Distributed Engine Control

Workshop at Ohio Aerospace Institute, Cleveland OH
Nov. 6-7, 2007

Dennis Culley
Ph: (216) 433-3797
email: dennis.e.culley@nasa.gov
http://www.lerc.nasa.gov/WWW/cdtb

Glenn Research Center
Controls and Dynamics Technology Branch
at Lewis Field
Can We Improve On This?

Glenn Research Center
at Lewis Field
Outline

• Team Members
• Focus & Expectations for Distributed Engine Control
• Overview of Distributed Engine Control Architecture
• Challenges of Distributed Engine Control
• NASA Task Plan Details
 – Architecture
 – Subsystems
 – High Temperature Electronics

Glenn Research Center at Lewis Field
Team Members

Dennis Culley Controls & Dynamics (RIC)
Randy Thomas Controls & Dynamics (RIC)
Joseph Saus Controls & Dynamics (RIC)
Michael Krasowski Optical Instrumentation and NDE (RIO)
Lawrence Greer Optical Instrumentation and NDE (RIO)
Norman Prokop Optical Instrumentation and NDE (RIO)
Glenn Beheim Sensors and Electronics (RIS)
Laura Evans Sensors and Electronics (RIS)
Philip Neudeck Sensors and Electronics (RIS)
Richard Patterson Space Environmental Durability (RPY)
Kue Chun Digital Communications (RCD)
Joseph Flatico Ohio Aerospace Institute (OAI)
Andrew Trunek Ohio Aerospace Institute (OAI)
David Spry Ohio Aerospace Institute (OAI)
Carl Chang Arctic Slope Regional Corp (ASRC)

Glenn Research Center
at Lewis Field
Enabling advanced aircraft configurations such as “Blended Wing Body (BWB),” “Extreme Short Take Off and Landing (ESTOL)” and high performance “Intelligent Engines” will require advancement in the state of the art of dynamic modeling and flight/propulsion control. Control methods need to be developed and validated for “optimal” and reliable performance of complex, unsteady, and nonlinear systems with significant modeling uncertainties. The emphasis will be on developing technologies for improved aircraft performance, enabling robust control of unconventional configurations, and active control of components for improved propulsion efficiency and lower emissions.

For enabling “Intelligent Engines,” the focus will be on developing technologies for enabling distributed engine control to reduce overall controls and accessories weight for the propulsion system and increase control system reliability.
Expectations for Distributed Engine Control

- Improve Engine Performance
- Reduce Engine Life Cycle Cost
- Reduce Time to Design/Modify Engine Control System
Performance Metrics

Reduce Engine Weight
• by reducing the weight of control components but also by enabling the implementation of other new control technologies which effect engine weight reduction

Improve Control System Accuracy and Responsiveness
• by improving long-term sensor and actuator accuracy, enabling the availability of more system information, improving loop responsiveness with local control

Increase System Availability
• by adapting to system aging effects and isolating faults

Glenn Research Center

at Lewis Field
Engine Life-Cycle Cost Metrics

Reduce Design, Manufacture, Integration and Test Costs
- by using functional modularity and standardization to create common building blocks within engine systems and across engine platforms – helps primes, suppliers, and certification

Reduce Operational Costs
- by reducing fuel consumption through better efficiency, reducing the need for scheduled maintenance, and increasing system availability

Reduce Logistical Costs
- by reducing the part inventories, reducing obsolescence, and reducing training requirements

Glenn Research Center

at Lewis Field
Design/Modify Time Metrics

Initial Design Cycle
• by providing a set of functional building blocks which are common across engines and engine platforms

Planned Design Modifications and Upgrades
• by providing a common interface which enables a clear upgrade path

Unplanned Obsolescence
• by providing a means to isolate system implementation from system function – reducing the impact on existing systems
Overview of Distributed Engine Control

• Systems Engineering
• Vision
• Architecture - Evolutionary or Revolutionary?
Vision for Distributed Control

Decomposition of the Engine Control Problem into **functional elements** results in **modular** components. These components create the building blocks of any engine control system.

- **Modularity**
 - commonality
 - expandability
 - scalability
 - flexibility
- **Obsolescence mitigation**
- **Lower processing requirements**
- **Enhanced performance**
- **Lower weight**
- **Reduced cost**

The use of **open system standards** enhances benefits by leveraging the greatest possible market for components.

Glenn Research Center at Lewis Field
Centralized Functions

- SENSOR
- POWER & SIGNAL CONDITIONING
- A/D CONVERSION
- LIMIT CHECKING & SCALING
- D/A CONVERSION
- CONTROL LAW PROCESSING
- LIMIT CHECKING & SCALING
- OTHER ANALOG TO DIGITAL AND SYSTEM DATA
- TIMING
- FADEC
- ACTUATOR
- POWER & SIGNAL CONDITIONING
- A/D CONVERSION
- LIMIT CHECKING & SCALING
- CONTROL LAW PROCESSING
- LIMIT CHECKING & SCALING
- OTHER ANALOG TO DIGITAL AND SYSTEM DATA
- TIMING
- POWER CONDITIONING & DISTRIBUTION

Glenn Research Center
at Lewis Field
Transitional Functions

Glenn Research Center at Lewis Field
Smart Functions

Smart Sensor

Smart Actuator

FADEC

SENSOR

SENSOR SPECIFIC ELECTRONICS

COMMON COMMUNICATION MODULE

INTERCONNECTS

FADEC

STANDARD POWER CONDITIONING

COMMON COMMUNICATION MODULE

SUPERVISORY CONTROL LAW PROCESSING

SYSTEM DATA

TIMING

LOCAL CONTROL LAW PROCESSOR

COMMUNICATION MODULE

ACTUATOR SPECIFIC ELECTRONICS

ACTUATOR

COMMUNICATION MODULE

NASA

Glenn Research Center at Lewis Field
Challenges of Distributed Engine Control

System Constraints

1. Failure effects in a mission critical design.
 a) Reliability
 b) Failure Modes

2. Extreme environmental conditions.
 a) Temperature
 b) Vibration, Shock
 c) Water, salt spray, hydrocarbon fuels, and cleaning solvents, altitude
 d) Electromagnetic interference, susceptibility and control, lightning

3. Performance sensitivity to system weight.
4. Sensitivity to overall cost, including development, manufacture, operation, maintenance, and logistics.

Glenn Research Center

at Lewis Field
Challenges of Distributed Engine Control

Tall Pole Technology Issues

High Temperature Electronics
- Mid-temperature environment (< 250 °C) using silicon on insulator (SOI): limited part selection, full engine temperature range far exceeds SOI capability
- High-temperature environment (< 500 °C) using silicon carbide (SiC): almost no commercially available parts, basic issues remain to be resolved

Robust, Deterministic Communications
- Industry standards exist, but not applied to aero-engine applications – Mission Critical
- Issues related to electronic parts availability at temperature and environmental conditions

Glenn Research Center

at Lewis Field
Distributed Engine Control Task Plans

- Distributed Engine Control Working Group (DECWG)
- Distributed Engine Control Architecture
- Distributed Engine Control Subsystems
- High Temperature Electronics and Sensors
Distributed Engine Control Working Group

Dennis Culley
NASA Glenn Research Center

Alireza Behbahani
Air Force Research Laboratory

Richard Millar
Navy NAVAIR

Bert Smith, Christopher Darouse
Army AATD

Bruce Wood
Jim Krodel
Pratt & Whitney

Sheldon Carpenter, Bill Mailander
GE Aviation

Colin Bluish
Rolls-Royce North American Technologies Inc.

Bobbie Hegwood

John Teager, Ronald Quinn
Honeywell

Gary Battestin, Walter Roney
BAE SYSTEMS

William Rhoden
Hamilton Sundstrand

Bill Storey
Goodrich

Glenn Research Center
at Lewis Field
Distributed Engine Control Working Group

The main goals of the DECWG

- Identify, quantify and validate **benefits** from the stakeholder perspective.
- Identify the impact of **new control strategies** on all facets of the user community; including design, fabrication, assembly, supply chain, and operations.
- Identify **regulatory and business barriers** which impede the implementation of alternate control philosophies.
- Identify existing and emerging **technologies** which can be leveraged in the aero-engine control system.
- Identify **technology barriers** which prevent the implementation of alternate control philosophies and provide guidance to industry for their removal.
- Develop an overall **roadmap** with which to guide the successful implementation of alternate control philosophies.
Distributed Control Architecture

Task Focus

• Analyze the potential benefits, especially for volume and weight reduction, due to system architecture and design
• Investigate the availability and application of open standards for engine control
• Explore the use and availability of commercial and military off-the-shelf (COTS / MOTS) hardware
• Identify emerging embedded hardware architectures and technologies that can be applied to aeropropulsion engine control
Path to a New FADEC

Transitioning from Centralized to Distributed engine control architecture changes the FADEC functionality and design

- Eliminates the need for analog data handling - represents ~50% volume reduction
- Significantly reduces the pin and connector count – a major source of weight, reliability issues, and integration issues
- Reduces the need to customize circuitry for a specific application – decreases cost and design/upgrade cycle time
New Technologies for Harsh Environment Computing

High performance computer hardware, in a small form factor, based on robust open standards, is being rapidly pursued by industry. At least two of these competing commercial platform specifications have potential for aeropropulsion control systems.

- A small form factor is critical to address the shock and vibration environment on engine and airframe applications with minimal support structure, i.e., weight and volume.

- Conduction cooled hardware is critical to address the high power density of small form factor modules and the lack of convection cooling in engine-mounted applications.
Small Form-Factor Computing

![Diagram of microTCA & AMC modules and 3U VPX](image)

The Advanced Mezzanine Card (AMC) is a small form-factor, hot-swappable module originally developed for high bandwidth telecommunications systems and are supported by a large industrial base. The Micro Telecommunications Computing Architecture (MicroTCA) specification leverages the AMC form-factor and support while creating a new, low-cost, flexible, high-bandwidth and highly scalable small form-factor computing platform.

Standard organization: PICMG

Standard: microTCA.0

VPX, a descendent of the VMEbus legacy delivers state-of-the-art computing performance to high-end embedded computing applications. VPX offers complete electrical and dimensional compatibility with a large, existing base of VME products.

Standard organization: ANSI/VITA

Standard: VITA 46
microTCA Development

microTCA (μTCA) supports redundancy management of computing resources as well as power distribution, and it is highly scalable.

<table>
<thead>
<tr>
<th>Compute Bandwidth (system)</th>
<th>cPCI/VME</th>
<th>VITA 31, 41</th>
<th>PICMG 2.16</th>
<th>ATCA</th>
<th>μTCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td>High Availability</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Form Factor</td>
<td>3U</td>
<td>6U</td>
<td>6U</td>
<td>8U</td>
<td>2U</td>
</tr>
</tbody>
</table>

* Graphics supplied by RTC Magazine
μTCA ruggedization requirements are being developed to address the environmental requirements of virtually any commercial, defense or aerospace application.

- ANSI/VITA 47 (derived from MIL-STD-810-F), for environmental testing and compliance
- MIL-STD-461 for EMI/EMC requirements.
- MIL-STD-704 aircraft power or MIL-STD-1275 vehicle power.

Glenn Research Center at Lewis Field
Distributed Engine Control Subsystems

Task Focus
- Investigate the availability and application of open standards for embedded components in distributed systems
- Investigate the performance of commercially available electronic components under extreme environmental conditions
- Analyze the environmental requirements for embedded engine effectors
- Identify potential strategies for harsh environment control
- Drive applications into the high temperature electronics development effort

Glenn Research Center

at Lewis Field
What is a “smart” sensor or a “smart” actuator?

Smart transducer: A smart transducer is a transducer that provides functions beyond those necessary for generating a correct representation of a sensed or controlled quantity. This functionality typically simplifies the integration of the transducer into applications in a networked environment. (adapted from IEEE 1451 working group)

Most people have their own concept of what “smart” means but the issue is being addressed.
IEEE 1451

Standard for a Smart Transducer Interface for Sensors and Actuators

The objective of IEEE 1451 is to develop a smart transducer interface standard to make it easier for transducer manufacturers to develop smart devices and to interface those devices to networks, systems, and instruments by incorporating existing and emerging sensor and networking technologies. The standard interface consists of three parts.

- **Smart Transducer Interface Module (STIM)** – electronics to convert the native transducer signal to digital quantities.
- **Transducer Electronic Data Sheet (TEDS)** – a memory which contains transducer specific information such as; identification, calibration, correction data, measurement range, manufacture-related information, etc
- **Network-capable application processor (NCAP)** - the hardware and software that provides the communication function between the STIM and the network.
The IEEE 1451 standard family defines the interfaces between various transducers and networks, including wireless.
Frequency Output Sensors

Frequency output sensors have desirable characteristics for high temperature applications. Simple relaxation oscillator circuits can be constructed from commercial high temperature (\(< 300\) C) components to create sensors for temperature, pressure, speed, etc.

![Embedded Temperature Sensor Diagram]

-195 C
-25 C
+200 C

Glenn Research Center

at Lewis Field
Frequency Output Sensors

- Frequency kHz
- Duty Cycle %
- Rise Time µs
- Supply Current mA

Temperature 0°C

Glenn Research Center at Lewis Field
High Temperature SiC Smart Sensor Communication Network for Engine Instrumentation

New architecture for distributed sensor nodes for operation up to 500 °C
- Uses oscillators and logic gates constructed from SiC JFETs
 - Logical NOT, NAND, NOR gates and counters
 - Circuit constructs demonstrated with commercial JFETs at room temperature
- Each node produces a unique frequency signature enabling data separation on a common channel which can be wireless, wired, or over the common power bus
- Sensed parameter is transmitted as a change in frequency
- Each node superimposes a unique digital bit pattern in the frequency output to transmit device information, e.g., serial number, calibration data, etc.

Source Separation Receiver

Node 1
Temperature
Unique frequency and ID

Node N
Temperature
Unique frequency and ID

Glenn Research Center
at Lewis Field
High Temperature Direct Digital Communication

- Oscillator/Sensor Section
- Unique Pattern Sequence
 - Low frequency output, same sequence longer in time
 - High frequency output, same sequence shorter in time

Digital Logic Section

Power Bus

Glenn Research Center at Lewis Field
SiC JFET Digital Logic

Glenn Research Center

at Lewis Field
Digital Counter Using JFETs

D Flip Flop constructed from commercial JFETs at room temp. using topography created for SiC Logic Gates
Direct Digital Communication Instrument Scenario

Instrument 1
Temperature Sensor
Unique ID 1101011

Instrument n
Pressure Sensor
Unique ID 0101001

Power Bus

Source Separation Receiver
Demodulator 1
Demodulator n

Temperature Sensor Output
Pressure Sensor Output

Wicked Hot Place
(Compressor/Combustor)

Tepid Place?
(FADEC)

Glenn Research Center
at Lewis Field
Software Defined Radio

Software Defined Radio (SDR) is being investigated as a possible standard interface in the FADEC (or IVHM system) as a collector of system sensory data.

SDR can be implemented for wired as well as wireless sensor application.

Universal Software Radio Peripheral (USRP) is a low cost, open source software defined radio platform in the tradition of Linux.

Glenn Research Center

at Lewis Field
High Temperature Electronics & Sensors

Task Focus

• Develop the technologies to implement reliable, integrated electronics for high temperature applications
 – Stable, high temperature transistors
 – Multilevel interconnect structures for complex integrated circuit development
 – High performance packaging and interconnects for reliable, extreme environment applications
• Focus component development on applications developed within the DEC project
• Develop high temperature sensing capabilities
Silicon Carbide Junction Field Effect Transistor

New device demonstrated at 500 °C continuous operation for over 500 hours

- Far superior turn-off characteristics than previous GRC record device
 - Enables development of feasible high temperature logic devices
- Current-voltage characteristics are very good and stable after 500 hours
 - Enables development of feasible high temperature analog devices such as amplifiers and oscillators
- Effort is a leveraged investment between Distributed Engine Controls (Subsonic Fixed-Wing) and High Temperature Wireless (IVHM)

![Drain Voltage vs. Drain Current graph](image)

Operating Time at 500 °C
- 1 hour
- 500 hours

Magnified view of unpackaged device
NASA builds a hot temperature circuit chip

CLEVELAND, Sept. 11 (UPI) -- U.S. space agency scientists have designed and built a circuit chip that can operate for long periods in high temperature environments.

In the past, integrated circuit chips could not withstand more than a few hours of high temperatures before degrading or failing. The National Aeronautics and Space Administration's new chip exceeded 1,700 hours of continuous operation at 500 degrees Celsius (932 degrees Fahrenheit) -- a 100-fold increase over previous chips.

NASA said the new silicon carbide differential amplifier integrated circuit chip might provide benefits to anything requiring long-lasting electronic circuits in very hot environments, such as small circuitry in hot areas of jet engines as well as automotive engines.

"It's really a significant step toward mission-enabling harsh environment electronics," said Phil Neudeck, an electronics engineer at NASA's Glenn Research Center in Cleveland. "This new capability can eliminate the additional plumbing, wires, weight and other performance penalties required to liquid-cool traditional sensors and electronics near the hot combustion chamber, or the need to remotely locate them elsewhere where they aren't as effective."

Copyright 2007 by United Press International. All Rights Reserved.
Distributed Engine Control Breadboard

Controller Model

- TRA step
- TRA >> PCNfRdmd
- [Nf_req]
- [Nf]
- Nf controller with point gains

Engine Model

- altitude (ft)
- Tsl_zro (degF)
- Mach
- fuel flow
- Nf_zro
- Nc_zro

27 CLM Outputs

EAS + HP + DLL

health parameters

Glenn Research Center at Lewis Field
Opportunities for Collaboration

No funded opportunities under SFW

• Integrated distributed system tools
 – Software partitioning and development
 – System modeling and performance analysis
 – System reliability modeling
• Engine environment requirements definition
• Sensor / actuator development and packaging
• Standards development - all types
• Failure modes and effects of distributed systems
• Flight certification requirements for distributed systems
References
