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Parameter          Value

axial chord          137.4 mm (5.410 in.)

pitch                    130.0 mm (5.119 in.)

span                    152.4 mm (6.000 in.)

d, leading edge   10.6 mm (0.417 in.)

turbulence grid    25.4 mm square bar

blade passages  11

  (d = 2 × minimum radius of curvature)
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Figure 5. Heat Transfer Distributions - Case 1
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Figure 6. Heat Transfer Distributions - Case 2
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Figure 7. Heat transfer distributions - Case 3
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Figure 8. Heat Transfer Distributions - Case 4
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Figure 9. Heat transfer distributions - Case 5
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Figure 10. Heat transfer distributions - Case 6
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Figure 11. Heat transfer distributions - Case 7

1250
1000

750
500

500
750 750

1000
1000

1250

1000 750

1500
1250

17502000

1500

1000

1750

s-1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

(b) calculated Nu contours (no laminar augmentation)

z

750

750

750

1000

1250

750
1000

1250
1500

1000
1250

1500

1750

1500

1250

1000

s-1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

(a) measured Nu contours

z

s-1.0 -0.5 0.0 0.5 1.0 1.5
0

500

1000

1500

2000

2500

3000

pressure surface suction surface

(c) comparisons at 15%, 25%, and 50% span

Nu

15%
%span

25%
50%

expr. calc. Reex = 628,000
PR   = 1.378
αin   = −2°

Figure 12. Heat transfer distributions - Case 8

s-1.0 -0.5 0.0 0.5 1.0 1.5
0

500

1000

1500

2000

2500

3000

pressure surface suction surface

(c) comparisons at 15%, 25%, and 50% span

Nu

1250
1000

750

750
500 1000 1000

1000
1250

1250
1500

1000
2000 1750 1500

1250

1000
750

1000
1750

s-1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

(b) calculated Nu contours (no laminar augmentation)

z

750

1000

1000

750
1000

1250

750

750
1000

1250
1500

1750

1000
1250

1500
1750

1750

1500

1250

1000

s-1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

(a) measured Nu contours

z

15%
%span

25%
50%

expr. calc. Reex = 628,000
PR   = 1.378
αin   = +2°

NASA/TM—2000-210021



500

600

700

800

900

1000

0.5 0.6 0.7 0.8 0.9 1.0

Nu

Reex × 10−6

s = −0.26
s = −0.51

midspan data

Nu ∝ Re4/5

(turbulent)

Nu ∝ Re1/2

(laminar)

NASA/TM—2000-210021



NASA/TM—2000-210021



NASA/TM—2000-210021



NASA/TM—2000-210021



NASA/TM—2000-210021



This publication is available from the NASA Center for AeroSpace Information, (301) 621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio  44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546–0001

April 2000

NASA TM—2000-210021
ASME 2000–GT–0209

E–12218

WU–523–26–13–00

20

A03

Gas turbines; Heat transfer; Transonic flow; Cascade wind tunnel; Turbomachinery;
Liquid crystals

Unclassified -Unlimited
Subject Categories: 02, 07 and 34 Distribution:   Nonstandard

Prepared for the 45th International Gas Turbine and Aeroengine Technical Congress cosponsored by the American Society of
Mechanical Engineers and the International Gas Turbine Institute, Munich, Germany, May 8–11, 2000. Paul W. Giel, Dynacs
Engineering Company, Inc., Brook Park, Ohio 44142 (work funded by NASA Contract NAS3–98008); Ronald S. Bunker, Corporate
Research and Development, General Electric Corporation, Schenectady, New York 12301; G. James Van Fossen and Robert J. Boyle,
NASA Glenn Research Center. Responsible person, Robert J. Boyle, organization code 5820, (216) 433–5889.

Paul W. Giel, Ronald S. Bunker, G. James Van Fossen, and Robert J. Boyle

Heat Transfer Measurements and Predictions on a Power Generation
Gas Turbine Blade

Detailed heat transfer measurements and predictions are given for a power generation turbine rotor with 129 deg of
nominal turning and an axial chord of 137 mm. Data were obtained for a set of four exit Reynolds numbers comprised of
the design point of 628,000, –20%, +20%, and +40%. Three ideal exit pressure ratios were examined including the design
point of 1.378, –10%, and +10%. Inlet incidence angles of 0 deg and +2 deg were also examined. Measurements were
made in a linear cascade with highly three-dimensional blade passage flows that resulted from the high flow turning and
thick inlet boundary layers. Inlet turbulence was generated with a blown square bar grid. The purpose of the work is the
extension of three-dimensional predictive modeling capability for airfoil external heat transfer to engine specific condi-
tions including blade shape, Reynolds numbers, and Mach numbers. Data were obtained by a steady-state technique using
a thin-foil heater wrapped around a low thermal conductivity blade. Surface temperatures were measured using calibrated
liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, and also
show good detail in the stagnation region.


