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The Effect of a Tangential Contact Force
Upon the Rolling Motion of an Elastic

Sphere on a Plane

By K. L. JOHNSON,! CAMBRIDGE, ENGLAND

The motion and deformation of an elastic sphere rolling on an
elastic plane under a normal contact pressure Nhave been studied
for the case where a tangential force T is also sustained at the
point of contact. Provided that T < uN (u = coefficient of fric-
tion), the sphere rolls without sliding but exhibits a small ve-
locity relative to the plane, termed “creep.” Following the work
of Mindlin and Poritsky, it is shown that creep arises from slip
over part of the area of contact, and further, that this slip takes
place toward the trailing edge of the contact area. On the as-
sumption of a locked region in which no slip occurs, of circular
shape, tangential to the circle of contact at its leading point, sur-
face tractions are found which satisfy the condition of no slip
within the locked region and are approximately consistent with
the laws of friction in the slip region. The variation of creep
velocity with tangential force is thereby determined. Experi-
mental measurements of the creep of a steel ball rolling on a
flat steel surface are in reasonable agreement with the theoretical
results.

Introduction

Tars paper and its sequel® examine the motion of an elastic
sphere which rolls without sliding on an elastic plane, taking into
account the deformation of the two surfaces under the action of
the contact force exerted between them.

A pressure between the surfaces, acting normal to the plane,
has the effect of enlarging the “point of contact’ into a small
circular area. In addition, the surfaces may sustain a tangential
component of force without sliding, provided that the limiting
friction force is not exceeded. Thus as rolling proceeds, the line
of action of the resultant force transmitted between the sphere
and plane may be inclined to the normal at an angle not exceeding
the angle of friction for the two surfaces.

To define the kinematic aspeets of the problem, it has been
found convenient to regard the motion relative to the point of
contact, which remains stationary in space. The origin O of
rectangular co-ordinate axes is taken to be at the center of the
circle of contact. Axes Oz and Oy lie in the undistorted plane,
with Oz in the direction of rolling; Oz is therefore normal to the
plane, Fig. 1. In this view a steady rolling motion of the sphere
on the plane appears as a stationary pattern of elastic distortion
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around the contact region through which the material of both
bodies flows at a steady rate. This will be recognized to be the
Eulerian co-ordinate system, familiar in the field of hydrody-
namics, but which has been applied to problems in elasticity by
Bishop and Goodier (1).?

Focusing attention on a particular point lying within the con-
tact area, slip is said to be taking place at that point if the ve-
locities with which the two surfaces pass through that point are
unequal. If there is no point in the contact area at which the
velocities of the two surfaces are identical, then complete slip or
sliding? is taking place.

The particle velocities at any point are made up of two com-
ponents; the first due to the rigid-body motions of the sphere or
plane, and the second arising from the pattern of strain through
which the material is flowing. The rigid-body motions corre-
sponding to steady rolling are shown in Fig. 1. The plane has a
linear velocity U (the rolling velocity) parallel to Oz, The sphere
has an angular velocity  about a diametral axis parallel to Oy,
and in addition may have an angular velocity (! relative to the
plane about the normal axis Oz. This latter motion is referred
to as “‘spin,” and is usually associated with rolling along a curved
path.

From the previous discussion there emerge three distinet cate-
gories into which the rolling problem may be classified:

Free rolling, in which the resultant force transmitted between
the contact surfaces is perpendicular to the plane, and further

3 Numbers in parentheses refer to the Bibliography at the end of
the paper.

4 The term “‘sliding” is used to denote the condition of complete
bodily slip, while “'slip”’ refers to the condition at a specified point, or
points, in the contact area.

Fig. 1 Rolling of a sphere on a plane; the co-ordinate system
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there is no angular velocity of spin between the sphere and the
plane,

Rolling under tangential forces, which takes place when the
transmitted force is not normal to the plane, but containg a
tangential component. The tangential component may be re-
solved into the direction of rolling (longitudinal) and at right
angles to that direction (transverse).

Rolling with spin, which occurs when the sphere and the plane
move with an angular velocity relative to each other, about an
axis normal to the plane.

The small resistance to motion in free rolling has been attrib-
uted by some, notably Usborne Reynolds (2), Heathcote (3) ,and
Eldredge (4), to slip over the area of contact arising from the
geometry of the indentation of the surface on which the ball rolls,
In developing this theory, tangential displacements of the contact
surfaces produced by frictional tractions are ignored, even though
their magnitude is of the same order as the displacements due
to normal pressure which define the shape of the indentation.

An alternative explanation of the energy dissipated in free
rolling lies in the influence of the (so-called) elastic hysteresis of
the material of the two surfaces, Palmgren (5) favors this view
and, more recently, Tabor (6) has shown that careful rolling-
friction measurements are consistent with the elastic hysteresis
hypothesis,

This paper is not concerned with the resistance in free rolling
except for the fact it is unavoidably present in experiments which
are described.

It has long been appreciated that the effect of a tangential
component of force between two bodies rolling together gives
rise to a slow velocity of one surface relative to the other in a
direction opposed to the tangential force acting upon it. The
phenomenon, usually referred to as creep, is well understood
in relation to the motion of a belt over a pulley, clearly deseribed
by Swift (7). A significant feature, common to all examples of
creep during rolling, is the fact that the area of contact is divided
into two distinet regions; one in which the surfaces move together
without relative velocity and the other over which slip occurs.
The creep velocity arises from the difference in state of strain

av
2
AV
Uu+%
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Fig. 2 Area of contact showing tangential-force components T, and
Ty. Creep velocities are denoted by AU and AV,
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between the two surfaces over that part of the area of contact
where they remain locked together.

TIdentical solutions have been found by Carter (8) and Poritsky
(9) for the two-dimensional problem of two cylinders rolling tg.
gether with a normal force N’ and a tangential force 7 per unit
length acting between them. Owing to the normal Pressure the
cylinders are in contact over a strip of width 2b given by the
Hertz theory. If u is the coefficient of friction between the sur-
faces, Poritsky shows that the cylinders remain locked together
with no slip over & strip of width

2d =2b(1 —T'/uN"Y ]

from which it follows that when 7' = 0 no slip oceurs, and when
T" = pN’slip has penetrated over the entire contact surface, In
the discussion Cain (10) demonstrates that the locked region must
have one boundary coincident with the leading edge of the ares, of
contact, and that slip oceurs after contacting points have rolled
through the locked region, if the direction of slip is to be consistent
with the laws of friction and to oppose the tangential force acting
between the surfaces. .

An approximate numerical solution for the rolling of a ball on
a curved surface under tangential force has been obtained by
Palmgren (11) which involves approximating the elliptical ares
of -contact to a rectangle, For the case evaluated, the analysis
compares favorably with experimental results, but it is an unfor-
tunate feature of his experiments that spin is present in addition
o tangential forces.

Statement of the Problem

The ball is pressed onto the plane by a normal foree N result-
ing in a circular area of contact of radiue & over which, by the
Hertz theory, the pressure is distributed according to

3N il e
Z = 2—,7_—{1; (]_ -_— E) ............... [2}

o o 30— WD
o s g

for a ball of diameter D rolling on a flat surface of similar elas-
ticity, where @ = modulus of rigidity and » = Poisson’s ratio.

The area of contact is shown in Fig. 2. The path of rolling is
parallel to the z-axis so that material is flowing through the area
of contact in the positive direction with a mean rolling velocity
U. A tangential force T, having components T, end T, is
transmitted across the surface (T < uN). Asa result of this
force the sphere has component velocities of creep relative to the
plane denoted by AU and AV. Tt is required to find the distri-
bution of tangential tractions X and ¥ over the surface of contact
resulting from these tangential forces, and the corresponding
values of the creep velocities AU and AV, ‘

As in the Hertz theary, it is proposed to neglect the slight warp-
ing of the contact surface, so that it may be taken to be a plane
area having a circular boundary of radius given by Equation
[3]. Further, if the sphere and plane are assumed to have the
same elastic properties, the problem is equivalent to that of two
identical spheres rolling together with their circular area of con-
tact lying centrally in the z-y plane.

The theoretical problem for which s solution is sought concerns,
therefore, a system of two bodies rolling together which are geo-
metrically and elastically symmetrical with respect to the three-
co-ordinate axes. Several important conditions follow from this
symmetry.* A further simplification is secured by considering
separately the cases where T, and T, act alone.

where

® The effect of the warping of the contact surface and unequal elas-
tic constants upon the results so obtained is discussed subsequently.
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Conditions Arising From Symmetry

With T, acting alone, reference to Fig. 2 shows that if the lower
gphere is rotated through 180 deg about Oy it becomes identical
with the upper sphere, provided the direction of U is reversed.
Tf (21, 1) and (za, %) are two points in contact, after rotation
about Oy, z» = —z; and y» = 3. Equal and opposite tractions

X, = —X,and ¥, = —V; are transmitted between the two sur-
faces at this point. The tractions themselves may be expressed
X =jflx, y,sgn U)and ¥ = f(z, y, sgn U)....... [4]

Remembering that rotation about Oy causes a change in sign
of X but not in ¥, the symmetry of the two bodies about Oy gives

X(—z,y, -U) =Xy Ueeeeve..... [5]
and Y(—z,9, =U) = -¥(@, 9, Nev..c..... [6]

The over-all magnitude of the tractions X and Y is governed by
the conditions of equilibrium

T,=JSSXdedy, Ty= S Ydzay.......[7]

These conditions apply over the whole area of contact whether
glip oceurs or not,

Conditions which must be satisfied by the tangential surface
displacements if no slip is to oceur also follow from symmetry.
The components of surface velocity at the point P(z, y), denoted
by ¢. and g,, may be expressed

g = f(I, A U) and qy = f{x, v, U)

If (z1, 1) and (=2, y2) are two points instantaneously in contact,
the components of relative velocity of slip between them are
denoted by

8 =0z — Q2 and 8, = g — g
With T, acting alone, symmetry about Oy gives

(=2, y, =U) = —qulz, y, U)

and
gu(—3, 4, —U) = gu(z, 3, U)
whereupon
5= 05 U) + a(—5,5 ~0)n.. . (8]
and 8, =g, U) —ql—29 —U).......... [9]

It is now necessary to express the velocities ¢, and ¢, in terms
of the rigid-body motions, and the local velocity components
arising from the pattern of strain through which the material is
fowing. In the Kulerian co-ordinate system the particle ve-
locities are given by (1)

0 o

o] o] 2
qy=V+(Ua—x+Va—y+&*)v

0
oz

Where {7 and V are the rigid-body velocities, and where u and »
&re the tangential elastic displacement at P.

In view of the symmetry, the creep velocities AU and AV may
B¢ divided equally between the two bodies, so that

AU AT

BymTdigy =B
AV AV
V1=—2, Vz=—_2
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Now AU and AV are small compared with U, furthermore, for
steady rolling % and » do not vary with time, so that the expres-
sions for ¢, and g, reduce to

AU ou
= a2 AT
0z + 2 +U 3 (@, y8en U)........ [10]
AV
ay Y +U g (9,88 T cvvenpuna {11]

Expressions [8] and [9] for the relative velocity components be-
come

du du
s, = AU + U-a*m* (9, U) — U%; (== —0)..[12]
and
v e
8= AV + U= @4, V) + U - (~,y, ~U)..[13]

Over any region in which there is no slip taking place the relative
velocities s, and s, must of necessity be zero whence

ou u
a (—=z,y —-U) — E; (2,9, U)
= A—U—EE, = consb...... [14]
and
b7 ; v
H"a? (==, 9 -U) - ‘a‘ (=9, U)
= A—;—E vy = const...... [15]

Equations [14] and [15], therefore, provide conditions which
must be satisfied by the strain components du/9z and dv/dz over
that part of the surface of contact in which no slip takes place,
and at the same time enable the magnitude of the creep-velocity
ratios £, and £, to be calculated.

It is to be expected, however, that over part, at least, of the
contact area slip will in fact take place. In this region Equa-
tions [14] and [15] will not be satisfied but alternative conditions
may be obtained by an appeal to the simple laws of friction. It is
assumed that the resultant tangential traction ¢ can nowhere
exceed the normal traction Z multiplied by a constant coefficient
of friction, and that in the region where slip has occurred @ is
taken to have its limiting value uZ; i.e., within the locked region

v, _ BuN 2 \'/2
Q] = (x* + Y7+ < £ (1 - il) ...... [16]
2ma? a?
while on the boundary of the locked region and within the slip
region
3uN r2\
@] = = (1 - az) ............. [17]

The direction of @ at any point in the slip region is determined
in fact by the direction of the relative velocity between the sur-
faces at that point, which it must oppose. Since this direction is
not known in advance, the expedient will be used of choosing the
direction of @ a priori to coincide with the direction of the tan-
gential force; i.e.,

when T, acts alone Y=0] e
and when T', acts alone X =0

The direction of relative sliding at any point associated with
this assumed traction may be caleulated subsequently by the use
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of Equations [12] and [13] in order to confirm that the chosen
direction of @ does not contradict the physical law of friction that
it should oppose the direction of relative slip.

A further difficulty is that the shape of the boundary which
divides the locked region from the slip region is not known in
advance. In consequence, it has been found necessary to follow
‘a “trial-and-error’” approach. A shape for. the locked region
is assumed at the oytset which, together with specified tractions
over the area of contact, enables the tangential surface displace-
ments to be found. For the assumed solution to be correct,
the displacements must satisfy the no-slip conditions [14] and
[15] within the locked region and the laws of friction in the slip
region,

To complete the boundary conditions it is necessary to specify
the normal traction (or displacement) in the contact area. Physi-
cally, it is required that the bodies should remain in contact
and in equilibrium across the contact surface, for which w and
Z' must be continuous across that surface. Z’ denotes the nor-
mal traction resulting from the tangential force only, and is given

by
led dw
v [(1 B y) (X)hﬂ

=13
du o
— e [ e 19
+”(ax+ay),_u:| [19]

In obtaining a solution to the problem of static contact between
spheres Mindlin (13) makes the assumption that 2’ = 0, while
showing that this is only exactly true for no slip (whence u/dx =
dv/dy = 0) and for bodies of equal elastic constants (where con-
tinuity of w and 2w/dz across the contact surface gives dw/dz =
0). Theassumption that Z’ = 0 will be maintained here, whether
slip occurs or not.

In consequence of the symmetry one sphere only need be con-

sidered which, following Hertz, is taken to be a semi-infinite solid. -

The problem in elasticity therefore reduces to the “problem of
the plane” in which the surface tractions are given over the whole
boundary. To summarize the boundary conditions:

1 In the locked region, X and ¥ to be specified, consistent
with Equations [5], [6], and [16]; 2" = 0.

2 In the slip region, X and ¥ given by Equations [17] and
[18];Z' = Q.

3 Outside the area of contact (r> a); X = ¥ = 2’ = 0.

The solution to the boundary-value problem in elasticity de-
fined in the foregoing is obtained by the methods employed by
Cattaneo (12) and Mindlin (13) in studying the effects of a tan-
gential force acting between two spheres in static (a8 opposed to
rolling) contact. Reference should also be made to Love (14)
(page 242),

Static Contact
Mindlin shows first that the tractions
. 1
= ona (a? — rp/?

produce displacements® over the circle of contact

" @2 - w7,

% = constant = iGa

which correspond to no slip over the whole of the contact area,
under the action of a static force T',.

Examining this solution for the case of rolling contact we see

that the tractions of Equations [20] satisfy the symmetry condi-

tions [5] and [6], and since du/dz = dw/dz = 0, the displace-

8 In what follows, » and v, without subscript, denote displacements
in the plane z = 0.
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ments satisfy the no-slip conditions [14] and [15] with the Teault

. = &, = 0; ie., no creep occurs. It would appear therefor,
that the tractions [20] and the displacements [21] also provig,
a solution to the rolling problem, for materials of perfect elgg.
ticity and with all slip prevented. It is interesting to note
that the exclusion of a region of slip leads to zero creep velocities,
This result might be expected from energy considerations, gineg
slip provides the only mechanism in an elastic solid to account for
the external work done by the tangential force when cereep ocelrs,

It is obvious that only an academie solution has been foung,
since the infinite traction at the boundary of the contact ares (r =
@) insures that some slip will in fact take place. If slip oceurs
in a direction parallel to the z-axis over the whole contact areg,
then the tractions are taken to be

3uN
X = o @ - ¥ =0..... . [22]
which are shown to give rise to surface displacements
3uN
= [2(2 — 20?2 — 52 — o2 2 _ g2
U= o 22— ¥) (207 — 2 — )+ p(ar — )
.. [23
s (23]
64Gas Y
Caittaneo’s device of adding tractions
3 a’ \* 3uN s it/ 5
X' = (a) 21m,3(a )AL, PR el [24]

over the circle 0 < r < a’ results in total displacements

G 2
u+u'=§~M(l——%)=conﬁt

16Ga 0<r<a' [25]

v+ =0

Thus the combination of tractions [22] and [24] results in no slip
over the circle 0 < r < a’. This result defines the locked region
as a circle concentric with the circle of contact and the slip re-
gion as an annulus whose width increases with tangential force.
Experimental evidence of an annular region of slip in static con-
tact has been obtained by Mindlin, Mason, et al, (15), and John-
son (16),

Rolling Contact

(@) Longitudinal Force. At first sight it would appear that
the combined tractions [22] and [24], together with the corre-
sponding displacements, provide a solution to the case of rolling
contact. Both tractions are even in z, satisfying condition [5],
and nowhere exceed uZ, satisfying [16].

In the locked region du/dz = dv/dx = 0 which satisfy condi-
tions [14] and [15] with zero creep. It will be shown, however,
that the remaining condition is not satisfied; the direction of rela-
tive motion does not oppose the frictional traction throughout
the annulus of slip.

The displacements outside the contact area (r > a) due to the
traction of Equation [22] acting alone have been evaluated pre-
viously (17) with the result?
Ou  3uN@-—») z 2

oz 16Ga? a T

Fa’}

._.20

oz

" The approximation involves neglecting terms whose order of mag-
nitude is »/2(2 — »), i.e., 0.09, compared with unity.
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Within the contact area (r < a), from Equations [23]%

du 3uN 2 3
B~ e

oz 32Gat

Replacing a by a’ in Equations [26] and [27] and multiplying
by the factor —(a’/a)® gives the values of du’/z and dv'/dz, re-
sulting from the traction X’. These expressions, together with
the resultant value of du/dz due to X + X', are sketched, for
y = 0, in Fig. 3(a). It will be seen that in the annulus of slip
ou/oz i8 +ve for < 0, and —ve for x > 0. Ower the locked re-
gion ou/dz = ov/dx = 0, from which it follows (see Equations
[14] and [15]) that the creep velocities AU and AV are zero.

The relative velocity components between the two surfaces at
any point are given by Equations [12] and [13]. Noting from
Equation [26] that du/dz is an odd function of «, and that dv/dz
= 0, it follows that

2 | 32Gas’V 1271

>
8 = 2U — (@, 3, U), 8 =0..co.r.... (28)
oz

The traction X is positive over the whole of the annulus of slip,
while the relative velocity of slip is also positive over the region
z < 0, a result which entirely contradicts the physical law of fric-
tion.

In order to obtain a more correct solution to the problem of roll-
ing contact it is necessary to redefine the locked region. Follow-
ing the two-dimensional solution of Poritsky, the example of
creeping belts and also the foregoing results, we are led to expect
slip to take place after the contacting points have passed through
the locked region. As a tentative solution, let it be assumed
that the locked region remains a circle of radius @’ butis moved in a

8 Making the same approximation as in Equation [26] would give
ou  3uN@ — »=
oz 166as 24

which are consistent with Equation [26] at » = a.

= B

343

position so as to be tangential to the contact circle at the leading
point (—a, 0), Fig. 3(b). Its center would then be at the point
{—c, 0) where

The traction X and the accompanying displacements of Equa-
tions [23] remain as before, but the added traction becomes

a’ \® 3uN
&r = = F—
( a ) 2a’s (@ IRV e, [30]
where
# =  h B)  P sn  saes [31]
This traction results in
ou’ 3uN B 34N
L Y o
ar ~ a2aw T WE T Sr = gy 82

which, when added to Equations [27], give over-all values

ou _ 3uN@ -3
2c — 320m " g O (33]

Noting that for negative values of U the locked region should
be tangential to the circle of contact at (g, 0), so that ¢ becomes
negative, Equations [33] satisfy the no-slip conditions [14]
and [15] in the assumed locked region, with the result

AU _ _3#1\7(4 — 3r)c

b T 16Ga®

The creep ratio in the z-direction is in this case no longer zero.
The value of a’ can be obtained from the equilibrium condi-
tion [7], which gives

Fig. 3 (e)Mindlin’s solution for static contact
under tangential force. Slip takes place in
the annulus a’ < r < a. Relative slip ve-
locity is proportional to (Qu/0x + Ou’/0x)
which is positive in shaded area. (b) Modi-
fied solution for rolling contact. Locked re-
gion is taken to be circle radiusa’. (Ou/Ox +
ou’/0x) is constant, corresponding to no slip,
over this circle. Slip velocity remains posi-
tive in shaded area.
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whence
¢ a’ T, \'/
—=]1—-— =1 ——=] ... 36
a a 1 (1 uN ) [36]
Substitutingin [34] gives an expression for the creep ratio in terms
of the tangential force; viz.
3uN(4 — 3p) 7.\
= ——— - -—— ... 37
& "16Ga? 1 1 uv Lo

It will be seen that the combined tractions X over the slip region
and X + X’ over the locked region satisfy the required conditions
of Equations [5] and [16].

It remains to examine the direction of rélative slip outside the
locked region. In this case, because of the traction X'

' _3wN@-9z+tc2
2z 16Ga? a T
o a’ a2\
e Tl g -+ [38]
a?},
oz =1

in the region 7' > a’. Thus the net value of Ou/dz in the region
of slip is given by adding Equations [27] and [38], and is drawn
for y = 0 in Fig. 3(b). The relative veloeity between the two
surfaces in this region is found from Equations [12] and [13],
which give

_ BuN@Z -z +e¢
v 8Ga? a

The value of s, given by this expression is found to be positive
and hence in the same direction as the traction in the shaded area
of Fig. 3(b). The existence of an area in which the law of friction
is contravened implies that the assumed circular shape of the
locked region cannot be correct. The shaded “area of error’’ is,
however, in no event large compared with the total area of applied
traction (< 8 per cent) and becomes small both when T,—0
and when T, — uN, so that the foregoing solution should repre-
sent a reasonable approximation.

(b) Transverse Force. The transverse ‘ereep £, associated
with a transverse tangential force T, may be obtained without
difficulty by the same method. Mindlin’s solution for static
contact gives a concentric circular locked region, with tangential
tractions which are everywhere positive and parallel to the
tangential force T,. Applying this solution to the rolling prob-
lem and investigating the direction of slip in the annulus &’ < r <
@, again results in slip velocities which are approximately parallel
to the tangential traction (i.e., parallel to oy) and positive in the
shaded region of Fig. 3(a), where z < 0. We were led, therefore,
to expect that in the case of a transverse force also, slip will take
place at the trailing edge and not at the leading edge of the cirele
of contact. As before, the locked region is taken to be a
circle tangential to the leading edge at the point (—a, 0).

With 7', acting alone, the system is symmetrical about oz,
which leads to conditions similar to [5] and [6] which must be
satisfied by the surface tractions, and to conditions similar to
[14] and [15] which must be satisfied by the surface displacements
in the region of no slip.

It may be shown that the tractions
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X+X' =0

3uN
2ma?

(a? — 7?) L/

AT
a 2ma?

satisfy the necessary conditions and result in strains

Y+¥ =
s .. [40)

T'z)‘/:

(@2

Q,a__“ o 3uN(4 — »)e
2z ' 2z 32Ga’

over the circle of no slip #’ < a’. These values correspond tg
zero longitudinal ereep (£, = 0) and & transverse creep given by

_ 3uN@-—-» [ R
b= - 16Ga? [1 (1 N ) ] """ el

This result compares with Equation [37] for the longitudinal
creep. The distribution of surface tractions is the same in each
case and is everywhere parallel to the applied force.

It is still necessary to confirm that the direction of slip opposes
the frictional traction. The relative velocity in the slip region
has been calculated and, as before, turns out to be approximately
parallel to the traction (in this case ¥) and of negative sign
everywhere except in the shaded portion of Fig. 3(b).

The theoretical results just derived have all been obtained for
a system comprising identical spheres. The slight warping of
the contact surface which oceurs when a sphere rolls on a plane
or when the two bodies have unequal elastic constants is ignored,
but the experience of Tabor (6) suggests that its influence is
small. Dissimilar elastic constants make the distribution of
equal creep velocities to each surface in Equations [10] and [11]
untenable. However, by distributing creep velocities AU, and
—AU, AV and —AV, to the sphere and plane, respectively,
where AU, + AU, = AU and AV, + AV, = AV, it may be
shown that for bodies having elastic econstants v, Gy, and »y, Gy
the net creep is given by

£ = 1E0y )+ E0n G ...

in which the results of Equations [37] and [41] apply.

Experimental

To check the validity of the theoretical results, particularly
in view of the approximations involved, simple experiments were
designed to measure the creep due to both longitudinal and
transverse tangential forces.

The apparatus is shown in Fig. 4. Two hard steel balls of 1-
in. diam were mounted on a spindle by soldered joints. When
placed in contact with & plane, in fact, a hard steel parallel strip,
the balls were free to roll with equal velocity in a direction per-
pendicular to the axis of the spindle. The balls were loaded by
two hangers mounted on small ball races at each end of the
spindle.

A longitudinal tangential component of force at the contact
between each ball and the plane was obtained by tilting the plane
through an angle f in the direction of rolling. The system was
restrained from free rolling down the incline by strings, parallel
to the plane, passing over pulleys mounted at the ends of the
spindle. Reference to Fig. 4(a) shows that the contact force i
now inclined at an angle a to the plane, given by

T, tana = i
= R+3D

tan 8

where R is the radius of the pulley.
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Fig. 4 Ezxperimental apparatus for measuring creep under action of tangential forces.
(b) Application of a transverse tangential force.

Application of a longitudinal tangential force.

16 T T T T

~

(o]

»

] 1 1 ] 1
0 2 4 5] 8

CONTACT CIRCLE RADIUS, a IN 102N,

Fig, 5 Experimental variation of creep with increasing area of con-
tact, obtained by increasing normal load

The system was rolled slowly up the plane for a distance I = 10
in. by pulling on the two strings, and then allowed to roll slowly
back by gradually releasing the strings. The spindle returned
toits initial angular position relative to the plane with the spheri-
cal knob K resting in contact with a parallel slip placed on the
plane. The longitudinal creep of the system down the plane (de-
noted by §) resulting from a traversal up and down the plane
was measured by micrometer or, in cases where greater sensi-
tivity was required, by observing s line scratched on the spindle
by & microscope mounted above.

Both the balls and the plane possessed a good surface finish.
Before each experiment they were cleaned, washed in benzene
and ether, and wiped dry.

By use of Equation [3], the Expression [37] for the longitudinal

(reep may be written
tan o\ /s
1—-{1- .. [43]
K

R ¢ _ud -3 a

2L " 21 —1») D
'I_'hms for a constant value of tan o, the creep should be propor-
tional to @/D. The ball diameter D remained unchanged, but @
Wes varied by increasing the load. The direct proportionality of
8 with g is shown by the experimental results plotted in Fig. 5.
Macroscopic sliding began on the downward run at tan @ =
0.09, compared with values of u = 0.12-0.14 measured in steady
Tectilinear sliding. Fig. 6 is plotted from the slopes of the
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Fig. 6 Comparison of experimental longitudinal creep measure-
ments with theoretical analysis

straight lines of Fig. 5 and compared with Equation [43], drawn
for p = 0.09. .

The application of a transverse tangential force was obtained
by tilting the plane through an angle perpendicular to the direc-
tion of rolling as shown in Fig. 4(b). The plane was maintained
horizontal in the direction of rolling so that the pulley strings
could be dispensed with. The rolling motion was produced by
hand so that the velocities of rolling, as in the previous experiment,
were very small, certainly less than 10 fpm. The transverse
creep displacements across the plane due to a double traversal
were measured by micrometer. The procedure was the same as
before and the results are shown in Fig. 7. In this case inter-
mittent sliding began at tan & = 0.11. Transforming Equation

[41] gives i
8 _ B4 -» a tan o\
TR e T D[I_(l_ Iz ) :|"[44]

which is plotted for comparison, putting x = 0.11.

The experiment was repeated with the surface flooded with &
normal lubricating oil. It will be seen from Fig. 7 that the coeffi-
cient of limiting friction has been reduced by the lubricant, but
only from 0.11 to 0.09, although it is evident, from the low value
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obtained dry, that grease films were still present. Thus the
addition of a lubricating oil at rolling velocities too small to intro-
duce any hydrodynamic action, has kittle effect upon the creep
Process.

Comparing the experimental results with the theoretical rela-
tionships of Equations [43] and [44], reasonably good agreement
is found, particularly for small values of T(T < uN) and again
just before sliding begins (7 — uN).
marked in the intermediate range and is greatest at 7' = 0.75uN
when the theoretical creep is about 25 per cent less than the meas-
ured value. The principal assumption underlying the theoretical
treatment is that the locked region is circular and tangential to
the circle of contact at the leading point (—a, 0). It has been
pointed out already that this assumption cannot be exact since
it leads to slip velocities which are inconsistent with the direction
of the assumed traction over the shaded area shown in Fig. 3(b).
This area of error, although never large, reaches its maximum
value when a’ = 0.6 a; i.e, when T' = 0.72uN. It would seem
reagsonable to conclude that the departure of the true locked re-
gion from its assumed eircular shape is the principal reason for the
discrepancy between the experimental and theoretical results.
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Fig. 7 Comparison of experimental transverse creep measurements
with theoretical analysis
APPENDIX
Limiting Solution for Small Tangential Forces (T < uN)

If the tangential force is small compared with the limiting frie-
tion force, the expressions for the creep, Equations [37] and [41],
reduce to

4 — 3

B, o ‘(Wrﬁi@ Wionusmnm  asadl [45]
4 —

==t [46]

Under these circumstances the slip is confined to & thin “new
moon’’ at the trailing edge of the circle of contact.

It is of interest to examine the limit to which the corresponding
tractions tend when 7' < uN. With the aid of Equation [35]
the tractions X 4 X’ of Equations [22] and [30] may be written
in the form
37, (a® — )Y — (a2 —

27 a® — a'?

7"2} 1/s

X+ X = V... [47]

Now the limit of this distribution of traction as &’ is made to ap-
proach a (i.e, T, — 0) may be shown without difficulty to be
the traction
S I . . (48]
27ra® (a® — r?) /3
Similarly, in the case of a transverse force the traction becomes

.. a+x
" 2ma (a* — )Y

Rather surprisingly, the magnitude of these limiting tractions rises
to infinity on the boundary of the circle of contact except for the
point (—a, 0) where it is zero. Physically, this zero value corre-
sponds to the imposed condition that there should be no slip &b
this point.
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