
Project Integration Architecture:
Implementation of the CORBA-Served Application Infrastructure

Dr. William HenryJones
NationalAeronauticsandSpaceAdministration
JohnH. GlennResearchCenteratLewis Field

Cleveland,OH 44135
216-433-5862

William.H.Jones@grc.nasa.gov

X00.00 31 May 2002

Keywords:
PIA; PRICE;CORBA; KnowledgeManagement;Network Computing;

ApplicationIntegration;TechnicalIntegrationTechnologies;
ApplicationInfrastructure;DistributedUserIdentificationandAuthentication;

DistributedAccessControlSystems;DistributedAccessControlSystems;
TrustedServerNetworks;Collectives;Federations;Encryption;SecuredCommunications;

ABSTRACT: TheProjectIntegrationArchitecture(PIA)hasbeendemonstratedin asingle-machineC++ implementation
prototype. Thearchitectureis in theprocessof beingmigratedto a CommonObjectRequestBrokerArchitecture(CORBA)
implementation.Themigration of the FoundationLayer interfacesis fundamentallycomplete. Theimplementationof
theApplicationLayer infrastructure for that migration is reported.TheApplicationLayerprovidesfor distributeduser
identificationandauthentication,per-user/per-instanceaccesscontrols,serveradministration,theformationof mutually-
trustingapplicationservers,a serverlocalityprotocol,andanability to search for interfaceimplementationsthroughsuch
trustedservernetworks.

1 Introduction

1.1 History

In the late 1980s, the IntegratedCFD and Experiments
(ICE) project[1, 2] wascarriedoutwith thegoalof provid-
ing a single,graphicaluserinterface(GUI) anddataman-
agementenvironmentfor a variety of computationalfluid
dynamics(CFD) codesandrelatedexperimentaldata.The
intentof the ICE projectwasto easethedifficultiesof in-
teractingwith and interminglingthesedisparateinforma-
tion sources.Theprojectwasasuccessonaresearchbasis;
however, on review it was deemedinappropriate,due to
varioustechnicallimitations,to advancetheeffort beyond
thesuccessesachieved.

A re-engineeringof theprojectwasinitiatedin 1996[3, 4,
5, 6, 7, 8, 9, 10]. The effort wasfirst renamedPortable,
RedesignedIntegratedCFDandExperiments(PRICE)and
then, as the wide applicability of the conceptscameto
beappreciated,ProjectIntegrationArchitecture(PIA). The
provision of a GUI as a project productwas eliminated
andattentionwasfocuseduponthe applicationwrapping

andintegrationarchitecture.During theinterveningyears,
work hasproceededandan operationaldemonstrationof
the PIA projectin a C++, single-machineimplementation
hasbeenachieved. This demonstrationincludesthe in-
tegrationof a ComputerAided Design(CAD) geometry-
wrappingapplicationwith a wrappedCFD codeand the
automaticpropagation of geometryinformationfrom one
to theother[5].

1.2 Key Contributions

ThePIA technologyprovidesanumberof benefits.Among
themoresignificantarethefollowing.

1. Completeengineeringprocesscaptureis possibleto
theextentdesired.

(a) A completederivationalhistoryof every project
configurationinvestigatedcanbecaptured,pro-
ducinganauditabletrail from final designback
to initial guess.

1

(b) Technologist’s journals,notes,andthe like can
be captured,allowing the recordof thinking to
be retrievablein the context of the harddataof
theproject.

2. Integrationof applicationsinto a functionalwhole is
possible,allowing for the complex analysisof entire
systems.

3. Rigourousdesignconfigurationsynchronizationis en-
forced,eliminatingmis-matchedanalysesbetweenin-
tegratedapplications.

4. The classicn-squared integration problemis solved
throughtheuseof semantically-definedparameters.

5. Dimensionalunit confusionis eliminatedby encap-
sulatingin parametersa self-knowledgeof their own
dimensionality.

6. Quality values(good, bad, and, potentially, a range
in between)arecapturedallowing baddataor designs
to beretainedin therecordwithout concernthat they
mightbeinadvertantlyrelieduponasbeinggood.

7. Applicationintegrationis achievedwithout theneces-
sity of re-codingthoseapplicationsto the standard.
The wrapping natureof the architecturedecouples
commitmentto theintegrationstandardfrom thecap-
ital assetsof thewrappedapplications.

8. The wrappingnatureof the architecturealso allows
for multiplewrappersto thesameapplication.Among
otherthings,wrappersappropriateto theskill level of
varioususersmightbedeveloped.

9. The architectureprovides a significantstepforward
into the long desiredutopia of plug-and-play, mix-
and-matchsoftware building blocks, allowing cus-
tomersto pick the analysispiecesneededfor a par-
ticularsituationanddroptheminto anself-integrating
analysissystem.

10. The architecturealso provides a beginning for the
buildingof intelligenceinto applications(or morecor-
rectly, theirwrappers)wherebythoseapplicationscan
searchfor otherapplicationsdevelopingthe kinds of
informationthey need.A smallpeakover thehorizon
at self-organizingsolutionsmaybehere,perhapsthe
basisfor the implementationof the “solve yourself”
method.

11. The CORBA-served implementationof the architec-
turewill allow theservicesof applicationsto bepro-
vided to customerswithout the releaseof the actual
applicationsoftware. Often it is the softwareandits
internaltechologieswhicharethecompetitiveedgeof
anenterprise.

12. Applications made available through the CORBA-
servedimplementationwill bemoreeasilymaintained
sinceonly thecopiesin executionon theserver(s)(as
opposedtoall thecopiesthatwouldhavebeenshipped
to customersunderconventionaldistribution mecha-
nisms)needbeupdatedwhennew featuresareadded
or mistakescorrected.

2 Developmental Foundations

Before proceedingto discussthe developedapplication-
layerinfrastructure,it is appropriateto understandthesup-
positionsuponwhich thatinfrastructureis based.

2.1 Commercial, Off-the-Shelf Solutions

One of the points the astute will notice is that the
application-layerinfrastructure,at points, tendsto dupli-
cate facilities and capabilitiesthat might also be obtain
from variouscommericalproductsor other implementa-
tionsof standardsthatareeitherin placeor nearlyathand.
In particular, the implementationof objectaccesscontrols
is a topic that hasbeenaddressedby the ObjectManage-
ment Group (OMG, the organizationresponsiblefor the
CommonObject RequestBroker Architecture(CORBA)
standard)and commercialproductsimplementingthose
furtherstandardsareavailable. Othersuchareasundoubt-
edlyexist.

Such Commercial, Off-the-Shelf (COTS) solutions are
generallydeclinedby the PIA project in favor of project-
generatedandopen-sourcefreewaresolutions.Someof the
reasonsforming thischoiceareasfollows.

1. The technicalapproachesof somealternative solu-
tionsdo not fit the(sometimesimplicitly understood)
designstrategies of the PIA project. For example,
the commercialproductsoffering objectaccesscon-
trols tendtowardasingleuserauthenticationdatabase
server, which representsa singlepoint of failure and
runscontraryto theutterly-distributeddesigngoalof
thePIA project.

2. As a (possible)standardin its own right, the PIA
project is reluctantto build uponCOTS solutionsas
elementsof the PIA whole. While the ideal pro-
posesthateveryCOTSsolutionconformingto agiven
standardis to be interchangablewith every other, the
practicalreality is that thereare often subtlediffer-
encesbetweensolutionsthathaveslippedbetweenthe
cracksof theassociatedstandardsprocess.This con-
dition then leadsto one of two undersirablecondi-

2

tions: either the PIA implementationwould become
dependentupona particularsetof COTS solutionsto
the exclusionof othersupposedlyidenticalproducts,
or the PIA implementationwould becomea morass
of conditionalcodeattemptingto accommodatethe
slight differencesbetweenthosesupposedlyidentical
products.

3. Continuingthe previousconcern,the Governmentof
the United Statesis customarilyreluctantto provide
an endorsmentof a particularcommercialproductin
preferenceto another. Thus,to issuethePIA product
with a list of requiredCOTS elementsis a lessthan
completelydesirablechoice.

4. One potential commercializationplan for the PIA
project[11] is to provide it asopen-sourcefreeware.
Suchanapproachto commercializationoffersa num-
berof benefits,includingbut not limited to wide dis-
tribution due to the easeof acquisition,wide accep-
tancedue to the lack of proprietaryprotectionsand
ploys,confidencedueto theability to examinetheex-
actoperationsof thesoftware,andalargedefactotest-
ing/debuggingcommunity. Dependenceupona list of
requiredCOTS foundationelementsis somewhatan-
titheticalto sucha commercializationpath.

2.2 Implementation Foundation

Exceptfor a few peripheralelementswhoseneedhasnot
yetbeenclearlydefinedor established,theimplementation
of the foundationlayer uponwhich the applicationinfra-
structureis built is complete. Thereare in this founda-
tion layera few assumptionswhich run somewhatcounter
to thoseof the applicationinfrastructure. The following
choicesled to thissituation.

1. The goal of the foundation layer was to provide
generic,reusablestructuralforms asCORBA-served
interfaces. These include arrays, matricies, lists,
maps,organizations,graphs,anda few fundamental,
non-atomicdatatypes.

2. As a generic, reusableform, the foundation layer
does not introduce the conceptof a “user”; how-
ever, becauseof the inherentlymulti-accessornature
of CORBA, resolutionof concurrentaccessconflicts
is provided[7].

3. Lackingtheconceptof auser, thefoundationlayerhad
little uponwhich to hangtheconceptof an“operating
system”. Thus, the central,server control interface
(of which eachserver programhasoneinstance)had
little to dobut controldiagnosticfeaturesandprovide

a skeletalframework for thestartupandshutdown of
theserverprogram.

4. Lacking the conceptof an operatingsystem,the fo-
cusof the “bootstrap”process(wherebysomeinitial
graspof CORBA-served objectsis obtained)moved
to the interfacesthemselves. Thus, the GInterface-
Info instances(in CORBA parlance,theinterfacefac-
tories) which parallel the PClassInfo objectsof the
C++ FoundationClassesbecamethe elementspubli-
cizedfor clientsto find. Thus,a client doesnot find a
server, but insteadfinds a served GInterfaceInfo in-
stance.

5. Becauseof an anticipationthat therewould be many
PIA serversin a given,cooperatingenvironment,the
publication of GInterfaceInfo instanceswas orga-
nizedin a waysoasto allow many instancessupport-
ing thesameinterfaceto co-exist. Further, this mech-
anismallowedtheclientanopportunityto navigateto
a particularGInterfaceInfo instancebaseduponap-
parentco-localityon thenetwork.

3 Application Infrastructure

As discussedin the following subsections,two key con-
cepts, that of trusted,cooperatingservers and that of a
“user” combineto shapetheapplicationinfrastructure.

3.1 The Trusted Server Concept: The Collective

ThePIA applicationmodelconceivesnot simply of a sin-
gle,isolatedCORBA serverservingoneor morecompliant
applicationwrappers,but insteadacooperatingcommunity
of applicationservers (calleda collective, so as to avoid
calling it a federation) servingmany differenttypesof ap-
plications. The collective may spanjust a few serversof
a division of somecorporateentity, or it may consistof
thousandsof serverscooperatingin a world-wide service
of technicalresources.

Becausethecollective is conceivedaspotentiallyexpand-
ing to a world-widebasis,thefirst designdictumbecomes
oneof scalabilitythroughdistribution. To theextentthatit
is possible,thereis to beno centralresourcefor anything;
no centraluseridentificationdatabase,no centrallock or
accesscontrolmechanism,no centralsecuritymechanism
or resource,no central location service,etc. This dic-
tum coordinateswith the previously explainedprediposi-
tion againstCOTS softwaresolutionssincemany of those
solutionsgravitatein entirelytheoppositedirectionto cen-
tral resourcesandcentralpointsof failure.

3

A consequentpointthatarisesfromthedistributed,scalable
designdictumis that,sincemany of theactivitiescarriedon
betweencooperatingserversinvolve key securityissues,a
level of trust betweenthe serversof a collective mustbe
met. For example,oneof the activities carriedout by the
collective is the identificationof a particularuser. Since
this identificationis key to establishingaccessprivilegesto
information,thevalidity of the identificationprocessmust
be maintained.A rogueserver acceptedby the collective
could easily identify its own usersasuniquelyprivileged
and,thereby, compromiseany andall informationthrough-
out thecollective.

It shouldbe further notedthat the establishmentof trust
doesnot directly dictatethe openor closednatureof the
collective. A collective fully rootedin trustof its members
maywell permitwide-ranginganonymousor guestaccount
access.Thefocusof thetrustissueis onwhetheror not the
prescribedmechanismsareoperatingcorrectly, not theuse
to which thosemechanismsarebeingput.

At present,no automaticmechanismfor theestablishment
of trust betweenservers is implemented,or even particu-
larly conceived. Instead,someparticularuser(typically a
server administratorof oneor the otherservers involved)
mustbegrantedownershipprivilegesto bothmembersof a
trustingpair. Thatusercanthenexecutefunctionalitythat
formsa linkageof trustbetweenthosetwo servers.It is up
to the peopleinvolved to satisfy themselves that the req-
uisitecomplianceto PIA applicationserver protocolsis in
placeonbothserversof theestablishedpair.

As additionaltrust linkagesareformed,a graphof trusted
serversevolves. Sincelinkagesarereciprocalandadirec-
tional (a linkageindicatingthe trustof A in B is matched
by a linkageindicatingthetrustof B in A, neitherof which
is considereda “forward” linkage),cyclesin thisgraphare
inevitable.Cyclesare,of course,not limited to theformed
reciprocallinkages.Server A might trust B, which would
trust C, which would trust D, while A might alsotrust D
directly.

No initial nodeof thegraphis defined.Becauseof this,any
conceptualizationof depthis only relative to thenodefrom
which its calculationis started.While technicallypossible,
relative depthwithin thegraphis not presentlyusedto es-
tablishany measureof relative trust. Thus,if A trustsB,
whichtrustsC, whichtrustsD, D is astrustedby A asis B.

3.2 The User Concept

Becausetheapplicationlayeris to presentfor usevaluable,
indeedoftenrevenuegenerating,resources,theconceptof

���������
	

�����������	��

����������������������� "!#�
��	$���
���

�%�&�'���

Figure3.1: Relationshipof Concurrency ResolutionCom-
ponents

a“user” whichmaybegrantedor denieduseof thesevalu-
ablefacilities is very definitely included. This, of course,
runsentirelycounterto thesuppositionsof the foundation
layeruponwhich theapplicationinfrastructureis built.

In thePIA formulation,a usercurrentlyhasthe following
ratherlimited characteristics.

1. A userhasa name. This correspondsto the classic
computersystemconceptof the useraccount,but in
thePIA formulation,thatnameor accountis a global
conceptspanning(potentially) many computersand
many PIA-basedservers.

2. A userhasalocation,or moregenerally, arangeof lo-
cationsfromwhichsheoriginates.In classiccomputer
systems,a userhasonly one location, the computer
systemto which sheis loggedon, and that location
is morea point of terminationthatorigination. In the
PIA formulation,thepointof origin servesto differen-
tiateusersin theeventof namecollisions.Thus,PIA
canacceptmultiple usersnamed“xyz” if thoseusers
originatefrom differentranges.

3.2.1 The User Context Mechanism

Thereasonfor theconceptof auseris,aspreviouslystated,
to provideabasisuponwhich to grantor deny usageof the
served resources,thoseresourcesbeingin the form of in-
stancesof PIA-defined,CORBA-served interfaces.Some
mechanismis neededto identify a particularuserrequest-
ing suchresourcesandto tracktheresourcesto which that
userhasbeengrantedaccess.The foundationlayer pro-
vides the basisfor sucha mechanismin the form of the
GLockCtx lock context interface.

4

In thefoundationlayer, theGLockCtx interfaceis onepart
of the concurrency conflict resolutiontriad (illustratedin
Figure3.1)of context (theGLockCtx instance),target(any
GObjLck-basedinstance),andlock (aGLock instanceas-
sociatedwith thetarget)[7]. TheGLockCtx context tracks
thelockscurrentlyheldby thelogical threadof execution.
It is presumedthat the activities of sucha threadof exe-
cution arefree to performthe actsgrantedby the locks it
holdswithout further concernof corruptionthroughother
concurrentevents.

This conceptof a context extendsnaturally into the con-
ceptof a usersincea userholdstheright to accessvarious
resourcesin theform of interfaceinstances.Thus,aderiva-
tive form of the GLockCtx interface, the GacLockCtx
interface, is provided to accommodatecertainadditional
functionalityto bediscussedlater.

3.2.2 Provision of Access Control Levels

The next stepof the userconceptis the recognitionthat
thegoalis to providecontrolson theaccessto interfacein-
stancesbeyond the simpleresolutionof concurrency con-
flicts. That is, beyond the resolutionof whetheror not a
particularaccesscouldbeaccomplishedwithoutcorruption
is theissueof whetheror not a particularuserhastheright
to exercisesuchan access.This task falls very naturally
upontheGLock interfacewhich, in theconcurrency reso-
lution triadof thefoundationlayer, makesthedecisionasto
whetheror not to granta lock and,thereby, permitthepro-
posedaccess.As with the lock context interface,the ap-
plication infrastructureimplementationprovidesa deriva-
tiveof theGLock interface,theGacLock interface,to deal
with thesematters.

The applicationlayer begins by recognizingthe standard
accessformsdefinedby thefoundationlayer: release, ref-
erence, read, write, execute, and delete. Theseareex-
tendedinto theconceptof theright to performtheaccess,
in additionto thepresentability to conductsuchanaccess.
The applicationlayer then extendstheseconceptsto in-
cludeadditionalformsof access,thesignificantonesbeing
control, own, andsecurity.

Becausetheimplementationis achievedthroughderivative
formsof theGLockCtx andGLock interfaces,thenew ac-
cesscontrolconceptsmustbetreatedin themannerof the
old concurrency forms. A certaincomplexity arisessince
thenew formsenforcethesameconcurrency restrictionsas
the old, but mustbe treatedasdistinct by the GLockCtx
andGLock mechanisms.For example,boththewrite and
control accesslevelsrequireexclusive accessto thetarget
instance;however, to hold a write lock is not to hold con-

trol privileges,eventhoughbothlocksareof equalprece-
dence.

Further, while this distinction betweenlocks of equal
precedencebut differingprivilegeis beingmaintained,it is
alsonecessaryto conformto theconcurrency systemprin-
cipal that a nestedlock applicationnot reducethe prece-
denceof a lock alreadyheld. For exampleshoulda holder
of a delete lock requesta control lock in somenestedpart
of the overall operation,the grantingof the control lock
(which, technicallycarriesonly write precedence)should
not reducethedelete precedencealreadyheldby thecon-
text. All of thismustbedone,of course,bycodethathasno
knowledgethat derivative lock/privilege forms have been
defined.

The implementationsof the GLockCtx and GLock in-
terfacesprovide a few functional hooks that allow this
introduction of additional lock/privilege concepts. The
GsLockCtx class(whichimplementstheGLockCtx inter-
face)providesthe IsLesserLock memberfunction which
comparesthe precedenceof two lock levels. This func-
tion, in turn,usestheConvertToLockLevel methodof the
GLock interfaceto obtain a basiclock precedencefor a
provided lock level. The implementationof thederivative
GacLock lock interfaceprovidesanoverrideof thedefined
ConvertToLockLevel functionthataddstheknowledgeof
thenewly-definedlock/privilegelevelsandprovidestheap-
propriatefoundationlevel precedencesfor each. In the
event that a precedenceadjustmentmust be made, the
GacLock interfacesuppliesanoverrideof anothermethod,
PromoteToPrecedence, which supplieslock level codes
for thedesiredaccesskind at therequiredprecedence.For
example,if thecurrentprecedenceis execute andacontrol
lock is requested,the overriddenConvertToPrecedence
methodimplementationprovidesa codethat is, in its es-
sense,control at execute precedence.

3.2.3 Enforcement of Access Control Levels

Having, throughobject-orientedslightsof hand,introduced
additionalaccesscontrol levels andkept themdistinct in
the implementedconcurrency mechanism,the next magi-
cal feat is to actually enforcethoselevels. This is done
throughanoverrideof theimplementationof theRequest-
Lock functionalityoriginally definedby theGLock inter-
face.Theoverridingcodeis providedby the implementa-
tion of thederivative GacLock interface.

The RequestLock overrideeventually relies upon its in-
heritedbase-classimplementationto provide concurrency
resolution;however, beforeit doesso it first verifies that
the userrepresentedby the suppliedGLockCtx interface

5

(which mustbe,in fact,a GacLockCtx interface),canex-
ercisethe privilegesof the requestedlock. The sourceof
this answeris foundin a GacDescAccs accesscontrolde-
scriptive elementattachedto the lockabletarget,which it-
self mustbe an instanceof the GacBObj interface(or its
derivatives). (This symbiosisbetweenGacBObj targets
andGacLock locks is enforcedthroughan overridepro-
vided by the GacBObj implementationof the NewLock-
Instance memberfunction originally definedby the im-
plementationof the GObjLck interface,GacBObj being
aderivativeof GObjLck.)

The RequestLock override obtains from its supporting
GacSrvrCtl server control instance(the GacSrvrCtl in-
terfacebeinga derivative of theGSrvrCtl interfaceof the
foundationlayer)a useridentificationtext associatedwith
the GacLockCtx instancerequestingthe lock. The de-
scriptive setsof theparticularGacBObj interfacearethen
searchedfor a GacDescAccs instanceproviding a definite
answerasto theaccessprivilegesof the identifieduser. If
no suchansweris found in the courseof the search,the
accessis, currently, denied.

NotethattheGacBObj descriptivesystemis hierarchialin
nature,providing many potentiallayersof descriptioncor-
respondingto eachlayerof derivation from theGacBObj
foundation. Each such layer may provide a separate
GacDescAccs accesscontroldescriptiveinstance.Thelay-
ersaresearchedfrom shallowest(the mostderived layer)
to deepest(theGacBObj layer)while theissueremainsin
doubt.

The accesscontrol searchfurther recognizesthe applica-
tion layer conceptof structuraluplink and, while an an-
swer to the accesscontrol questionis not yet found, will
proceedup this chainof GacBObj instancesto containing
logical applicationstructures.Thefirst instanceproviding
a definiteanswerterminatesthe searchandsettlesthe is-
sue.Becauseof thisupwardsearch,thepotentialexistsfor
controllingmany instancesthrougha highly-placedaccess
controldescription.For example,accesscontrolsmight be
placedon a root applicationinstance(that is, an instance
of a derivative of GacAppl) andneglectedon all thecom-
ponentsof theapplicationthat instanceheads.Becauseof
theuplink searchprotocol,every componentever addedto
thatapplicationinstancewould begovernedby theaccess
controlsof thatsingleGacAppl-derivative instance.

3.2.4 Access Control Description

TheGacDescAccs accesscontrolinterfacedoesnot, itself,
implementthe accesscontrols. Instead,it servesonly as
a linkage to a more generalset of control mechanisms,

theGacAccsCtrl accesscontrol interfacewhich organizes
GacAccsAce accesscontrol entry instances. GacAcc-
sAce instancesactuallyrecordthe particularsof privilege
grantedto aspecificuseror account.

As currently implemented,GacAccsAce accesscontrol
entries(ACEs) are organizedby GacAccsCtrl-derivative
formsinto accesscontrol lists (ACLs) which aretraversed
from headto tail. Again, the first suchentry providing a
definiteanswerterminatestheaccesscontrolsearchandde-
terminestheissue.

ACEsidentify userseitherby asimpletext matchof apro-
videdtext, or by thematchingof a generalregularexpres-
sion to that text. By using a generalregular expression,
a usermay be allowed to roamover a rangeof machines
while still exercisingthesameaccessprivileges.Addition-
ally, the list maybearrangedasa filter throughtheuseof
multipleentriesapplicableto apartiularuser. For example,
sucha list mightgrantgreaterprivilegeto a userwhenthat
useroriginatesfrom a more restricted(and, presumably,
moretrusted)rangeof machines.

3.2.5 Access Control Execution: The Privileged Ac-
count

The descriptive systeminterfacesusedto describethe ac-
cesscontrolsof GacBObj-derivedinterfacesare,of course,
themselvesderivativesof theGacBObj interface.Theac-
cesscontroldescriptionsthusavail themselvesof thesame
accesscontrolprotectionsastheinstancesthey, themselves,
protect. That is, to readan accesscontrol descriptionto
determineif it grantssomeparticularaccessto an identi-
fied user, onemustobtaina read lock on that descriptive
instance.And to obtainthat read lock, the GacLock in-
stanceprotectingtheaccesscontroldescriptionmustdeter-
mine that the requestingGacLockCtx can exerciseread
privilegeson thatinstance.Withoutsomerelief, aninfinite
recursionimmediatelydevelops:to gain accessto a target,
a requestormustgain accesssto anothertarget,but to gain
accessto that target, therequestormustgain accessto an-
othertarget,andsoon.

To breakthis recursion,the determinationof accesspriv-
ileges is not carriedout in the context of the requesting
GacLockCtx instance. Instead,the GacLock instance
goes,onceagain,to its supportingGacSrvrCtl servercon-
trol instanceto obtaina privileged lock context in which
to conductthe accesscontrol search. When a GacLock
instancerequestsa useridentificationof a privilegedlock
context, thespecialidentification“server root” is returned.
The RequestLock overrideof the GacLock implementa-
tion is codedto recognizethis specialidentificationand

6

bypassthe entire accesscontrol processwhen it occurs.
Naturally, considerablepainsare taken to assurethat the
identification“server root” is notgrantedto otherlock con-
texts. Evensystemadministrationaccounts,whichcustom-
arily havefull accessprivileges,arenamed“server admin”
ratherthan“server root” asa securityprecaution.

3.2.6 Control of Access Controls

The modificationof accesscontrolsis not carriedout in
a privilegedcontext, but insteadmustbe the act of a user
supplyinga GacLockCtx instance. Since,as previously
pointedout, the accesscontrol interfacesare themselves
derivativesof the GacBObj interface,they too canattach
accesscontrolsfor their protection.Theaccesscontrolre-
cursionproblemis, thus,re-encountered.Two solutionsare
available.

First,anaccesscontrolcouldattachnoaccesscontrolsand
rely uponthe uplink searchprotocolto defineits accessi-
bility. Sincethe uplink of an accesscontrol proceedsup
to theGacBObj-derivative instanceit controls,by waiting
for thismechanismto operate,anaccesscontrolwouldbe-
comeself-controlled;accessprivilegesto the control be-
come identical to accessprivileges to the controlled in-
stance.

As asecondalternative,aself-controlledcharacteristiccan
besetin anaccesscontrolwhich achievesthesameresult:
accessprivilegesto thecontrolareidenticalto thoseof the
controlledinstance.This alternative is provided for those
situationsin which theuplink searchprotocolis not avail-
able,or whenit is desirableto circumventthatprotocol.

3.2.7 Concurrency Resolution

Onceanaffirmative determinationof privilegeis obtained,
the requestedlock is convertedto a foundationlayercode
andtheinheritedRequestLock functionalityof theGLock
implementationis invoked. This functionalityproceedsin
theusualmannerto resolve conflictsof concurrentaccess
andeithergrantor deny therequestedlock.

3.3 Association of Identities with Lock Contexts

As mentionedabove,it is thejob of theGacSrvrCtl server
control instancesupportinga PIA-compliant application
level server to associateauseridentification(in theform of
a text) with a particularGacLockCtx instance.At present,
this is donein thefollowing manner, which is illustratedin
Figure3.2.

(�)�*,+�)

- +,.0/$.21,3�453�687�9;:<)�3,=$)�>

? +�@�AB)C3�6D7E9;:5)C3,=$)�>

? +,@�AF)C3�6�G$HI7E9;1 1�3CJ�),.0/K3�>

L :<)�+,@�AB)�3C6D7E9#:<)C3�=$)'MN3�AB@�1)

MN3,)�@�+,:�OPAP3,+,/Q3�+,R;+�9S9;),O

MN3�),@�+�:.T6U3�:<),VW.TJC*�),.T9;:)�3,=$)

7E*�XU)�@�+C3�1,9SJ�*,1'J�9;XYH

Z 3CA

Z 3CA

Z 3�A

[9

[9

[9

Figure3.2: Associationof Identitywith aLock Context

1. The instancenameof the identifiedGacLockCtx in-
stanceis obtained.

2. An internal,PMap-basedmapis searchedfor thatin-
stancename.If thatnameis foundandafurtherInter-
operableObjectReference(IOR)-basedtestis passed,
then the identified GacLockCtx instanceis one of
the privileged lock context instancesmaintainedby
theGacSrvrCtl instanceandthespecialidentification
“server root” is returned.

3. An external, GMap-basedmap is searchedfor the
instancename. If the nameis found and, again, a
further IOR-basedtest is passed,then the identified
GacLockCtx instanceis aninstancealreadyknown to
the GacSrvrCtl instance.A linkageto a GacTrust-
edLcxInfo instanceis followed, a useridentification
text obtainedfrom thatinstance,andthattext returned
astheassociatedidentification.

4. Should the identified GacLockCtx instancestill be
unrecognized,a traversalof the otherservers of the
collective is conductedin the expectationthat some
serverwill recognizethecontext. Shouldsomeserver
respondpositively, that responseis honoredas be-
ing valid andthesubsequentlyobtainedidentification
passedbackto the inquiring GacLock instance.The
associationis also recordedin the GacSrvrCtl in-
stancehostingthe original inquiry in the expectation
thattheissuewill ariseagain.

5. Should the GacLockCtx instancestill be unrecon-
gized, an empty user identificationtext is returned.
The emptytext is definedasbeinga declarationthat
the GacLockCtx instanceis not trusted. Operations
in suchacontext shouldberefused.

It is in the traversalof the collective stepthat the issueof
trustbetweenmemberscanbeclearlyseen.A rogueserver

7

caneasilyanswerthat the associatedidentificationis the
all-powerful “server root” pseudo-user. Sucha response
cannotberejecteda priori sinceoperationsin a privileged
context arenotprohibitedfrom crossingserverboundaries.
That is, thereare legitimate situationsin which a server
mayencountertheprivilegedlock context of anothermem-
berof thecollective. If membersof a collective weresim-
ply to trust any other server that they might detect, the
breachingof PIA applicationinfrastructuresecuritywould
betrivial.

Notethat themechanismdescribedabove conformsto the
distribution of servicesdesigndictum establishedfor the
PIA application infrastructure. There is no central re-
sourcefor establishingtheuserassociationof a particular
GacLockCtx instance.Instead,it is adistributedactof the
collectiveoperatingunderthepresumptionthatsomewhere
“out there”a memberexiststhatcanidentify thelock con-
text instanceandassociatea userwith it. Furthermore,the
operationis conductedin amannersoasto toleratetheoc-
cassionalunavailability of sometrustedservers.

3.3.1 Lock Context Linkages

As indicatedpreviously, eachGacSrvrCtl server control
instancekeepsa mapof GacLockCtx instanceswhich it
has,by onemeansor another, identifiedasbeingtrustwor-
thy.

Sinceit is anticipatedthat the lifetime of a GacLockCtx
lock context instancewill correspondwith the working
sessionsof the user it represents,it is necessaryto pro-
vide a mechanismto notify eachtrustingGacSrvrCtl in-
stancewhena trustedGacLockCtx instancebecomesde-
funct (that is, whenthe instanceis destroyed). Thus,the
GacLockCtx derivative implementationhasbeencodedto
include a map of GacSrvrCtl instancestrusting the par-
ticular GacLockCtx instance. An entry in this trusting
server map is madeat the time the GacSrvrCtl instance
addsthe GacLockCtx instanceto its trustedlock context
map.(This is oneof thereasonsthatall lock contextsused
in PIA-compliantapplicationserversmustbeof thederiva-
tive form GacLockCtx rather than the baseGLockCtx
form.) WhentheparticularGacLockCtx instancebecomes
defunct at the endof a usersession,it traversesthis map
andnotifieseachidentifiedGacSrvrCtl instancesothatthe
trustlinkagesmaybediscarded.

It is further anticipatedthat the lifetime of a server (and,
consequently, its associatedGacSrvrCtl instance)will be
far longerthanthatof theGacLockCtx instancesit trusts,
extendingout from monthsandyearstowardapracticalin-
finity. Thus,theneedfor thereciprocalmechanismfor di-

\E];^U_;]

\E`QaKa5b cdbWe<fUghfUe<i�];jYkY]
l iUmne5gQjo�jU];p�e<q

r _;`QsC];jYqtb0e<fYgIfYe<i�];jUk�];u
v�e<iEsC`Eb0]
w�^UfU\E_Wm�_;v�];b x jYyF`QsCjzWiUm�e<gQ^Y];zBe<i

\Q`Ea5aKb cdbWe<fUghzWi�sC];^YiEfYj
];e{^UfY|<`QzB_;jb0e<fYg
} sCgIbWe<fUghfUe<i�];jYkY]

_;jU^Uq�c~pEe5b0qt];p�zBs�bWe<fUgQu
� e<jUs�bWe<fUghfUe<i�];jYkY]
^UbW�

zBqKjUi�];zByFjYqtb0e<fYgIzBi�sC];^Ui�fUj
x jY|<`QjUsC]
b0e<fYgIy�_;e<�

i�e<];jUs�q5jYiEzB^Yb
� e5fUgIfYe<i�];jUk�]

e5y�bWe<fUgh�U_;^YiE]
l iEy�e<_;���hjU];p�e<q

zBiE]#jU_;i�^Ub�sC];^U]#j
� e<fUghfUe<i�]#jUk�]�^Uq��;`QsC];s

� kYjYfU`Q]#j%�hjU];p�e<q

� e

� jUs

� e
� jYiEzBjYq

w�_#^Ui�];jUq� jUs

Figure3.3: Flow of Eventsin Lock/AccessAcquisition

solvinglinkagesof trust to suchGacLockCtx instancesis
muchsmaller. Nonethe less,the mechanismis provided
for thedissolutionof linkagesuponthedemiseof a server.

3.4 Establishing Trust in Cooperating Components

Baseduponthesystemdescribedin [7], theflow of events
in acquiringa lock (and,with theintroductionof theappli-
cationinfrastructure,accessprivileges)is in the following
manner, asillustratedin Figure3.3.

1. The userinvokesa methodon the target (GObjLck-
derivative) instance. A GLockCtx lock context in-
stance (which is, in fact, of the derivative kind
GacLockCtx) is suppliedastheuser’scontext for the
operation.

2. The target instance consults with its associated
GacSrvrCtl instanceto determineif the supplied
GLockCtx instanceis trustworthy. If this is not the
case,themethodexecutionis abortedwith a lock fault
indication.

Thisstep,introducedby theapplicationinfrastructure,
is a regrettableoverheadsinceit mustbe performed
evenwhenthesuppliedlock context instancealready

8

holdsthedesiredlock; however, thestepis necessary
to preventtheintroductionof roguelock contexts that
will return false resultsto the target instance. The
overheadis even greaterthanis apparentbecauseof
theoftenrecursive natureof methodimplementation:
methodA obtainsa lock andtheninvokesmethodB
on the sameinstance,which obtainsa lock and in-
vokesmethodC on thesameinstance,which obtains
a lock and....

To alleviate this situation,the GacBObj application
foundationinterfaceimplementsa small, hashed,as-
sociative cache of lock context instancesrecently
demonstratedasbeingtrustworthy. Concurrency res-
olution of this cacheis by meansof mutual-exclusion
locksexecutedonaper-elementbasis;thus,maximum
executionconcurrency is expected.It is expectedthat
thestorageandexecutionburdenof thiscachewill be
far outweighedby the overall performanceimprove-
mentgained.

3. Thetargetinstancerequeststhatthesupplied(andnow
trusted)GLockCtx lockcontext instanceobtainalock
of appropriatekind onthetargetinstance.A reference
to thecorrectGLock instance(whichis, in fact,of the
derivativekind GacLock) is suppliedin thatrequest.

4. Assumingthat the lock context instancedoesnot al-
readyhold the requisitelock, it makesa further lock
requeston theidentifiedGLock instance.

5. The GLock instanceevaluatesthe requestandeither
grantsor deniestherequestedlock, returningthat re-
sult to therequestingGLockCtx instance.

6. TheGLockCtx instancemakessuchnotationsasare
appropriateto theresultof its requestandthenreturns
its lock requestresult,again usuallyof theform grant
or deny, to therequestingtarget.

7. The target instanceexaminesthe resultreturnedto it
and, if the requiredlock is granted,proceedsto per-
form whatever operationthe invoked methodencap-
sulated.

Thesecurityof all thisdepends,of course,uponeachof the
threecomponents,target,context, andlock, performingas
they aredesigned.Thesecurityof two of thecomponents,
the target andthe lock, is not in doubt in the application
infrastructure.

1. The target, GObjLck-derivative instanceis consid-
eredto besecureby definition.Therecanbeno point
to implementinganinherentlycorrupttarget instance
sincetheservingof suchaninterfacewouldbepoint-
less.

2. The securityof the lock is entirely controlledby the
targetinstance.Thelock instanceis obtainedthrough
aninternalmemberfunctionof thetargetinterfaceim-
plementation.Thereis nomechanismfor attachingan
alternative,corruptlock instanceto a target.

Unfortunately, the third element of this triad, the
GLockCtx lock context instance,is entirely amenableto
securitybreachesthroughthe introductionof a corruptin-
stance. Throwing asideall sortsof devious mechanisms,
a corruptGLockCtx instancemayobtainall the accessit
desiressimplyby returningagrantresultto thetargetwith-
out regard to theactualresultreturnedto it by theGLock
lock instance. (Indeed,why even botherinquiring of the
lock instance?)Further, the locationtransparency features
of CORBA createa situationin which anindividual intent
uponbreachingsecurityis completelyableto substituteher
own GacLockCtx implementationto undertake whatever
nefariousschemeshemightdevise.

Many schemesfor validating a suppliedGLockCtx in-
stancethroughoperationaltestswereconsidered;dummy
lock operationswith known results,presetoperationson
the locks of the intendedtargets, location of the serving
server, and the like. Countersto all such validity tests
we identified and, ultimately, the conceptof acceptinga
GLockCtx from anunverifiedsourcewasdiscarded.

As a resultof theabove considerations,it wasdetermined
thatauserwouldhaveto go throughaninitial server logon
sequence,the resultof which from the user’s perspective
would be a referenceto a GacLockCtx instanceobtained
from andtrustedby theproviding GacSrvrCtl server con-
trol instance.It is thislogonoperationthatmakestheinitial
entryof aGacLockCtx lock context instanceinto atrusted
lock context map of a server and, consequently, into the
collective.

Trustis establishedin theGLockCtx instancebecauseit is
suppliedfrom a trustedsource.Further, becausetheserver
controlinstancecloselytracksthroughinformationinterior
to the server the identity of eachGacLockCtx instanceit
issues,it is not possiblefor the userto substitutea cor-
ruptedlock context instancein placeof evena legitimately
obtainedlock context.

Thefinal barrierto roguelock context substitutionis based
uponcomparisonof the IORsfor thesuppliedandtrusted
instances.At the time a trustedlock context is generated,
its IOR is recorded.Whenasuppliedlock context instance
isexamined,theapparentIORfor thatinstanceiscompared
with therecordedIOR: if thetwo differ, thenasubstitution
musthavebeenmade.

9

Theuseof the IOR for identificationis, in general,not in
compliancewith the CORBA standard.The standardal-
lows a particularinstanceto beservedby differentservers
at differenttimes. Sincethe IOR includesthe information
necessaryto locatethepresentlyservedinstance,a migrat-
ing instanceexhibitsavaryingIOR.

The difficulties of the IOR comparisonare (currently)
eliminatedby the designassumptionsof the PIA effort.
PIA instancesare to persistuntil deliberatelydestroyed,
evenacrossservershutdown/restartcyclesof any duration.
Sincereferencestosuchpersistentinstancesaremaintained
by recordingtheIORsof thoseinstances,themigrationof
PIA-conformantinstancesto otherservers(with theatten-
dantinvalidationof outstandingIORs)is prohibited.

Becauseof thenumberof instancesanticipatedin real-life
PIA implementations,no thoughtof central, forwarding
instanceregistries to bridge the fixed-IOR-to-migrating-
instancegap is entertained.Typical instancecountsin the
rangeof many billions andupareexpectedin suchreal-life
implementations.

It shouldbeunderstood,finally, thatthisuseof IORsis still
openfor futurereview. Theintroductionof multipleservers
for a particularinstanceis supportedby theCORBA stan-
dardandsuchmultiple accesspathscanbeencodedin the
IOR. Thesole-serverpolicy is strictly aPIA contraint.The
desirabilityof redundantserversis obviousandmaybeen-
abledby a futurereconsiderationof PIA design.

3.5 The Logon Operation

Like otherelementsof the PIA applicationinfrastructure,
the logon operationis a fully distributed act. A user
may log on to any server of a collective without regard to
whetheror not thatparticularservercontainstheuser’sac-
countinformation.

Theuserinitiatesthelogonoperationby invokingtheUser-
LogonRemote methodin presentationby any GacSrvrCtl
server control instanceof the desiredcollective. In re-
sponse,the useridentificationandpassword aresolicited
througha suppliedGacUser userinteractioninterface. If
the particular server control doesnot recognizethe re-
sulting useridentification,the collective is searchedfor a
GacUserInfo userinformationinstanceconstainingtheap-
propriateidentification. Assumingthat a memberof the
collective respondsin the affirmative to this search,the
obtainedlogon informationis transmittedto the respond-
ing GacSrvrCtl servercontrolinstanceandauthentication
completed.

With the user identification verified, the server control
instanceinitially handling the logon requestallocatesa
trustedGacLockCtx instance,entersit into the internal
structurestracking suchinstances,and associateswith it
theuseridentificationfinally establishedby thelogonpro-
cess. Ultimately, a referenceto the trustedGacLockCtx
instanceis returnedto the useras the resultof the logon
process.

Supportfor bothpre-andtime- expiredpasswordsis pro-
vided. If the logon operationdiscovers suchan expired
password, a password changeoperationmustbe success-
fully completedbeforethe logon operationcancomplete.
The password changeoperationexcludespreviously-used
passwordsandcanenforcethe usualandcustomaryrules
for password composition. Again, the actual password
is changedand maintainedby the GacSrvrCtl claiming
knowledgeof theuser.

3.5.1 Administration of User Accounts

Thedesignof thisuserinformationsystemis intendedtoal-
low auser’sinformationto bemaintainedonasingleserver
of conveniencewhile not restrictingthe points of access
availableto thatuser. For example,if a numberof corpo-
rationshave formed a collective of servers, useraccount
information for an employee of a particular corporation
canbemaintainedonaserverprovidedby thatcorporation
without the needfor that userto log on to that particular
server. This allows theuserto obtaintheGacLockCtx re-
sourceonthememberof thecollectivein whichsheintends
to bemostactive. Becauseof thehigh interactionratesof
the lock context instance,this may be a performancead-
vantagein somesituations.

The logon processdoesnot specify a precedencein the
event that more than one GacUserInfo instanceapplica-
ble to a particularuserexists within the collective. The
first applicableinstancefound in the traversalof the col-
lective is the instanceused;however, it is not predictable
whichmemberof thecollectivewill have thefirst opportu-
nity to respond.Furthermore,thesearchis notcontinuedto
identifyadditionalapplicableGacUserInfo instances,even
thoughthey mightexist elsewherein thecollective.

The unpredictabilityin the caseof multiple userinforma-
tion instancesis not consideredto conflict with thecurrent
PIA applicationinfrastructuredesign.A singleGacUser-
Info userinformationinstancewithin thecollective is con-
sideredto simplify suchadministrative tasksaspassword
management,accountdisablingandthelike. Thesinglein-
stancedesigndoesrepresentasinglepointof failuresince,
if theappropriatememberof thecollective is unavailable,

10

theuserssupportedby thatmembercannotcompletea lo-
gon sequence;however, that failure is only for that group
of users,not for theusersof thecollectiveasawhole.

A multiple GacUserInfo instancedesignis possibleand
supportfor suchconfigurationsmaybeimplementedin the
future if server availability issueswarrantsuchfacilities.
It is hopedthat the easeof single instanceadministration
combinedwith reasonableserver reliability will suffice for
thetimebeing.

3.5.2 Organization of Accounts Within a Server

As mentionearlier, the collision of accountnamesis ex-
pected,especiallyso in the caseof global collectives. To
resolvesuchcollisions,theuseris alsoidentifiedby apoint
of origin. A generalregularexpressionis usedto providea
particularusera rangeoverwhichsheis recognized.

Becauseof this user identificationarrangement,it is not
possiblefor a server control to deterministicallyidentify a
GacUserInfo instancethrougha singlemappingstructure.
Instead,lists of GacUserInfo instancesaresortedby their
common(collided)username.Onceanappropriatelist has
beenidentified,it is traversedfrom headto tail applyingthe
generalregularexpressionof eachencounteredGacUser-
Info instanceto theactuallocationassociatedwith theuser.
Thefirstmatchthatis foundterminatesthelist traversaland
selectstheenumeratedGacUserInfo instance.

While the generalintent of this useridentificationsystem
is thatonly oneGacUserInfo instancebeapplicableto any
given user, it is possibleto usethe systemin a filtering
manner. For example,very specificrangesfor a givenuser
might preceedmuch more generallocation rangesin the
list, with the effect that the userwould be in someway
differentwhenoriginatingfrom theconstrainedlocations.
Currently, theuseridentificationsystemservesonly to pro-
vide identity and, thus,suchdistinctionsasmight be ac-
complishedthroughsuchafilteringsystemaretrivial; how-
ever, atsomefuturepoint,usefuldistinctionssuchasbilling
andcredit, servicepriority, andthe like might be control-
lablethroughsuchasystem.

3.6 Protection of Sensitive Information

The previous sectionmentionedthe transmissionof user
identification,includingpasswords,betweentheGacUser
userinteractioninstancesandvariousGacSrvrCtl server
control instancesof the collective. In point of fact, pass-
wordsareconsideredby thePIA applicationinfrastructure
to be sensitive over andabove the sensitivies of other in-

formation. While it is expectedthat collectiveshandling
sensitive information(whetherlegally secretor relatedto
thecompetitiveadvantageof abusiness)will routinelydeal
in securedcommunicationstechnologiessuch as Secure
Socket Layer (SSL),passwordsin particularareprotected
evenwithin suchsecuredtransactions.

EachGacSrvrCtl maintainsa readysupplyof encryption
keys usingthe algorithmof Rivest,Shamir, andAdleman
(that is, the RSA algorithm). The PIA applicationinfra-
structuredefinesthe acquisitionof a keysetwith both the
publicandprivateelementsintactasbeingaprotectedfunc-
tion of theGacSrvrCtl interfacewhich, generally, is only
tobeexercisedbetweeninstancesservedby thesameserver
so as not to exposethe private key content to possible
eavesdropping.On the otherhand,the provision of a key
with only public encryptionelementsis entirelyopenand
suchakey is consideredto befreely transmittablebetween
instanceswithout regardto their relative locality.

All derivativesof theGacBObj applicationfoundationin-
terfaceinherit theability to provide andutilize something
calleda passback encryption key for thepurposeof pro-
tectingthe transmissionof sensitive informationto an in-
stanceof that interface. (Certainother interfaces,in par-
ticular the GacSrvrCtl interfacewhich is not a derivative
of theGacBObj interface,implementthis functionalityby
othermeans.) The cycle of operationis in the following
manner.

1. The instanceintendingto transmitsensitive informa-
tion requestsa passbackencryptionkey from the in-
tendeddestinationinstance.

2. The destination instance locates the GacSrvrCtl
servercontrolinstanceassociatedwith theserverpro-
gram serving the destinationinstanceand acquires
from thatserver control instancea completeRSA en-
cryptionkey.

Becausethis transactionis entirelyinterior to thesin-
gle server program,the transmissionof a complete
RSA key betweeninstancesis consideredto be ac-
ceptable.Thepremiseis thata server mustbeableto
trustitself.

3. The destinationinstancerecordsthe completeRSA
encryptionkey in aninternalstructure,sortingthekey
in thatstructureby thepublicmodulusof thekey.

4. Thedestinationinstancethenreturnsto therequesting
sourceinstancethe public encryptionportionsof the
key.

5. The destinationinstanceencryptsthe sensitive infor-
mationusingthereceivedpublic,passbackencryption

11

key andinvokesa methodof thedestinationinstance.
Thepublic,passbackencryptionkey is suppliedto the
methodinvokationasoneof its arguments.

Only particular, documentedmethodsof an interface
supportthe passbackmechanism,andin thosecases
only particularargumentsareencrypted.

6. The invoked methodlocatesthe completepassback
encryptionkey in its internalstructurebaseduponthe
public modulusobtainedfrom thepublic key portion
suppliedasanargumentto themethod.Thesensitive
information is decryptedandmethodexecutionpro-
ceeds.

7. Finally, the destinationinstancediscardsthe used
passbackencryptionkey. Any subsequentpassback
encryptionoperationwill require a new encryption
key.

In the event that an intendedpassbackencryptionopera-
tion doesnot cometo pass,mechanismsare provided to
returnthepublic portionof thepassbackencryptionkey to
theintendeddestinationinstancesothatthekey maybere-
moved from the internalstructuresof that instance.Even
in this case,though,the encryptionkey is discarded.Un-
til therandomgenerationprocessregeneratesthesamekey
again(somethingthoughtto beunlikely in theextreme),an
eavesdropperwill find agleanedkey uselesswith regardto
futureoperations.

With this understandingof thepassbackencryptionmech-
anismin hand,it is merelynecessaryto addthatall pass-
word transactionsarehandledin this manner. The Gac-
SrvrCtl instanceon which the logon operationis begun
provides a passbackencryptionkey to the GacUser in-
stanceconductingthe interactionwith theuser. Thepass-
wordis transmittedto theGacSrvrCtl having accessto the
actualGacUserInfo instanceusinga passbackencryption
key obtainedfrom that server control instance.The pass-
wordis thentransmittedonto theGacUserInfo instancein
thesamemanner.

The GacUserInfo interface protectsencapsulatedpass-
wordsby RSA encryptiononcethey have beenreceived.
Again, an encryptionkey is obtainedfrom the associated
GacSrvrCtl, but in this caseonly thepublic portionof the
key is requested.Thus,onceencryptedfor storageby the
GacUserInfo instance,the original plain-text form of the
password is no longerobtainable.

A numberof operationsenforcing various rules for the
form and length of a password must be carried out on
the plain-text versionof that password. Theseoperations
are confined strictly to the internal mechanismsof the

GacUserInfo interfaceand,assuch,areconsideredto be
sufficiently secure. Note, though,that this hasit ramifi-
cations: it is presentlyconsideredan unacceptablesecu-
rity risk to passtheplain-text passwordto sharedresources
suchascommonprohibitiedpassworddictionariesandthe
like. Suchmechanismsmightbearrangedandmadesecure
by furtheremploying thepassbackencryptionkey mecha-
nism;however, thesemechanismswouldnotbeableto use
therepetoireof distributedobjectcapabilitiesprovidedby
the CORBA-served PIA implementation.For example,a
GMapGStr-basedmapof prohibitedpasswordswouldnot
bepossiblebecausetheinterfacedoesnotsupportpassback
encryption. Even if that capacitywere added,the com-
putationalburdenof encryptionwould bebeyondrealistic
achievement.

3.7 Location of Interfaces

Verynearlythefirst issueto beconfrontedby any CORBA
clientcodeis how to find aservedinstanceor obtainanew
served instance.As mentionedat the beginning, the PIA
foundationstartedthis issueoff in a directionwhich must
bereversedby theapplicationlayer.

3.7.1 The Foundation Layer Approach

The PIA foundationlayer provided no conceptof a user
and,lackingthat,hadlittle to definea system.Thecentral
GSrvrCtl servercontrolinstanceof afoundationserverhas
little to do but startandstoptheserverandturn debugging
logsonandoff.

Becauseof thelackof userandsystemconcepts,thefocus
is upontheGInterfaceInfo interfaceandits instances.One
instanceof this interfaceis createdand served for every
interfaceserved by the foundationlayer server. The cre-
atedinstanceis namedfor theinterfaceit supports.For ex-
ample,aninstanceof theGInterfaceInfo interfacenamed
GMapGObjToGObj is createdandserved to supportthe
GMapGObjToGObj interface.To haveareferenceto that
GInterfaceInfo instanceis to havetheability to createand
useinstancesof theGMapGObjToGObj interface.

As eachGInterfaceInfo instanceis created,a referenceto
it is publishedby the foundationlayer in a well-known
NameService server. After several name context lay-
ers sorting through the fact that the referenceis a PIA-
conformantGInterfaceInfo instance,the referenceis dis-
tinguishedby its assignedname. To accountfor the fact
that multiple PIA serversservingmany (if not all) of the
sameinterfacesareexpectedto exist, the referenceis fur-
ther qualified in the namingserviceby appendingaddi-

12

tional layersconsistingof thefully-qualifieddomainname
of the server. The orderof the domainnamecomponents
is reversedsothatthey proceededfrom mostgeneral(.gov,
.com, .org, andthe like) to mostspecific. Only whenthe
terminalelementof the domainnameis reachedis an ac-
tual referenceto a GInterfaceInfo instanceobtained. In
thisway, aGInterfaceInfo instancesupportingtheGMap-
GObjToGObj interfaceon oneservingmachineis distin-
guishedfrom anotherGInterfaceInfo instancesupporting
the sameGMapGObjToGObj interfaceon the next ma-
chineover.

Noteshouldbetakenof thefactthatthefully-qualifieddo-
main namesusedareestablishedby configurationactions
of the PIA-compliantserver programsandnot by making
inquiriesof any actualDomainNameSystem(DNS)server
thatmight beavailable.While it is generallyintendedthat
configuredservernameswill follow theDNSnamesof the
servingmachines,the configurationoption allows devia-
tions from thosenamesthat may serve useful purposes.
For example,a groupof machinesnot sharingany partic-
ular patternof DNS namesbut all servinga commonap-
plicationmaybeformedinto a server clusterby placinga
commonnamesuggestiveof theservedapplicationjustbe-
fore(in reversedorder, or afterin DNSorder)theterminal,
machine-identifyingname.For example,a clusterserving
theLAPIN codemightbeconfiguredto exhibit thefollow-
ing servernames.

srvr00.lapincluster.grc.nasa.gov
srvr01.lapincluster.grc.nasa.gov
srvr02.lapincluster.grc.nasa.gov
srvr03.lapincluster.grc.nasa.gov
srvr04.lapincluster.grc.nasa.gov
srvr05.lapincluster.grc.nasa.gov
srvr06.lapincluster.grc.nasa.gov
srvr07.lapincluster.grc.nasa.gov

The foundationlayer providesservicesfor the navigation
of thenameservicestructureit hasconstructed.In general
theserviceproceedsin thefollowing manner.

1. First,thenamingcontextsarenavigatedto theGInter-
faceInfo instancetreesupportingthe desired,named
interface,for exampleup to thepoint wheretheGIn-
terfaceInfo instance(s)supportingthe GMapGObj-
ToGObj interfaceis identified.

Notethat,oncethis navigationphaseis completed,it
is certainthatany GInterfaceInfo instanceidentified
will supportthedesiredinterface.In thecaseof avery
generalinterfacesuchasGMapGObjToGObj there
mayyetbemany possibilitiesleft. In thecaseof avery

specificinterface,for examplea (supposed)LapAppl
LAPIN applicationwrapperinterface, theremay be
very few possibilitiesleft.

2. From the currently identifiedpoint, namingcontexts
are further selectedbasedupon the (reversed)fully-
qualifiednameof theclient.

Using the example of the supposedLAPIN cluster
givenabove,a clientnamed

somemachine.grc.nasa.gov

will navigate up through gov, nasa, and grc since
thoseelementsmatchtheclientname.

It is this phaseof the navigation processthat at-
temptsto achieve network co-locality. It is presumed
thatmatchingnamecomponentswill be indicative of
“closeness”in somenetwork sense.

3. From the currently identified point, further naming
contextsarenavigatedby randomselectionuntil a ter-
minal context is reached.The charitablemight con-
sider this last randomselectionamongservers to be
a minimal form of load balancing;the uncharitable
mightnot.

Furtherusing the supposedLAPIN clusterexample
given above, having reachedthe namingcontext of
grc, randomselectionhas only one choice: lapin-
cluster (presumingfor themomentthatonly members
of this clusterserve thedesiredinterface). Fromthat
point,onelastrandomselectionpicksa server of that
clusterandleadsto a final referenceto a GInterface-
Info instancesupportingthedesiredinterface.

As almostan afterthought,the foundationlayer similarly
publishesa referenceto the GSrvrCtl server control in-
stanceof eachserver.

Theabove implementationrepresentswhatcouldbedone
within the very generalframework assumedfor the PIA
foundationlayer. It shouldbe notedthat all of the publi-
cationactionsareimplementedasoptionswhichderivative
serversmayturnoff.

3.7.2 Deviation from DNS Names

Theexampleof thesupposedLAPIN clusterof serversin
theprevioussectionservednoparticularlyspectacularpur-
pose.Sinceit waspresumedthatthedesiredinterfacewas
servedonly by membersof thatcluster, oneof thosemem-
berswould have beenselectedevenif theclient namehad
been

13

somedesktop.bldg666.seattle.bcac.com

As amoreconstructiveexample(which leapsjustabit for-
wardinto applicationlayerconcepts),supposethis LAPIN
clusterconsistedof powerservermachinesonwhichit was
inappropriateto run PIA-conformantGUIs for administer-
ing thoseservers. Let us suppose,instead,that thereare
severaldesktopmachinesnamed

admin00.lapincluster.grc.nasa.gov
admin01.lapincluster.grc.nasa.gov
admin02.lapincluster.grc.nasa.gov
admin03.lapincluster.grc.nasa.gov

andexistingonnetworksjudgedsecureenoughto perform
administrative tasks.

Underthissetof suppositions,thedefault instancelocation
mechanismswill lead thesesupposedadministrative ma-
chinesstraightto theserversthey proposeto administrate.
This will occureven for instancesof interfacesserved by
many otherserversoutsidethiscluster.

3.7.3 The Application Layer Approach

Two key pointsadjusttheapplicationlayerapproachto lo-
catinginterfaceservices.

1. TheGacSrvrCtl servercontrolinstanceis now avital
partof a PIA-compliantapplicationserver. In partic-
ular, theneedto locatesuchan instanceto logonand
obtaina trustedGacLockCtx lock context instanceis
paramount.

2. The number of interfaces to be served by PIA-
compliantapplicationserversandthe numberof ex-
pectedserverscombineto make theburdenuponsup-
posedNameService serversuntenable.

Oneof thevisionsof thePIA planis thateverykind of
engineering,technical,scientific,management,manu-
facturing,quality-control,or otherparameterwill be
encapsulatedin a specific, closely-definedinterface
sothat its well-known, pre-definedsemanticsmaybe
recognizedby discoveringits interfacetypeandfunc-
tionality specific to thosesemanticsmay be encap-
sulated. This alonemay lead to tensor even hun-
dredsof thousandsof definedinterfaces. Whenthis
is multiplied by a supposedglobal collective, many
of whosemembersserve thesameinterfacesoverand
over again, the untenableburdenuponeven a feder-
atednameservicebecomesclear.

���2���,�2�

� �,�

� �����
���#� ����� �
�W��� � �2� �
� �2� ��� � �

���
���,���#��� � �
�W���#���;���
� ��� � �;� �2�

� � �

�#���W�

� � �
 0¡ �
� � �
� � � �

� �W¢ �

£�¤ � ��� � � �#� � ���#���
£�¤ � ��� � � �#� � ���#���
£�¤ � ��� � � �#� � ���#���

£�¤ � ��� � � �#� � ���#���
£�¤ � ��� � � �#� � ���#���
£�¤ � ��� � � �#� � ���#���
£�¤ � ��� � � �#� � ���#���
£�¤ � ��� � � �#� � ���#���
£�¤ � ��� � � �#� � ���#���
£�¤ � ��� � � �#� � ���#���

£�¤ � ��� � � �#� � ���#���

Figure3.4: Organizationof Fully-QualifiedNamesby the
GacFqdnToGObjInterface

Becauseof thesefactors,serversof the applicationinfra-
structureturn off theNameService publicationof GInter-
faceInfo instances,even though theseinstancesare still
createdat server startup for every supportedinterface.
Also, while theGacSrvrCtl server control instanceis still
publishedin thenormal,foundationlayermanner, theser-
vices provided by the collective meanthat eachmember
of the collective neednot publish their individual server
controlinstanceswith any onenameservice.Indeed,some
membersof thecollectiveneednotpublishtheirservercon-
trol instancesat all if that is not desired.Thefull services
of thecollective maybereachedthrougha local nameser-
viceproviding connectionsto only afew, localmembersof
thatcollective.

Having turnedoff the generalpublicationof GInterface-
Info instances,the applicationlayer must provide an al-
ternative methodof locatingthoseinterface-supportingin-
stances,whichit doesin theform of theTrustedSrvrFind-
IifByName methodand the GacFqdnToGObj organiza-
tionalstructure.

As illustratedin Figure3.4, the GacFqdnToGObj inter-
faceprovidesann-ary treefacility usedto createa corre-
spondenceto (reversed)fully-qualifiednames.Theroot in-
stanceof thestructurecustomarilyhasnonamewhile each
of the root’s immediateoffspring are assignedthe most
generalelementof the fully-qualified namebeingusedto
mapa paththroughthestructure.Thenext elementof the
fully-qualified nameidentifiesthe offspring of thoseoff-
spring,andso on until terminalnodesare reached.Any
nodeof theconstructedstructuremayprovide a reference
to an instanceof any GObject-derivative interface;how-
ever, in commonuseonly terminalnodesof the structure

14

havesuchreferences.

The TrustedSrvrFindIifByName methodbuilds a Gac-
FqdnToGObj structureidentifying,muchin themannerof
thefoundationlayer’sutilizationof thenameservice,all of
theserversprovidingaGInterfaceInfo instancesupporting
a namedinterface.ThepaththroughthetheGacFqdnTo-
GObj structureis navigated/constructedby thefully qual-
ified namesof thoseserversandthe terminalnodeidenti-
fiedprovidesthereferenceto theidentifiedGInterfaceInfo
instance.The operationtraversesthe collective, identify-
ing every memberservingthe identified interface. Once
theGacFqdnToGObj resultis receivedby the requesting
client, it canbenavigatedby fully-qualifiednameandran-
domselection,in themannerof thenamingcontextsof the
nameservice,to anappropriateGInterfaceInfo instance.

Therearegoodandbadpointsto theapplicationlayerap-
proachto findinganappropriateGInterfaceInfo instance.

1. Theentirecollective is searchedfor services,without
the needof publishingall suchservicesin a single
nameserver reachableby the client. Even collective
membersthat have not publishedtheir server control
instancesanywherearereached.

2. Only the referencestructurefor the desiredinterface
is generated,not that of all possibleinterfaces. In
the caseof narrowly focusedinterfaces,for example
a (supposed)LapAppl applicationwrapperinterface,
this is likely to bea muchsmallerandmoremanage-
ableresult.

3. Thereferencestructureis built within thePIA persis-
tentobjectmodel. Shouldthestructurebecomeinor-
dinatelylarge(for example,in inquiring which mem-
bersof a world-wide collective serve, of all things,
theGObject interface),lessactivecomponentsof the
structurewill beetherealizedandreincarnatedshould
they beneededagain.

4. Thereferencestructuremustbe(re-)generatedfor ev-
ery inquiry.

This is the only advantageof the foundationlayer’s
nameserver approachover theapplicationlayer’s fa-
cility. Thenameserverstructureis generatedonceand
thenneedonly benavigatedwhentheneedarises.

The application layer anticipatesthe publishing of in-
stancesof interfacesderivative of GacAppl, the generic
applicationwrapperinterface.While not yet implemented,
inquiry into publishedGacAppl-derivative instancesis ex-
pectedto be alongthe lines of the GInterfaceInfo mech-
anism,resultingin a GacFqdnToGObj structurethatmay

benavigatedasdesired.In this case,though,network co-
localitymaynotbeadesirablediscriminant;however, since
theGacFqdnToGObj interfaceis derivative of theGObj-
Dgn directedgraphinterface,othertraversaloptionsdoex-
ist.

Severalelementsof applicationwrapperpublicationseem,
at thispoint,apparent.

1. The GacSrvrCtl server control interfacewill either
haveto encapsulateapublicationstructureor maintain
a referenceto adevisedstructure.

2. Publishedapplicationwrapperinstanceswill have to
be distinct by name. The given PIA instancename
meetsthis purpose.Additional semanticdiscrimina-
tion maybeobtainedby directly interrogatingthede-
scriptivesystemof theidentifiedapplicationinstance.

3. It wouldbedesirableto applytheprincipalof seman-
tic infusion throughinterfacederivation to the appli-
cationinterfaceashasalreadybeendonein theproto-
typework for parameterclasses.In this way a client
seekingto find publishedapplicationsin a particular
discipline,for examplein the disciplineof computa-
tional fluid mechanics,while not knowing a precise
applicationkind wouldbeableto searchfor instances
of interfacesderivativeof abaseapplicationinterface,
for examplea supposedCfdAppl interfaceactingas
a commonfoundationfor all computationalfluid me-
chanicsapplications.

No otherexplicit publicationof interfaceinstancesis cur-
rently anticipatedby the applicationlayer sincenearlyall
suchinstancesare reachablethroughthe structuresema-
nating from instancesof the GacAppl interface. In par-
ticular, the applicationinterfaceprovidesa referenceto a
GOrgGObjByType organizationwhich provides a com-
plete,ecdysiasticalreferenceto all theinformation-bearing
instancesof anapplication.

4 Documentation

Nearly all material relevant to the PIA effort, including
complete,class-by-class,member-by-memberdocumenta-
tion, is availableon a centralserver providedby theGlenn
ResearchCenter. TherootURL for thisdocumentationis

http://www.grc.nasa.gov/WWW/price000/index.html

It mustbestronglyemphasizedthatthesepagesarethegen-
erationof the researchersinvolved anddo not in any way

15

representa commitmentof the Governmentof the United
States,yada,yada,yada.

5 Summary

Theconceptsandimplementationof theApplicationLayer
infrastructuredevised for the CORBA-served, distributed
object form of the ProjectIntegrationArchitecture(PIA)
hasbeenpresented.The following key points were dis-
cussed.

1. A network of mutually-trusting, PIA application
servers,known asa collective, hasbeendescribed.

2. The conceptof a “user” in the context of a collec-
tive hasbeendefinedandthe elementsnecessaryfor
thatuserto operateandobtainusefulservicesandre-
sourceshasbeendescribed.

3. The mechanismsdevised to assurenot only the res-
olution of conflictsdueto concurrentaccess,but the
appliationand exerciseof accesscontrolsto the re-
sourcesmadeavailablehavebeendescribed.

4. Distritbuted mechanismsfor administering users
throughouta collectivehavebeendescribed.

5. Themethodsfor establishingandmaintaintrustin the
correctoperationof thevariouscomponentsof theap-
plicationinfrastructurehasbeendiscussed.

6. Finnally, mechanismsfor locatingresourceswherever
they might exist throughouta given collective have
beendescribed.

References

[1] TheAmericanSocietyof MechanicalEngineers.Inte-
gratedCFD andExperimentsReal-TimeDataAcqui-
sition Development, numberASME 93-GT-97, 345
E. 47thSt., New York, N.Y. 10017,May 1993. Pre-
sentedat the InternationalGas Turbine and Aero-
engineCongressandExposition;Cincinnati,Ohio.

[2] James Douglas Stegeman, Richard A. Blech,
TheresaLouiseBenyo, andWilliam HenryJones.In-
tegratedCFD andExperiments(ICE): ProjectSum-
mary. Technical memorandumNASA/TM-2001-
210610,NationalAeronauticsandSpaceAdministra-
tion, Lewis ResearchCenter, 21000BrookparkRoad,
Cleveland,OH 44135,December2001.

[3] William Henry Jones. ProjectIntegrationArchitec-
ture: ApplicationArchitecture.Draft paperavailable
oncentralPIA website,March1999.

[4] American Institue of Aeronauticsand Astronatics.
Project Integration Architecture (PIA) and Compu-
tationalAnalysisProgrammingInterface(CAPRI)for
AccesingGeometryData from CAD Files, number
2002-0750.AerospaceSciencesMeetingandExhibit,
Reno,NV.

[5] TheresaLouise Benyo. Project Integration Archi-
tecture(PIA) andComputationalAnalysisProgram-
ming Interface (CAPRI) for AccessingGeometry
Data from CAD Files. Technical memorandum
NASA/TM-2002-211358,National Aeronauticsand
SpaceAdministration,Lewis ResearchCenter, 21000
BrookparkRoad,Cleveland,OH 44135,March2002.

[6] William Henry Jones. ProjectIntegrationArchitec-
ture: Formulationof Dimensionalityin SemanticPa-
rameters.Draft paperavailableon centralPIA web
site,March2000.

[7] William Henry Jones. ProjectIntegrationArchitec-
ture: Distributed Lock Management,DeadlockDe-
tection, and Set Iteration. Draft paperavailableon
centralPIA website,April 1999.

[8] William Henry Jones. ProjectIntegrationArchitec-
ture: Inter-Application Propagation of Information.
DraftpaperavailableoncentralPIA website,Decem-
ber1999.

[9] William Henry Jones. ProjectIntegrationArchitec-
ture: Formulationof SemanticParameters.Draft pa-
peravailableoncentralPIA website,January2000.

[10] William Henry Jones. Project Integration Archi-
tecture: Wrapping of the Large PerturbationInlet
(LAPIN) Analysis Code. Draft paperavailable on
centralPIA website,March2001.

[11] William Henry Jones. ProjectIntegrationArchitec-
ture: One PossibleCommercializationPlan. Draft
paperavailableoncentralPIA website,May 2002.

16

