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THE INFLUENCE OF ELASTIC DEFORMATION UPON THE
MOTION OF A BALL ROLLING BETWEEN TWO SURFACES

By K. L. Johnson, M.A., Ph.D. (dssociate Member)*

When a ball rolls between two surfaces, in general, a tangential contact force and a relative
angular velocity of spin are present at each point of contact. Both these actions give rise to
tangential frictional tractions transmitted across the contact surface which are shown to
result in a velocity of creep of the ball in a direction perpendicular to the nominal rolling path.

The magnitude of the creep velocity depends critically upon the magnitudes of the
tangential force and the velocity of spin. If these actions are small there is negligible slip
between the contacting surfaces and the creep motion is predominantly a function of the
elastic properties of the materials. At larger spin velocities slip extends over a greater
proportion of the contact area and the creep is influenced by the frictional properties of the
surfaces.

Creep measurements have been made over a wide range of conditions of rolling. The
results are reduced to non-dimensional form, in terms of two parameters expressing the
effect of tangential forces and spin respectively.

The resistance to rolling has been measured and is shown to control the axis about which

the ball rolls. The detailed mechanism of the rolling process is discussed.

INTRODUCTION

WHEN A SPHERE is used as a rolling element between two
surfaces it is usual to assume that the relative motion of
sphere and the rolling surfaces is not influenced in any
significant way by their elastic deformation. To take the

- nolling bodies as rigid implies ‘point-contact’ between

them, whereupon their relative motion is exactly determined
by the simple geometry and constraints of the particular
amangement. Of course coritact does not occur at a point.
The force, normal to the surfaces, transmitted by the
nolling element causes local distortion, albeit elastic, so
that contact occurs over a finite area of elliptical shape
defined by the Hertz theory. Owing to friction, tangential
lractions may be transmitted between the rolling surfaces
aross this area of contact which give rise to a relative
Wlocity between the two surfaces, which is small com-
?;fed,with the rigid-body motion, usually referred to as
eep’,
The creep motion results from a small amount of slip
between the surfaces caused by their elastic distortion. It
been shown that skip may and, in fact, does take place
et part of the area of contact, even though the two

H'I‘gg& of this paper was received at the Institution on 5th May

e .
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bodies may be rolling together without skdingt. It is the
purpose of this paper to demonstrate the nature of the
creep motion and how the track of a ball rolling between
two surfaces is affected by it.

The influence of elasticity upon the motion of a sphere
rolling on a single plane surface has been studied by the
author previously (1)}. Here the motion was classified into
three categories, namely,

(1) Free rolling, in which the force transmitted between
the sphere and the plane acts normal to the contact
surface, and further there is no angular velocity of ‘spin’
between the two.

(2) Rolling with tangential forces which takes place
when the transmitted force has a tangential component
less than the limiting friction force.

(3) Rolling with spin which occurs when the two bodies
have a relative angular velocity about an axis normal to
the contact surface.

A convenient arrangement for studying the problem of
a sphere rolling between two surfaces is shown in Fig. 2.

+ The term slip is used here to describe relative velocity between the
surfaces at @ particular point, or points, within the contact area,
whilst slide refers to a complete bodily movement in which slipping
is taking place at all points in the contact area.

% A numerical list of references is given in the Appendix.
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The lower surface is fixed whilst the upper surface rotates
about the axis Q-Q. It is evident that, neglecting the creep
motion, the ball will roll along a curved path of radius R.
The case of rolling along a straight path is then the limiting
one, when the axis of rotation is an infinite distance away
(R— o). For the rolling conditions to remain steady the
two surfaces must be surfaces of revolution about the axis
Q-Q, inclined to each other at the points of contact by
angle 28. Rolling between parallel surfaces is then the
limiting case where 8 = 0.

The conditions of rolling at each point of contact may
be analysed into the categories mentioned above. It is well
known that conditions of free rolling—sometimes referred
to as ‘pure’ rolling—cannot obtain concurrently at both
points of contact (except in the limiting case of straight
rolling between parallel surfaces), and are unlikely to occur
at either. An angular velocity of spin between the ball and
the discs is normally present. In addition, tangential contact
forces perpendicular to the direction of rolling may arise,
either from the inclination of the two surfaces at the contact
points, or from body forces due to centrifugal or gyroscopic
action. In general, then, both a transverse tangential force
and a motion of spin are present at each point of contact.

A tangential contact force gives rise to a creeping motion
of the sphere relative to the plane on which it rolls in a
direction directly opposite to that of the force transmitted
to the sphere. A transverse tangential force, therefore,
produces a creep velocity at right angles to the direction
of rolling. The action of spin has been shown theoretically
and confirmed experimentally (1b) also to give rise to a
transverse creep. Theoretical relationships have been
derived for the creep velocity in terms of (a) the applied
tangential force and (&) the angular velocity of spin. These
formulae might be expected to apply when the tangential
force and the spin velocity are both small. Physically, this
condition corresponds to the restriction that slip should be
taking place to a negligible extent throughout the contact
area*,

For larger values of the spin velocity, when slip is taking
place to an appreciable extent, it has not yet been possible
to solve the mixed boundary value problem in the theory
of elasticity to obtain a theoretical expression for the creep
velocity. This range of the creep problem has been studied

by experiment only.

THEORETICAL

Creep Motion of a Ball Rolling on Plane

In studying the kinematics of rolling motion it is con-
venient to express the velocities relative to a stationary
point (or; more exactly, area) of contact. The origin, O,
of rectangular co-ordinate axes is taken at the centre of the

* It has been shown (loc. cit.) that slip tnitiates at the “trailing edge’
of the area of contact under the action of the smallest tangential
Jorce or spin motion, but, provided these actions are small, the
creep velocity may be calculated on the assumption that the surfaces
remain locked together, over the whole of the contact area.
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contact area. Axes Ox and Oy lie in the undistorted
of rolling, with Ox in the direction of rolling (Fig, .1y
this view a steady rolling motion appears as a statio
pattern of elastic distortion in the contact region through
which the material of both bodies flows at a steady rate,
The ball is pressed on to the plane by a normal fores N
which produces contact over a circular area of radiug 4
given by Hertz: ;

__ 3(1—w)Nr
=i,
where r is the radius of the ball; G is the modulys of

rigidity and » is Poisson’s ratio for the material of bot
surfaces.

a3

Fig. 1. The Co-ordinate System for a Sphere Rolling on
a Plane

The steady rolling velocity, parallel to Ox, is denoted by,
U. In the absence of a tangential force in the direction of
rolling (T, = 0) the ball will have an angular velocity o,
about an axis parallel to Oy, given by:

)

A transverse tangential force T,(< pN) is transmitted from
the plane to the sphere which gives rise to a transverse
velocity of creep of the sphere relative to the plane denoted
by AV. The creep ratio is defined by: £, = 4AV/U. An
angular velocity of spin of the sphere relative to the plane
about the normal axis Oz is denoted by w,.

Formulae have been obtained for the transverse crecp
ratio due to the action of a tangential force and a spm
velocity taken separately ((1a) equation (46) and (Ib)
equation (26)). These equations are linear relationships;
they have been derived on the assumption of perfectly
elastic solids with no interfacial slip. It is, therefore
justifiable to superpose the results to cover the case when
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tangential forces and spin are present concurrently. Direct
superposition of the results referred to above, making use
also of equation (1), gives rise to an expression for the

overall transverse creep:
4—y) (T,
120-)\N) )

r 22— (wzr
&g = 3(3—2v) U)

This result applies provided that (w,r/U) and (T,/N) are
both small compared with p, the coefficient of limiting
friction between the two surfaces. Slip is then confined to
a vanishingly thin ‘new moon’ at the trailing edge of the
circle of contact.

The normal force N gives rise to the Herzian distribution
of normal traction Z in the contact area, that is,

;IR S
Z =2, E\/ a?—x2—y2, (x24y2) € a (4

where Zy = 3N/[2ma? = maximum pressure at x = y = 0.
The tangential tractions X and Y due to the tangential
force T, and spin velocity w, are given in the references
quoted ((xa) equation (49) and (1b) equations (23) and
(24)). When the tangential force and spin act together
the resultant tangential tractions over the area of contact
(x2+y%) > a? become:
(a+x)y

2(3—v)(1—») faw,r
X ="36-2 (F)m ®)
and
2(1—v)? [wr\ a?—2x2—ax—y?
Y|Zo = 33—21) (TT) (a2 — 2 —yo)t

(T, a+tx
+(%) mrm - ©

v

It will be noted that the distributions of tangential traction
given by equations (5) and (6) rise to infinity at the boundary
of the contact circle (x24-y2 = a2), except at the leading
point (—a, 0) where they are both of zero value. Since the
normal traction Z is zero at all points on this boundary we
should expect slip to occur, thereby relieving the infinite
tangential traction until its value everywhere falls to be
equal to, or less than, the product 1 X Z. However, provided
that the values of w_ /U and T, /N are both small compared
with the value of u, the extent of slip will be small and
restricted to a thin band at the trailing boundary of the
contact circle. The effect of slip on equations (2) and (3)
should in this event be small.

It is relevant to note that the tangential tractions of
equations (5) and (6) integrate to a resultant moment about
the z-axis given by:

M,  82—y)(1—v)(wy\ 1(T,

Na~ ~ 3(3—2») ( U)+3 (N) O
An important practical case of this problem occurs when
the physical conditions contrive to eliminate the transverse
creep motion. The left-hand side of equation (3) then
becomes zero, and a fixed relationship must exist between
the spin velocity and the tangential force, namely,

(®).o—tmmim(d) - ©
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Substituting in equation (6) gives the net distribution of
traction corresponding to this situation, and in equation (7)
gives the moment about the z-axis,
(%) 82— =) (B—) (w,r 6
Nalsig 3(3—2v) (4—»)\ U ®
This moment resists the spin rotation and hence external

work must be done to maintain the motion. The energy so
supplied is dissipated by friction in the thin region of slip*.

Kinematics of a Ball Rolling Between Similar
Concentric discs

The kinematic aspects of the problem of a ball used as a
rolling element between two equal concentric discs are
illustrated in Fig. 2a. The discs both rotate about the fixed
axis Q-Q with angular velocities £, and £, whose values
are such that the two points of contact O; and O, and the
ball centre B remain stationary in space (leaving aside for
a moment the creep velocities which are relatively small),
The contact surfaces of the discs are taken to be plane, or
of sufficiently small curvature for the contact area to be
approximately circular, and are inclined to each other at
angle 28, N

If the ball rolls without sliding at O, and O,, the axis of
rotation of the ball must lie in the radial plane (the plane
of Fig. 2). The net angular velocity about this axzis, inclined
at an arbitrary angle ¢ to the axis of symmetry, is denoted
by w and is shown by a double-headed vector using the
right-hand screw convention. Each point of contact may
now be viewed in terms of the co-ordinate system of a
ball rolling on a plane shown in Fig, 1.

The rolling velocities are:

U]_ = QlR, UZ = QzR . . (10)
To satisfy the condition of no sliding given by equation (2),
Uy = rwcos (B+4), Uz =rwcos (B—¢) (11)
The angular velocity of spin at either point of contact is, by
definition, the angular velocity component of the ball
relative to the race about a normal axis through that point
of contact, namely:

w,q = $2 cos B+w sin (B+4) (12)
W,y = £2; cos f+w sin (B—)
Making use of equations (10) and (11), the non-dimensional
spin parameter (w,r/U) becomes in each case:

27) = cos B-+tan (B-+1)
).

(w—-g)z = -I-ra cos B-4-tan (B—1f)

* There is an apparent paradox in the fact that equation (9) has
been obtained on the assumption of vanishingly small slip and yet
implies a finite energy dissipated by slip. A comparable paradox is
found in aerofoil theory. Viscosity (cf. skip) is postulated in order
that the stagnation point should occur at the sharp trailing edge
of the aerofoil and whereby circulation (¢f. spin) is introduced.
The lift and induced drag forces developed by the aerofoil are then
calculated assuming the fluid to be inviscid. The external work
done aiaimt the induced drag has then to be explained in terms

e

of the kinetic energy dissipated in the trailing vortices.
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If conditions at the two points of contact are identical it
might be expected that the ball would rotate about the axis
of symmetry making the angle ¢ zero. This supposition is
subsequently examined.

The ratio of angular speeds of the two discs follows from
equations (10) and (11), and is given by:

£y _ cos (B+y) l1—tanBtany (19)
2, cos(B—¢) Il+tanBtany
Equation (14) enables the angle ¢ to be determined by
observation of the velocity ratio £2,/2,.

The angle 8 is, in fact, never large since it cannot exceed
the angle of limiting friction. In most cases, therefore, it is
justifiable to express equation (13) in approzimate form:

(7)o

()b

.. (15)

L]

B

Q,!

¥ P
B-a \Mz

b System of forces.

Fig. 2. Rolling of a Ball Between Two Similar Concentric
Discs
Proc Instn Mech Engrs
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Turning now to the forces transmitted between the ty,
discs through the ball, the ball carries a thrust load W
parallel to the axis of rotation of the discs, and it is assumeq
that in addition it may be subject to a radial body force Fx.
The system of forces is shown in Fig. 2b. The resultant
force at each point of contact is denoted by P, which js
resolved into normal and tangential components N and T,
where

tane = T, /N (16)
For equilibrium of the ball,
Pcos(B—e) =W
and 2Psin(B—«)=F
so that
F
tan (B—a) = % (17
Expanding gives:
tan f—s—
2w
1+2—‘:—V tan ﬁ

The spin motion is opposed at each point of contact by
a couple M, acting about the normal axes. Resolving about
the axis AB shows the necessity of a small tangential force
T, in the direction of rolling given by:

T, = % tan 8
r

Although this force is too small to introduce any appreciable
creep in the rolling direction, it contributes to the resistance
to rotation of the discs. Resolving couples about the axis of
rotation of the discs gives

My=M,cos p+T,R = Mz(cos ,8-}—1—5 tan ,8) (19)

EXPERIMENTAL

Creep Measurements with Small Tangential
Forces and Spin Velocities

In the previous section a theoretical expression has been
given (equation (3)) for the transverse creep of a ball rolling
on a plane surface under the combined action of a tangential
force and an apgular velocity of spin. This equation
expresses the creep entirely in terms of the geometry of
the ball and contact area, and the elastic properties of the
surfaces. It has been derived on the assumption that the
extent of slip within the contact area is vanishingly small
and therefore can only be expected to apply when the
magnitudes of the tangential contact force and the angular
velocity of spin are small,

* The experiments described here were performed at very slow rolling
speeds so that the gyroscopic couple in the plane of Fig. 2b was
negligible. The problem is not affected in principle by the presenct
of such a couple, but simplicity is forfeited in having a different
force system at each point of contact. The radial force F was
applied externally.
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In order to confirm the elastic analysis leading to
equations (3) to (9) and to investigate the range in which
they might be applied, an apparatus was constructed to
measure the creep with considerable precision under the
action of small tangential forces and spin, each of which
could be varied independently, The apparatus is shown
diagrammatically in Fig. 3.

CROSSED
SPRINGS

(1=

w
T
Lo

AXIS

_HINGE

Fig. 3. Apparatus for Creep Measurements with Small Tan-
gential Forces and Spin Velocities, Using a Single Ball
Rolling Between Two Flat Surfaces

Jockey-weight.

Flats.
Fixed pivot.

A hard steel ball of optional size rolled between two hard
steel flats A and B. The upper flat was hinged to a fixed
support through a horizontal crossed-spring pivot, and the
ball was loaded by the jockey-weight J. The lower flat
rested on a smooth horizontal surface plate on which it
was free to slide. It was constrained by two links to move
through a short circular arc about the fixed vertical pivot
Q-Q as centre. This sliding motion of the flat B was
accompanied by rolling of the ball between the flats along
an arc of radius R through half the distance moved by the
flat. Rolling along a curved path of large radius introduced
a small angular velocity of spin.

Observations showed that the ball turned about its radial
axis of symmetry, so that the angle ¢ = 0 (Fig. 2a). A
force could therefore be applied to the ball through a
thread attached to the ball on its axis of rotation. The
lower flat was reciprocated by hand so that the ball rolled
to and fro along an arc about 5 in. long. The direction of
transverse creep resulting from both spin and the force F
was independent of the rolling direction. Its effect therefore
was cumulative, and a sufficient number of traversals of the
arc could be performed until the radial displacement of
the ball owing to its creep motion was large enough to be
measured accurately by a sensitive micrometer (0-0001 in.).

As the ball rolled round an arc, its distance from the

Proc Instn Mech Engrs

axis of the hinge changed slightly, thereby altering the
load carried by the ball. For a short arc however this
variation was negligibly small, particularly since the creep
varies as the one-third power of the normal load.

Parallel Planes (B = 0) with External Force F
During the principal series of experiments with this
apparatus the flats were set parallel to each other (that is,
B = 0) and radially outward tangential contact forces were
applied to the ball through the thread tension F.

Since i was observed to be zero, from equation (15) the
spin parameters at both contact points were equal and

given by:
(w_z”) _(23’5) =
vl A\l TR

The force F, being radially inward, was negative so that
from equation (18),

I,_F
N 2w

Taking the value of Poisson’s ratio to be 0-3, equation (3)
for the transverse creep becomes

£, = 0-47(“—5)—0-44(%) (20)

A wide variation in the values of the spin parameter
(w,r/U) was obtained by changing both ball size and track
radius. At each value the creep was measured for progres-
sively increasing values of F. A selection of the results of
these tests is given in Fig, 4.

Equation (20) suggests that, other things being equal,
the creep ratio £, is proportional to the radius of the con-
tact circle a (that is, proportional to N/3), The truth of
this supposition has been confirmed in the author’s earlier
papers, but a further check was obtained in the current
tests, with #/R = 0-012, where creep measurements were
made at loads of 155 Ib. and 43-2 1b. (Fig. 4). Subsequent
tests were carried out at one load only.

Referring to Fig. 4, it is clear that over most of the range
of tangential force and spin covered by these experiments
the transverse creep motion varies linearly with tangential
force if the spin parameter is maintained constant. Con-
versely by cross plotting these results it appears that for
constant values of (T,/N) the creep varies linearly with
spin. However, it may be seen that the lines in Fig. 4 are
not parallel. Careful smoothing and analysis of these creep
measurements shows that they can be represented closely
by the empirical expression

* = 0ad(2) —33(92) (L2) —055( L)

o= ou(22)-53(22)(B)-o(5) . @
provided that (w,r/U) < 0:06 and (T,/N) < 0-035. The
existence of the product term in this expression indicates
that the effects of spin and force upon the creep motion
are not completely independent as the theoretical equation

(20) suggests. However, the product or ‘coupling’ term is
relatively small in the operative range compared with the
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Fig. 4. Creep Measurements with Small Tangential Forces and Spin Velocities, Sfrom the
Apparatus in Fig. 3

O Load, N = 43 b,

other two terms whose coefficients 0-44 and —0-55 compare
reasonably well with the theoretical values of 0-47 and
~—0-44 respectively.

An assessment of the discrepancy between the experi-
mental results and the elastic theory may be obtained by
considering the practically important case of the relation-
ship between the tangential force and spin in order that the
creep motion should be eliminated. This relationship is
given theoretically by equation (8), which for » = 0-3,

becomes
Ty w,r
(Tv"Lo s 07(—5)

The comparable empirical relationship is found by putting
the left-hand side of equation (21) equal to zero. The com-
parison is shown in Fig. 5. The spot points are the actual
intercepts with the horizontal axis of the lines of Fig, 4,

thereby revealing the extent of smoothing involved in
equation (21),

Straight Rolling Between Inclined Planes

When a ball rolls between two plane surfaces which are
not parallel, spin is introduced even though the rolling
path is a straight line. In addition, even with the body
force F = 0, transverse tangential forces are introduced at
Proc Instn Mech Engrs

®@ N=1551b.

the points of contact. This situation arises when a ball
rolls in a straight V-groove,

For straight rolling (R = o) between planes inclined
to each other at an angle 28, and assuming rolling about
the symmetrical axis ( = 0), the spin parameters given
by equation (15) reduce to:

(7). (), o

In the absence of a body force F, equation (18) gives
TN =tane=tanB. Thus, if the inclination of the
planes is small, the resulting transverse creep, from
equation (20), is given by:

gyg =047tan f—0-44 tan f== 0038  (22)

On the other hand the empirical expression of equation (21)
reduces to

&= —0118(1+308) (23)

The difference between equations (22) and (23) raises a
point of practical importance. If the creep is positive, as
in equation (22), and the two planes forming the groove
are a fixed distance apart, then as rolling proceeds the ball
will wind itself tighter and tighter into the groove untl

Vol 173 No 34 1959

006

|

(T,/N)€=n

(717 e

0-014

0012 ——

o010 -

Proc Instn A




a ball

clined
about
given

gives
f the
from

22)
n (21)

23)

ises a
ve, as
roove
e ball
until
4 1959

INFLUENCE OF ELASTIC DEFORMATION UPON THE MOTION OF A BALL ROLLING BETWEEN TWO SURFACES 801

006
o
7
[+] 7 o
Py
/ s
004 7
4
‘IL
= o
&
002 /
(=3
[i} 1
0 002 0-04 o006 008 olo * 012
wy 7/ U

0:008

3 o
i
= 0006 |-
o +
EQUATION (23)
P
0-004 7
0002 -
1] 1 1 1
0-01 002 0:03 0-04 0-05 006
T TyIN
K

Fig. 5. Relationship Between Tangential Force and Spin
for Zero Creep Motion

Theoretical equation (8).
o) Empirical equation (21) & = 0.

0014
/+
0012 /
[
[ ]
+

EQUATION (22) ]

\\

Fig. 6. Creep During Straight Rolling Berween Inclined
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O r=0375in., N = 35 lb.
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frictional resistance prevents further rolling. On the other
hand negative creep, as given by equation (23), would
ensure that the ball does not become jammed in this way.
The apparatus shown in Fig. 3 was arranged to measure
the creep in straight rolling with the two flats slightly
inclined to each other. The lower flat B was detached from
the pivot Q and was guided to slide backward and forward
in a straight line. By adjusting the height of the hinge of
the upper flat A the included angle between them 28 could
be given any required small value. The creep was measured
as before and was found to be completely consistent with
the previous experiments, as defined by equation (23). The
observations are compared with equations (22) and (23) in
Fig. 6. Due to the fact that in this case the two terms of
equation (20) are of almost equal magnitude, relatively
small discrepancies between experiment and theory make
the theoretical equation (22) completely unreliable. The
experimental results, however, are all self-consistent, and
it appears therefore that the empirical expression of
equation (21) may be used to calculate the creep velocities
however the actions of spin and tangential force arise.

Creep Measurements with Large Tangential
Forces and Spin Velocities

Under the action of small tangential forces and spin
velocities the creep motion is determined almost entirely
by the elastic properties of the rolling solids. As the forces
and spin are increased extensive slip begins to take place
within the contact area so that the creep is now influenced
by the surface conditions.

To extend the results of the previous section (shown in
Fig. 4) beyond the range in which equation (21) applies,
creep measurements were made using a different experi-
mental arrangement. The apparatus took the form of a
simple thrust bearing consisting of two identical hard-steel
circular discs with their axis of rotation vertical. The lower
disc was fixed whilst the upper disc, free to rotate about its
axis, transmitted a dead load through three equally spaced
balls. The circular tracks of the balls were shallow grooves,
of about 3 in. radius, ground in the faces of the discs. As

_ the upper disc turned the balls rolled along an ostensibly

circular path of radius R. The relatively large radius of
curvature of the groove, that is, small conformity of balls
and tracks, enmsured that the area of contact was very
nearly circular so that the conditions at the points of
contact were comparable with those of a ball rolling between
plane surfaces.

In the analysis of rolling bearings it is usual to assume
that the balls take up a position in which the tangent planes
at the two points of contact are parallel, which would
correspond in this case to the balls rolling in the trough of
the grooves where the tangent planes are horizontal. But
this is not the only position of equilibrium. Obviously the
balls could roll without sliding along any track in which
the tangent planes at the points of contact were inclined
to each other by an angle not greater than twice the limiting
angle of friction for the surfaces. Suppose that the balls
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started in the trough of the grooves, with the tangent planes different pairs of discs (R = 1-48 and 3-47 in.) there

parallel, the previous investigation would lead tothe expecta- obtaining a wide variation in the Spin parameter 7/ | Where rol].ix'lg

tion that as rolling proceeded the balls would creep radially (= 7/R cos B+tan B). After analysis and smoothing,z the | jsusually with
outward due to the action of spin and thereby would climb results of these experiments are shown in the chart j | ¢ motion. A

the sides of the grooves until tangential forces were brought Fig. 7. The Creep parameter £(r/a) is a function of the | got complete,
into play at the points of contact as shown in Fig. 2. Their spin parameter w,r/U and the force parameter Ty /N, and | pature and ma
effect would be to reduce the radial creep until a ‘steady is shown plotted against T,/N for constant values of | It has been
state’ was reached in which the balls roll along an unvarying w,r/U. Fig. 7 is similar to and extends Fig. 4. processes comi
circular path with the tangent-planes inclined at an angle The relation between tangential force and spin for no | between the §
2B;. Rolling would then proceed without any further creep, creep, corresponding in these ‘experiments to the steady. | the rolling soli

which is the situation expressed by equations (8) and (9)
and in Fig. 5.
The procedure followed in these experiments was to

state rolling path, is obtained by the intercepts on the
T[N axis of the lines in Fig. 7. This relationship is shown
by the full line in Fig. 8 which provides an extension, to

mate]_‘ial. It ha
(that is, a put
rolls on a pla

start with the balls at a radius slightly less than that of the rolling can on
trough of the groove (that is, with a negative angle 8) and 006 that elsewher:
to measure the radial creep of the balls for each revolution ] | taking place.
round their track until the steady-state path was approached. i pression of th
The balls were then started at a radius greater than that of ‘ A to distort e]as‘
the steady-state path, and their radially inward creep P action of fricti
was measured. The steady-state inclination B was thus . fe & of Palmgren.
approached from below and above. From the geometry of = - A however, has
the ball and tracks, the radial position of the ball at any i b free rolling ¢
instant gave an accurate measure of the inclination B. 2 ) friction arises
It was again assumed @ priors that the conditions apper- z N | Tabor's ex{
taining at each point of contact were the same, so that the & i ¥ culations mac
angle ¢ could be taken to be zero. The spin parameters at ' \ necessary to ¢
each point of contact were therefore given by equation (13) The introd
or approximately by equation (15) (¢ = 0). At slow rolling a spin motior
velocities there were no appreciable body forces (F = 0) the rolling su
so that, in this case, the force parameter given by equation l The slip start

18) reduced to T,/N = tan 8. % 02 : spreads forw:
» o6 P

0-4
The measurements described above were carried out for @, 7]U=1[R cos g 4un g
4 range of ball diameters (} in. to 2 in.) and for two Fig. 8. Relationship Between Tangential Force and Spin
Jor Zero Creep Motion (Fig. 5 extended)

0-400 0-500 0-700

Smoothed results of Fig. 7 (dry).
a Surfaces dry, rolling slowly.

A Surfaces dry, rolling fast,

& Surfaces lubricated, rolling slowly.
A Surfaces lubricated, rolling fast.

a very different scale, of Fig. 5, Physically this graph
represents the inclination of the tangent planes when the
steady-state condition is reached. As the effect of spin is
increased it may be seen that the angle of inclination R
reaches a maximum value of about 0-055 (about half of the
angle of limiting friction) at a value of w,r{U==0-125 0
which would occur when the ratio of ball radius to track i
radius, 7/R == 0-07. For balls of larger size the spin increases :
and f; decreases.
In the range of large spin velocities (w,r/U > 01) there
Is considerable slip taking place in the contact area and
slight differences in the condition of the surfaces: roughness, { . LEAI
the presence of a lubricant, and so on, affect the creep. e
There is much more scatter, therefore, in the results of
Forces and Spin#rements with Larger Tangential thes_e experiments than in those described in the previous |
s(riaythe Thrust Bearing Apparatus section, as a comparison of the observations in Figs. 5and 8
“07/U, Ty/N). shows. !
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Frictional Resistance to Rolling with Spin

Where rolling elements are used in engineering devices it
is usually with the purpose of reducing frictional resistance
to motion. A fundamental study of the rolling process is
pot complete, therefore, without an examination of the
nature and magnitude of the frictional resistance,

It has been recognized for some time that two distinct
processes contribute to ‘rolling friction’ (@) relative slip
between the surfaces and (b) dissipation of energy within
the rolling solids by the so called ‘elastic hysteresis’ of their
material. It has been claimed (2) that, even in ‘free rolling’
(that is, a purely normal force and no spin), when a ball
rolls on a plane or, more particularly, in a groove ‘pure’
rolling can only occur along two contours of the ball, and
that elsewhere in the contact area relative slip must be
taking place. This theory, whilst admitting Hertzian com-
pression of the ball and track, does not admit their capacity
to distort elastically in the zangential direction under the
action of friction forces and thereby prevent slip. The work
of Palmgren (3) and more recently that of Tabor (4),
however, has shown that very little slip does take place in
free rolling and that the major contribution to rolling
friction arises from the elastic hysteresis of the material.
| Tabor’s experiments have been further confirmed by cal-

culations made by the author () of the frictional tractions
| necessary to eliminate slip in free rolling. '

The introduction of either tangential contact forces or
a spin motion, on the other hand, does cause slip between
the rolling surfaces over at least part of their contact area.
The slip starts at the trailing edge of the contact circle and
spreads forward as the magnitude of the tangential force

1
TRAILING
EDGE

LEADING
EDGE

MOTION, U ——
FORCE, Ty §
a Rolling with transverse tangential force.
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or spin velocity is increased. This pattern of slip is illustrated
clearly in Fig. 9. The photographs are of the contact area
of a rubber ball rolling on a perspex plate on to which
there had been printed previously a screen of ink dots,
The ink was still wet and therefore smeared in the direction
of relative slip.

In these circumstances the overall resistance to rolling
is made up of the contribution due to the elastic hysteresis
of the material together with the effect of slip arising from
the action of tangential forces and spin, On the basis of
Tabor’s elastic hysteresis theory (4) it has been found
possible to separate the two effects (1b). The three-ball
apparatus used in the experiments just described enables
the overall rolling resistance to be measured by observing
the friction couple resisting the rotation of the upper disc
about its axis Q-Q. The total moment about this axis is
made up of two terms, one due to hysteresis and the other
due to spin; thus:

M) (M) (M) B 1)
(Na):ota] a (Na)hys.+(Na)spin 5 kr +f( U'N
v v ow ow  (24)
where £ is a constant depending upon the elastic hysteresis
of the material. If the balls are rolling between parallel
races (8 = 0), equations (19) and (13) give (My/Na).y;, =
M,/Na = f(r/R) whence
r (M, r
R (Na) toml kth (E) AR
The total moment resisting rotation of the upper disc M,
was measured by observing the retardation of the disc
when rotating freely, with the friction of the centre spindle

! —
LEADING TRAILING
EDGE EDGE
ROLLING, Ul ——

SPIN, w
b Rolling with spin.

Fig. 9. Patterns of Shp
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reduced to a minimum. Measurements at three different
normal loads enabled mean values for (M,/Na) to be
obtained for different ratios of ball to track radius r/R.
Plotting in the form of equation (25) and extrapolating to
/R = 0 gave a value for £ = 0-0018, which is consistent
with Tabor’s hysteresis measurements. The moment due
to spin could then be found by subtraction. These results
are given in the upper curve in Fig, 10.
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wzr/U=1[R cos f4tan B

Fig. 10. Frictional Resistance to Rolling with Spin
Found by subtracting the contribution due to elastic hysteresis
from the overall resistance.

— Rolling between parallel planes, 8 = 0.
— — — — Steady-state rolling (no creep, £ = 0, 8

: = Bs).
————— .—— Equation (9).
—— ——— Equation (7).
~—— — — — Resistance to spin without rolling.
Rolling between parallel planes, R = 3-5 in,
Rolling between parallel planes, R = 1'5 in.

o}
A
® Steady-state rolling, R = 35 in.
A Steady-state rolling, R = 15 in.

Having found a value for % which defines the hysteresis
component, the total friction moment in the steady-state
rolling condition (8 = ;) could be measured and the spin
moment M, deduced by using equation (19). These results
are given in the lower curve in Fig, 10.

The spin moment M, has been calculated theoretically
for both cases, that is, when B =0 and when B = 8, and
is given by equations (7) and (9) which are also shown in
Fig. 10. The measured moments, although rather approxi-
mate, are appreciably less than the theoretical. Presumably
the effect of even a small amount of slip, in reducing the
peak values of the theoretical surface tractions given by
equations (5) and (6), has a marked effect upon the resisting
moment due to those tractions.

Previous theoretical estimates of the friction moment
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resisting rolling with spin (6) and (7) have been based o the
assumption that the relative motion between the Strfaces
in contact was one of a simple spin rotation (withoy
rolling), about the centre of the contact area, Slip in 5
circumnferential direction was assumed to occur at al] point
in the contact region except at its centre. The spin moment
is entirely frictional and is given by:

37

16 (26)

An experiment was performed to simulate the situation
expressed by equation (26). The friction moment Opposing
spin of a ball without rolling was measured under the same
surface conditions as in the rolling experiments and wag
found to give the consistent value, M_/Na = 0-072, By
equation (26) this gives = 0-12, which agrees with
previous observations. It is immediately apparent from
Fig. 10 that even the maximum resistance during rolling
is considerably less (68 per cent) than the resistance to
simple spin. This is only to be expected when it is recollected
that, during rolling, slip occurs over only part of the contact
area, and that the direction of slip is by no means every-
where in the circumferential direction.

A further feature of Fig. 10 calls for comment. As the
spin parameter increases, the moment M, increases to a
maximum and then shows a tendency to decrease. A
decreasing moment leads to uncertainty about the axis of
rotation of the ball. Referring to Fig. 25, equilibrium of the
ball demands that the spin moments at each point should
be equal. Over the portion of Fig. 10 in which the moment
increases monotonically this condition is satisfied by the
spin parameters being equal at each point of contact, from
which, by equation (13), it follows that ¢ = 0. The ball,
therefore, turns about its radial axis of symmetry. To the
right of Fig. 10, where it appears that the moment decreases
with increasing spin, this state of affairs no longer holds.
Any slight difference between the conditions at the two
points of contact causes the axis of rotation of the ball to
depart from the axis of symmetry, thereby increasing the
effective spin parameter at O, and correspondingly de-
creasing it at O,, as specified by equation (13). The value
of ¢ will be such that the spin moments at O; and O, are
still equal, with M, on the rising part of Fig. 10 and M,
on the falling part. It should be noted that Fig, 10 itself
has been plotted assuming that ¢ = 0, that is, assuming
(w,r/U) = (w,r/U), = r/Rcos +tanf. By the above
argument the points on the falling part of the curve should
bifurcate, one moving left on to the rising curve and the
other moving an approximately equal distance to the right.
By such a construction the expected values of ¢ may be
estimated. In any case, it would appear that the observa-
tions on the falling part of Fig. 10 are uncertain and should
in all probability lie further to the right.

M, = — uNa

Observations of the Rolling Axis of the Ball

Clearly some investigations had to be made of how the
rolling axis of the ball varied, if at all, as the spin parameter
was increased.
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It has already been mentioned that for small spin velocities
observation of a spot marked on the axis of symmetry of the
pall showed that the ball turned about that axis (that is,
y=0) with negligible variation. For values of w/U
greater than about 0-15 this was noticed to be no longer
the case. Direct observation of the rolling axis proved
unsatisfactory since it appeared that the value of  varied
from time to time.

With the ball rolling in its steady-state path, however,
so that 8 # 0, the effect of an inclination of the rolling
gxis is to make the angular velocity of the two discs about
their common axis unequal (equation (14)). Precise measure-
ment of this difference presented no difficulties and hence
observations of the mean value of i associated with steady-
state rolling were made for the range of spin parameters
covered by the previous experiments. It was found that
was particularly sensitive to surface conditions, so that care
was taken to polish the rolling tracks of each disc to
approximately the same surface finish, and observations
were made with the surfaces dry and lubricated, also rolling
slowly and (by the standard of these experiments) fast.
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@ tfU=r[R cos 8 +tan B
Fig. 11. Inclination of the Axis of Rotation of a Ball
Rolling Between Two Discs

Surfaces dry, rolling slowly.
Surfaces dry, rolling fast.
Surfaces lubricated, rolling slowly.
Surfaces lubricated, rolling fast.

pEDD

The results are shown in Fig. 11. The scatter in the
value of i is immediately apparent. This is the result of
the very gradual decrease of spin moment with spin on the
right-hand side of Fig. 10 together with the sensitivity of
¥ to surface conditions. These two facts combine to make
§ effectively indeterminate within certain bounds. These
bounds correspond roughly to those found from an analysis
of Fig. 10. We should expect 3 to be zero provided that
/U is less than the value corresponding to the maximum
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moment in Fig. 10, in this case 0-25 for steady-state rolling
with dry surfaces. And, in fact, ¢ was observed to be less
than -1° in this range. For greater values of w,r/U, ¢ will
not be zero, but its maximum value is limited to that which
would reduce the value of (w,r/U),, given by equation (13),
to a point on the rising part of Fig. 10, that is, to the left
of the maximum. Bounds to the value of ¢ estimated in this
way are shown in Fig. 11. They are only exceeded by
observations made with fast rolling on lubricated surfaces,
under which conditions (not measured) the peak of Fig. 10
is likely to be moved to the left.

CONCLUSIONS

When a ball rolls between two surfaces, tangential forces
are transmitted at the points of contact and, further, there
is a relative angular velocity of spin between the surfaces
in contact. Both the tangential contact force and the spin
motion induce tangential tractions at the contact interface
which are maintained by friction. At the trailing edge of
the contact area, where the tangential tractions are high,
slipping begins and spreads forward across the contact
area as the applied tangential force or the amount of spin
is increased.

The elastic deformation and slip in the contact region
affect the motion of the rolling ball by the introduction of
a small creep velocity at right angles to the nominal rolling
path. It has been shown that this effect may be expressed
in the non-dimensional form: '

transverse creep velocity £ = a f(wr\ (T,
forward rolling velocity ~ > f v/ \NJ?
27)

where the non-dimensional parameters w,r/U and T,/N
control the influence of spin and tangential force respec-
tively, and p is some measure of the frictional properties
of the contact surfaces. The above expression specifies the
creep velocity at one point of contact only. To prescribe
the motion of the ball completely it is necessary to determine
the distribution of spin velocity between the two points of
contact, that is, to determine the axis about which the ball
rolls.

The investigation has shown that the behaviour of the
ball predominantly depends upon whether the spin velocities
are small or large.

If the spin and force parameters are both small (wr/U
< 0:06 and T,/N < 0-035) the surfaces roll together with-
out slipping over most of the area in which they are in
contact. Slip is confined to a thin region at the trailing
edge. In these circumstances the motion of the ball is
precisely defined; the creep depends upon the elastic
properties of the materials and not to any appreciable
extent upon frictional properties of the surfaces, provided
that the surface asperities are small compared with the
dimensions of the contact area. The axis of rotation of the
ball takes up a position which makes the spin parameters
equal at each point of contact. The creep motion is then
given by the results in Fig. 4 or the empirical equation (21).

The theoretical expressions for the creep ratio (equation
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(3)); based on the assumption that there is no slip at all,
agrees roughly with the experiments. It is valuable in
showing how the creep motion might be expected to vary
with elastic constants G and ». The agreement also suggests
that the theoretical distributions of tangential surface trac-
tions (equations (5) and (6)) are reasonably correct except
close to the boundary of the contact circle,

When the spin motion is relatively large, slip extends
over an appreciable proportion of the contact area, and in
consequence the creep motion is influenced by the frictional
properties of the surfaces. Making the simple hypothesis
that slip at any point is governed by Amonton’s Law, with
a constant coefficient of friction u, then it can be shown
(1) that equation (27) may be written:

6=7r(gi) G} - - o

The experiments have shown that this statement is an
oversimplification. It has been observed that the creep
velocity is influenced by surface finish, lubrication, and
speed of rolling, but not in any simple way which can be
associated with the coefficient of friction as measured in
a ‘sliding’ experiment, These factors have not been investi-
gated systematically, but a few observations can usefully
be made,

The creep (at large spin velocities) is sensitive to surface
finish and may be reduced by 3040 per cent by polishing
the rolling surfaces. The results in Figs. 6-11 were obtained
using surfaces whose average roughness was 35 pin. c.la.
(centre line average). The importance of surface roughness
is less surprising when it is remembered that the relative
displacements comprising ‘slip’ are less than 10~4 in.,
which is of the same order as the asperity heights,

The influence of a lubricant (light machine oil) is closely
related to that of rolling speed. With the surfaces clean and
dry the creep is unaffected by the speed of rolling within
the range of low speeds used in these experiments (< 20
ft/min). Slip appears to be facilitated by the presence of
a lubricant thereby reducing the creep (Fig. 8). But,
provided that the speed is sufficiently low (about 2 ft/min),
the lubricant is squeezed out and the Creep measurements
differ little from those obtained with dry surfaces.

At higher spin velocities the axis of rotation of the ball
becomes indeterminate and therefore it is no longer correct
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to assume that the spin motion is shared equally by ¢,
two contact areas. Differences in surface finish or conform;
between the ball and tracks would cause the majority of th
spin, and hence slip, to take place at one of the points gf
contact.

As generally recognized the spin motion produces ,
resistance to rolling. The magnitude of this resistange
varies with the spin parameter wr/U and is appreciably
lower than previous estimates based upon complete slip,

In conclusion the limitations of the investigation must
be remembered. Firstly, at high rolling speeds such as are
common in ball-bearings, for example, hydrodynamic action
between the rolling surfaces is likely to be a significan
factor. Secondly, a high degree of conformity between the
ball and the surfaces on which it rolls, so that the contac
area is markedly elliptical, would probably make appreciable
quantitative changes to the results quoted. But neither of
these factors is likely to alter the qualitative picture of the
rolling process which has been revealed by this investiga-
ton.
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