory Alloy Actuators
Team Members

Dennis Culley Controls & Dynamics Branch
Randy Thomas Controls & Dynamics Branch
Jon DeCastro Arctic Slope Regional Corp (ASRC)
Doug Feikema Combustion & Reacting Systems Branch
Suleyman Gokoglu Combustion & Reacting Systems Branch

Glenn Research Center
at Lewis Field
Compressor Separation

Suction surface separation is inferred from changes in wake width and depth

- Induce separation via blade stagger change and reduced flow coefficient
- Quantify separation by surveying total pressure (P_t) downstream of blades

Glenn Research Center

at Lewis Field
Solenoid Actuation System

External Air Supply

Massflow Controller / Meter

Accumulator

Valve

Controller

Interleaved valve signal

TIP

HUB

u_{jet1}

U_1

Solenoids with rapid prototype stator vane

Glenn Research Center

at Lewis Field
Steady vs. Unsteady Injection

Total Pressure Coefficient, C_{pt}

Vane Pitch (%)

Baseline
Unsteady
Steady

Glenn Research Center at Lewis Field
Impulsive Injection in Compressor Stator

50% Duty Cycle
Impulsive Injection Effectiveness

<table>
<thead>
<tr>
<th>% Core Mass Flow</th>
<th>Change in Baseline Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00%</td>
<td>5%</td>
</tr>
<tr>
<td>0.04%</td>
<td>0%</td>
</tr>
<tr>
<td>0.08%</td>
<td>-5%</td>
</tr>
<tr>
<td>0.12%</td>
<td>-10%</td>
</tr>
</tbody>
</table>

Legend:
- ▲ 1.95 800
- ▼ 1.71 700
- ■ 1.34 550
- □ 1.22 500
- × 0.98 400
- ○ 0.67 275

Glenn Research Center at Lewis Field
Flow Control References

Active Flow Separation Control of a Stator Vane Using Embedded Injection in a Multistage Compressor Experiment, Culley, Dennis E. (NASA Glenn Research Center); Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J. Source: Journal of Turbomachinery, v 126, n 1, January, 2004, p 24-34
Actively Controlled Fluidic Actuators

Rapid prototyped fluidic actuators with solenoid operators

Glenn Research Center at Lewis Field
Current Efforts

SFW Turbomachinery Flow Control task experiments and analytical & computational models

Plasma controlled fluidic actuator

Modeling of the transient switching performance of the fluidic actuator

Glenn Research Center at Lewis Field
High Temperature Shape Memory Alloy Actuators

Dynamic response of SMA actuators

HTSMA actuator developed for T700 engine

HTSMA actuator installed in T700 engine

SBIR success story
Miga Motors

Glenn Research Center at Lewis Field
Active Flow Control Actuation Research & Development

Component Rig & Wind Tunnel Test
- Separation Control
- Stability Control

Innovation Design Test

Voiced Coil
Rotary
Solenoid
Passive Fluidic
High Temperature Shape Memory Alloy
Variable Frequency Plasma-Fluidic
Rapid Prototyping

Glenn Research Center
at Lewis Field
Actuator References

Opportunities for Collaboration

SFW Funded Opportunities
Currently there are no funded opportunities within SFW

Collaborative Opportunities
Fabrication and micro-machining
Materials development
Electronic circuit development and miniaturization
Electric and magnetic field analysis
Computational fluid dynamics (CFD) model development
Experimental applications and testing

Glenn Research Center
at Lewis Field
Future Plans

Continue the effort to develop, expand, and refine techniques for active flow control in aero-engine applications through multi-disciplinary collaboration.

Goals

• Through improved understanding, develop the design tools which will enable the practicable use of flow control in a wider breadth of aero-engine applications.

• Deliver realistic and reliable actuation technologies for embedded, point-of-use flow control in the aero-engine environment.