The Effect of Spin Upon the Rolling Motion

of an Elastic Sphere on a Plane

By K. L. JOHNSON,! CAMBRIDGE, ENGLAND

The motion and deformation of an elastic sphere rolling on an
elastic plane are examined for the case when the sphere, in addi-
tion to its straight rolling motion, has an angular velocity of
“‘spin’*  about an axis normal to the plane. The action of spin
is to twist the area of contact. Burface tractions resulting from
this rotation are found, which demonstrate the necessity of partial
slip in the area of contact. Previous investigations suggest that
this slip cannot occur at the leading edge of the contact circle, so
that a system of tractions is found which corresponds to zero
stress at the leading point. It is shown that such a system of
tractions gives rise to a fransverse creep of the sphere in the
direction of its rotation {2. The magnitude of this creep is calcu-
lated for small values of {2, when slip occurs to only a small extent.
Experiments have been performed using a simple thrust bearing
with plane parallel races. As the bearing rotates, the balls creep
radially outward in the predicted manner. Quantitative meas-
urements of this creep agree with the theoretical estimate over
a wide range.

Introduction

Tur motion of o sphere which rolls without sliding upen a plane
has been analyzed in a companion paper (1)? into three cate-
gories: (a) Free rolling; () rolling under tangential forces ; and
(¢) rolling with spin. The motion referred to as spin is defined
as 8 relative angular velocity between the sphere and the plane
about an axis through the point of contact normsl to the plane.

Spin is & recognized feature of thrust and angular-contact ball
bearings and is usually held responsible for the higher friction
torque and considerably shorter life of these bearings in companri-
son with radial bearings in which free rolling occurs. In spite of
ite practical importance, few attempts seem to have been made to
analyze the mechanism of the motion or to determine the surface
stressges which are induced. Palmgren (2) and Poritsky, Hewlett,
and Coleman (3) ealeulate the friction torque of angular-contact
bearings assuming that the relative slip between the balls and
the races consists of a rigid-body rotation with the spin velocity
about a normal axis through the center of the contact area. The
more recent work of Mindlin (4) and Lubkin (5) suggests that it is
unjustifiable to ignore tangential displacements resulting from
the elasticity of the surfaces and that, at least for small spin
velocities, slip might occur over only a small portion of the area of
contact, the remainder consisting of a locked region in which no
relative motion occurs.
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The author was interested to observe, partly by accident
that in a simple thrust bearing, made up of two flat coucentric-,dh:
rotating disks with evenly spaced balls rolling hetiveen them, the
balls did not move around a perfectly circular path but exhibiteq
a oreeping motion radially outward. This occurred when the
velocitics were sufficiently small for the centrifugal forces to e
negligible. The effect is mentioned easually by Palmgren (6) in
connection with his rolling experiments with tangential forceg,
but is dismissed as insignificant, since he states in conclusion?
that “the ball is always, while rolling, seeking surfaces which are
exactly parallel, if such exist in the path of the ball” In the
analysis of rolling with spin presented in this paper an attempt is
made to assess the magnitude and to explain the mechanism of thig
radial creep.

Statement of the Problem

In this problem the sphere is taken to roll on the plane in a
straight line parallel to the axis oz with a steady veloeity U, Con-
tact is maintained by a force N acting in a direction normal to the
plane, which gives rise of a eircular area of contact of radius g
given by

. 3(1 — »)ND
a8 = —
8G

At the =ame time 3 steady angular velocity of spin 2 about the
normal axis 0z is maintained by an applied twisting couple M,.
In view of the observations mentioned in the introduection, tan-
gential ereep velocities AU and AV might be expected as shown
in Fig. 1.

Clearly the action of the spin rotation, as the sphere rolls for-

3 Reference (7), p. 35.

Mz
Z| N
\U.L
™ ——
T;*- = AT

Fig. 1 Area of contact under action of an angular velocity of spin Q
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ward, is to twist the area of contact, thereby inducing tangential
components of traction X and ¥. Itisrequiredtofind X, ¥, AU.
and AV and the moment M, arising from a given angular velocity
of spin.

The method of analysis follows closely that applied to the
problem of rolling under tangential forces given in (1), to which
reference should be made for notation, and so on. It was shown
there that considerable simplification could be secured by as-
suming the sphere and plane to have similar elastic constants and
by ignoring the warping of the contact surface, whereupon the
problem reduced to one of two identical spheres rolling upon each
other. The same expedient is applied to the present problem,
thereby introducing several important conditions which now
arise from the geometrical and elastic symmetry of the system.

Conditions From Symmetry

Reducing the problem to the contact of equal spheres with like
elastic constants permits {2 to be divided equally between the
purfaces, and reference to Fig. 1 indicates svmmetry about the
axis Ox. Therefore the equality of action and reaction gives

Xz, p) = =X, —¢)ooooio, [2]

and
Y(z,y) = Y(x, —9).........vv ... [3]
M, = fd f DEF (Yo — Xyhdrdf........... [4]

and since there is no resultant tangential force

r 25
f ‘ f " Xrdrdf = f § f Yrdrdf = 0....... (5]
0 Q 0 0

The particle velocities at point P(z, y) are now given by
AU 0O ou )
6@ u V) = U+ =y + U (2 45 0). [0]

AV Q o .
QV(I, Y, E) = ? + ?9& + U S"'_(:c’ Y, 8gNn U){‘E
Bymmetry of the system about Oz gives
g:l(xJ Y U) o QL—E(Z; i U)
and
Q:Il("r) -, [r) = '—(1’35(:1:5 Y, U)

where (z;, y1) and (2, 1») are contacting points. The relative

velocity between such points is therefore given hy
82 = {2, ¥, U) — gulz, —p, U
and
8y = g lz, ¥, U) + gl =y, U}

which, from Lxpressions [6] and {7], give

Ou ou
8, = = = NN —U -~ (x, —y, U)..
o= AU — Qu + U - (, 9, U) = U - (z, —y, U)..[8]

O
Y=AV 4 AU 2 (a5, U) + U~ (5, =y, U)..[9]
ox dx

A in the previous problem, we might expect the area of contact
b be divided into a locked region and a region in which slip
Occurs, In the locked region the relative velocity between con-
bacting points is zero, whence

du

ou ¥
Sy, =y, U) — — (5, U)=£ —p <., [10
or & H ) = o my U) = & —p . [10]
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z
wd =S 0 V)~ (e, U) = 6 4 p (1
where p is a nondimensional spin factor, Qa/U.

It has not been found possible in this problem to make & simple
and physically reasonable supposition for the shape of the locked
region once slip has developed to any appreciable extent. The
investigations are confined therefore to the assumption that
negligible slip occurs over the whole cirele of contact.

The method of solution follows that given in reference Qb
tangential tractions are specified over the whole area of contact
{(r < a) and the “‘problem of the plane” solved to obtain the sur-
face displacements, which must satisfy the no-slip conditions of
Equations [10] and [11] over the area r < a. The boundary
conditions in this case reduce to:

X and ¥, to be specified, consistent
with Conditions [2], [3], and [3]
and Z' =0

X=Y=2=0,
Solution for No Slip

The method employed by Mindlin (4)* has been used here o
find the tangential swifuce displacements 4 snd » due to a number
of distributions of tangential tractions of similar form acting over
the circle » << @. The surface integrals obtained by substituting
these tractions into Bquation {32] of reference (4), although
tedious, present no real difficulties. The results of these calcula-
tions are summarized for convenience in Table Ts

Considering the data of Table 1 in the light of conditions [2],
[31, [86], [10], and [11], it is apparent that (he required tractions
will be these giving rise to expressions for du /0x containing terms
proportional to y, and {or dv/0z containing terms proportional to
z, such tractions are

r<a

r>a

X—% = ;
5 5 et — o)/ [12]
1 .
Yo=YV, —(a® =) ... ... . [13]
a
_ 2
and Vi B A [14]

Each satisfies conditions [2] and [3] and, in order that there
should be no resultant tangential force, it follows immediately
that ¥, and ¥ must be added together such that

The displacements due to the superposition of tractions [12],
[13], and [14] give

Qu Xm3(2 — p) V2w (;—_?Qﬂ"f
2z 320a 326a Y T 3264 Y
Bv _ Xy P24 —y)  (=P0a(10 — )
> | 32Ga 32Ga 32Ga “

which satisfy the conditions of no slip, conditions [10] and [11],
provided that

4 Bee also "“Theory of Elasticity,” by A. E. H, Love, p. 242, where
a solution to the problem of the planc with given surface tractions
is expressed in terms of the potential functions of Boussinesq and
Cerruti.
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Table 1 Tangential surface displacements within the circle of contact r < g
Tangential — Tangential Twisting
traction, force, couple,
Suffix X I, M. 32Gu 32G 7 ou 32Gy 32G s
X TatX ratX raX £ (O:):) s d X (6;)
(1) (a? — 5/ 2/y 0 {22 - 1(2?22, 3; 22)_} },2)2 2(4 — )z /a Doy fa? Doyl
r(@? — %)} Ja
@) afl@® — )i 2 0 8(2 — ») 0 0 0
(3) z/(a? — r2)Y/e 0 0 204 — 3v)a/a 2(4 — 32) 2vy/a 0
(4)  y/(a* — r2)ve 0 — %, 2(4 — »)y/a 0 —%z/a =5
(B)  zy/ala® — 1) 0 0 32 — v)ey/a 32 = wy/a »20 — 3(z2 + ¥} /2a2 —3wz/q
r A 526 (o 320, 82 (2
Y ra*y Ta’y Ta¥ TV 67) ral a7 "a—g?)
(1) (a? — 131 /g 2 0 ey /al 2y /a 202 — »)(2a2 — g2 _ o
—r(@ — yyi/ar 204 — )
@ a/@ — 1) 2 0 0 0 82 — ) G
(3) z/(a? — u'z\‘/”? 0 2/ —2uy/a 0 24 — y)z/a 24 — 5
4w/ — i 0. 0 —2vz/a —2y 2(4 — 3v)y/a 0
(B)  z*/ala® — 2t 0 — vy /a? —wy/a {204 —3v)a* 4+ (10 — )2 (10 — )z
+ (10 — 9p)y?) /202 '
% 8G (3 —») d
Bt gy e Do gy 2
T 3(3 — 2») Y. o 7 % 123
3 = T B TR s o e s
and (ar = )7 !
vk
. 86 (1 - » , s where
7w BT G B B s p AL i Rk ) S Bt L)
. 73(3 — 2v) w3(3 — 2p)
The resultant tractions are therefore
i are chosen so that the resultant values of X and ¥ are zero at
_ 8G(3 —¥ L [19] (—a, 0). The final tractions then become
m3(3 — 2w} a (a? — p2)/r o & )
8G(3 —v) (e + z)y
X220 P letaly ;
and 33 — 2w) q (a2 — )l [23]
po SCU—0) p g - B — g o) end

T3 — W) a (a? - )/t

The distribution is symmetrical about the y-axis and provides no
resultant couple about the axis of spin. This is to be expected,
since the stipulation of a perfectly elastic solution with no slip
permits no energy dissipation as rolling proceeds.

In common with the no-slip solution for rolling under a tangen-
tial force the tractions [19] and [20] exhibit a singularity at » =
a which will be relieved in practice by slip.

Solution for Vanishingly Small Slip

It has been shown previously that the application of tan-
gential tractions in both the z and y-directions to the contact
surface of a rolling sphere causes slip to initiate at the trailing
edge of the contact circle. In each of the cases examined, any as-
sumption of slip between contacting points hefore theyhave passed
through the locked region has been shawn to contradict the law of
friction. Tt will now be assumed that this state of affairs applies
to the present problem of tangential tractions due to spin, and
any tendency to slip at the point ( —aq, 0) will he eliminated by
making the tangential traction there equal to zero. This device
already has been shown to give reasonable results in the case of
rolling under tangential forces (7 << N}, where a more complete
solution is available for comparison [see Appendix to reference
(1.

It is possible to make the resultant traction at the point (—a,
0) have zero value and still satisfy the conditions for no slip over
the area of contact by adding to the no-slip solution the tractions

y o 860 —») pa®— 2 — oz — gyt
T3(3 — ) a (a2 — p2yi/e oo

The combined traction |Q| = (x* + ¥*)':, which is no longer
symmetrical about the y-axis, is shown in Fig, 2.

The additional tractions Ay and Y5 produce displacements (see
Table 1) for which

2 _
faka
o Zr(—2w) Vi 2 —yp
—_— i —— 2 — = e ey
oz 326 T gpq A4 W 33 — )12

This constant term, when included in the no-slip condition [11],
gives rise to a transverse creep
22 —v) Qa

22w 22 -v) Qa "
3B -2 Ty = ) T I

Hence a mechanism hag been found to explain the transverse creep
which is observed to accompany rolling with spin,

A second feature of the nonsymmetrical distribution of trac-
tions [23] and [24] is that the resultant moment about the spin
axis is no longer zero

2medt 32(2 — »)
M= (=B e P o 2t Bl
3 ( 4+ 3) 9(3_21’)Gap

The results of this section are not exact, either for the case of no
slip or when slip oceurs, but may be taken to represent the limib
to which the creep £, and the resisting moment M, tend when the

[27]
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Tig. 2 Contours of resultant surface traction under action of a small
angular velocity of spin (vanishingly small slip). Slip might be ex-
pected to extend over the shaded area when pD ue = 1.0,

degree of slip is small; i.e., for small values of p. The range of
values of p for which Equations [26] and [27] might be expected
to he valid may be deduced from the contours of traction shown
in Fig. 2. It will be seen that the resultant traction

IQ’ _ 8G(Z — )

S mE o P
reaches its maximum value, for any given radius, at § = =£60 deg.
Slip will progress radially inward from the trailing edge over the
region in which [Q[ > uZ; ie.

8G(2 — ») — 3N i
BOE — ) opers ity S 2 o s

3G — 2) pFp, 0) > p gmz( P
where p = r/a.

Substituting for a from [1] and writing F(p, 6)/(1 — p2)'V2 as
Foilp, 8), the penetration of slip is given by the condition

= 33 —2») Mo
Foilp, 0) > Eﬁm ( oD ) ........ [29]

Apparently, the degree of slip is governed by the nondimensional
parsmeter (pD/ua). The funetion F. is sketched in Fig. 3 for
6 = 60 deg. Using Equation [29], the values of (pD/ua) to pro-
duce increasing penetration of slip are deduceds For example,
slip penetrates to p.= 0.8 at & = 60 deg when (pD/ue) renches
the value 0.77, and to p = 0.7 when (pD/ua) is 1.19.

We are now able to estimate, tentativelv, the conditions under
which the theoretically deduced transverse creep and resisting
moment given by Equations [26] and [27] might be expected to
apply. The results represent limiting solutions for small slip, but
might be expected to provide a reasonable approximation for
values of (pD/pa) less than 1.0. Slip would then nowhere ex-
—_—

_*This calculation can only be approximate and apply to a rela-
fively small degree of slip, since the action of slip modifies the traction
Within the locked region.

335

VALUES OF (P%G)

o L l | ! |
0 02 0-4 06 a8 -0
Ramus‘f

Fig. 3 Estimated progress of slip with increasing spin

tend within p = 0.75 and would roughly cover the shaded area in
Fig. 2.

Equations [26] and [27] may be rewritten in terms of the slip
parameter (pD/ ua)

D 2(2 — D
& _ 22 =) p—) ............. [30]
pa 33 — 2v) \ ua
MJD 322 — ) pD 51
G oG — ) Ta ...........
or, more generally, to cover the values of (pD/ua) for which slip
is significant
£,D D
= a (B 132]
ua e
and
M.D pD ;
Gt fa ( o ) ................ [33]

In the absence of a complete solution these functions may be de-
termined by experiment.

Experimental

Experimental observations have been made of the transverse
creep which accompanies rolling with spin. Also, with less
suceess, an atteropt has been made to messure the resisting
moment about the spin axis,

A convenient arrangement in which spin oceurs is provided by
a simple thrust bearing. The bearving used possessed flat hori-
zontal races, the load being transmitted through three sym-
metrically spaced balls. The lower race was fixed, while the upper
race turned about a vertical central spindle and carried a dead
load. If the upper race turns with angular velocity 2Q the ball
centers move round their track of radius B with a velocity U =
2. It is clear that there is a relative angular velocity of 20 be-
tween the two races so that spin must oceur between the ball and
the races at one or both points of contact. If the surface condi-
tions at both points of contact are identical, in order for the spin
moments M, acting on the ball to be equal and opposite, the ball
will turn about a vertical (spin) axis with angular velocity €.
The angular velocity of spin of the ball relative to the race at
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each contact is thereby £, and the rolling velocity at each
contact U = £LR. Thus the spin factor becomes

Qa a

p=_§l§“ = ’E......”..........[g&]

having the same sign at each point of contact, so that the slip
parameter reduces to

As the bearing rotates the creep, {ransverse to the rolling direc-
tion, causes the balls to move radially outward, so that the track
radius R gradually increases. This movement was measured by
micrometer for one circulation of the balls around the track, and
i denoted by 8. Thus for the experimental arrangement, Hqua-
tions [32] and [33] hecome

5 D (D) i
i g v s [36]
M, 81-=2 D
= —— fa (u—R) ............. 37

For a given value of (D/uR), corresponding to a given pattern
of slip, Bquation [36] suggests that § is proporticnal to a. Varia-
tions in o were obtained by incressing the normal load. A typical
get of creep roeasurements is shown in Fig. 4 for a series of ball
diameters, which adequately demonstrate the linearity of 8 with a.
Tf the slopes of these lines are plotted in the form of Equation
136) then we should expect the results to follow o unique function
of (D/uR).

Difficulty arises in the choice of suitable values for u. Ref-
erence to the legend accompanying Fig. 5 shows that creep moeas-
urements were made ander & variety of surface conditions. Both
hard and soft races were used in the “‘as-ground’’ and polished
state (the balls were ab all times hard and polished). The ma-
jority of the experiments were performed with lubricant present,
but some measurements were made dry. To correlate these re-
gults the eoefficient of gliding friction was measured in each case
(see legend to Fig. ). As would be expected, the measured co-
efficient of friction depended little upon surface finish and hard-
ness. The creep measurements, on the other hand, showed &
marked change as & result of polishing the races. To correlate
the results into a unique function of D/ulR, the effective value of
u for the polished races regquires to be about half of the value for
the rougher rages. Even assuming that microslip over part of the
area of contact is governed by Amonton’s law so that we may
write @ = uZ, the experiments suggest that the constent u cannot
be compared with the value associated with steady sliding.

This phenomencn had been observed by the author previously
(8) during experiments on the static contact of spherical surfaces
under tangential forces. It was suggested then that the infinite
tractions associated with no slip might be relieved, in part, by
distortion of the surface agperities rather than by microslip as
assumed in the analysis. In this way a rough surface, with its
more flexible asperities, would accommodate higher tractions
before the onset of appreciable slip.

To avoid the difficulty of the indeterminate nature of the
constant u, the results of the creep experiments have been plotted
in the form [6/(2ra)l(D/R) against D/R in Fig. 5. At small
values of D/R the experimental resulls compare very favorably
with the analytical solution of Bquation [30]. Taking the effec-
tive value of u to be no greater than 0.2, Tquation [30] is seen to
be a close fit over the range D/(nR) < 1. Tor large values of
D/(uR), the creep approaches a constant value whose magnitude
ig dependent upon the nature of the surface. When slip has pro-
gressed over a large proportion of the contact area, the magnitude
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Fig. 5 Correlated results of measurements of transverse creep due
to spin, compared with linear theoretical relationship

of the surface tractions, and hence the resulting creep, are Do
longer dependent upon the amount of spin.

An attempt was made to obtain the twisting moment function
of Equation [37] experimentally by measurement of the torque-
resisting rotation of the bearing. The over-all resistance was ob-
tained by measuring the retardation of the bearing when rotating
freely and slowly. In addition to the resistance due to spin, the
over-all torque includes the resistance to straight free rolling—
the usual rolling friction. Assuming the elastic-hysteresis theoly
presented by Tabor (9) to be correct, the rolling-friction force is
given by

SEPT
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Fig. 6 Measured resisting moment during rolling with spin. This
moment is made up of a component due to spin and a component due
to elastic hysteresis.

where

2\ 273
¢ = 0.00103 (B) b in.

is the elastic work done per unit distance rolled for a steel ball
rolling on a plane, and « is the fraction of this work dissipated by
hysteresis.® Hence the friction moment per ball due to hysteresis
is

N2 /s
(M), = FR = 0.00105 (3) alt

Using Equation [1] this maj be rewritten

(B,), = 0.30a (%) T E—— 139]

Tabor guotes a fizure of 2 per cent for the value of a for hard-
steel rolling surfaces. Measurements by the author (unpublished)
of the hysteresis loss at the stationary contact of a hard-stesl
sphere and plane gave an approximately constant value of 0.4 per
cent for normal loading within the elustic range. We may write

therefore
I
(M), =k (E) Na

where k is 2 constant of magnitude 0.0015 to 0.0072. To the
hysteresis moment must be added the moment due to spin given
by Equation [37] so that (taking p as a constant) the total re-
sisting moment is

M, M\ L (MY (R X
() < (2, (5) 11 (3) o

It may be seen that both components are functions of the ratio
(D/R) and, for a constant value of this ratio, are proportional to

§ Dr. Tabor has drawn the author’s attention to a mistaken assump-
tion in his original paper (10) which caused the expression for @
quoted in (9) to be too large by a factor of 2. His values of e deduced
from rolling experiments are therefore too small by the same factor.
A more exact treatment by Greenwood and Tabor is in the course of
publication. Corrected values of ® and « are given above.
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Fig. 7 Analysis of resisting moment measurements into spin and
hysteresis components

the product N X . Typical measurements of friction torque
ab varying loads are shown in Fig, 6. They are approximately
proportional to Na. The small, fairly constant, intercept at Na
— (0 represents the friction of the bearing spindle.

Reference to Equation [40] shows that the hysteresis compo-
nent becomes large and predominates at small values of (D/R).
The slopes of Fig. 6, M /Na, are plotted against (D/FR) in Fig. 7.
Multiplying through by (D/R) and extrapolating back to D/R =
0 yields a valus of k& = 0.0037 which is consistent with the values
estimated from independent measurements. Thus the hysteresis
component can be subtracted from the total to leave the
spin component.

It is immediately apparent that in the region of small slip
(D/R small) the hysteresis component is much larger than the
spin component so that no reliable comparison with the linear
relationship of Hguation [31] is possible. For larger values of
D/R the hysteresis component hecomes small and the experi-
ments should give a reasonable measure of the resisting moment
due to spin. With increasing spin velocities, slip relieves the high
stresses at the trailing edge of the contact area, causing the re-
sisting moment to depart from the linear relationship of Bquation
[31], and to approach a limiting value. A tendency for the
moment to decrease at large values of D/R was observed.
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