Project Integration Architecture: Architectural Overview

Dr. William Henry Jones
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, OH 44135
216-433-5862
William.H.Jones@Ilerc.nasa.gov

Keywords:
PIA; PRICE; Application Integration; Interapplication Propagation of Information;
Semantic Encapsulation; Multifidelity Analysis; Multidisciplinary Analysis

ABSTRACT: The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture
which encapsulates all of the information associated with engineering applications. The architecture allows the progress
of a project to be tracked and documented in its entirety. By being a single, self-revealing architecture, the ability to
develop single tools, for example a single graphical user interface, to span all applications is enabled. Additionally, by
bringing all of the information sources and sinks of a project into a single architectural space, the ability to transport
information between those applications becomes possible. Object-encapsulation further allows information to become in
a sense self-aware, knowing things such as its own dimensionality and providing functionality appropriate to its kind.

1 Introduction 1.1 Goals

In the late 1980's, the Integrated CFD and Experiment8Ut in simple terms, the basic goal of the PIA effort is to
(ICE) project [1, 2] was carried out with the goal of provid_qaptgre ln_lts entirety the usage _of any engineering app_hca-
ing a single, graphical user interface (GUI) and data ma/lon in a single, useful, well-defined form. This capturing
agement environment for a variety of CFD codes and rd$ Not limited to the simple output of the application itself,
lated experimental data. The intent of the ICE project waut further includes coordinating information and the engi-
to ease the difficulties of interacting with and intermingling"€€r's own insights into the meaning of the information.
these disparate information sources. The project was a suc- . i o .
cess on a research basis; however, on review it was deemgtf nature of an ‘engineering application’ is, by project
inappropriate, due to various technical limitations, to add€sign, nebulus: it is considered to be any computer-
vance the effort beyond the successes achieved. realized ‘thing’ which provides or generates useful infor-
mation about an engineering project. This may include
A re-engineering of the project was initiated in 1996. Th&AD information, design code predictions, experimental
effort was first renamed the Portable, Redesigned Intdat@, engineering analysis and simulation, and more.
grated CFD and Experments (PRICE) project and then, as =)) .)
the wide applicability of the concepts came to be appre3Y Pringing all of the information of the engineering pro-
ciated, the Project Integration Architecture (PIA) project®®SS into one architectural design, a number of advantages
Two key re-engineering decisions were made: the C laf'® expected to (and, itis believed, do) accrue.
guage used by the ICE project would be abandoned in favor
of the now-available C++ object-oriented extension to that
language and the graphical user interface would be elimi-
nated as a product element of the project.

1. The information about the information (referred to in
some conceptions as the meta-data) is encapsulated
with the information itself.

During the intervening years, work has proceeded and2. A common tool set for the use of engineering applica-
an operational demonstration of the PIA project has been tjons is possible.

achieved.
3. Browsers and search engines may be implemented to

peruse information in detail and convert it into infor-may not appear to be of that kind on its surface. The ex-
mation in general for end consumers. amination of such layers of meaning is referred to (within

this project at least) as ecdysiastical revelation. (From the

4. Object encapsulation allows information to becom%reekekdysisfrom ekdyein to get out of, strip off.)
self-aware. For example, a measurement may know

its dimensionality and provide its value appropriately

converted to whatever system of measurement a re- .

quest is made in. i.2.2 Self Revelation of Content

The revelation of content identifies the extent to which ex-

chitecture. itis now possible to code the knowledae t ectations based upon the revelation of kind are, in fact,
Iecture, it1S now possi WIEAGE 19 ifilled. In such situations the expectation of content is

acquire information automatlcajly from other appIIC"?l'nebulu:s by design and a well-defined method of further ex-
tions. Such coded knowledge is based upon the kin bsition is defined

of information desired, rather than upon the applica-
tion generating that kind of information.

5. By wrapping every application in a well-defined ar-

As an example of self revelation of content, consider the

6. Wrapped applications coded to obtain informatiod®@CApplapplication class whichis to be discussed shortly.
based upon its kind may then be combined in a diThat class is defined has having a magratOp-derived
rected application graph to build, in effect, superOperations objects; however, the map may be empty and, if
applications. Applications of differing fidelities and it iS hot empty, it is unpredictable exactly which operations

discip"nes may be mixed together as appropria‘[e tgbjeCtS W|”, in faCt, populate it. ThUS, an eXpectatiOI’l of
the project. content is defined, but the precise extent of content is left

open with a defined method for further exploration.
7. The building of super-applications enables project-
wide optimization, sensitivity analysis, and other such

techniques to be conducted. 2 Application Architecture

) Building upon the concept of self revelation, an application
1.2 Self Revelation architecture as depicted in Figure 2.1 has been devised.

Perhaps the key technology that enables the goals above is o]]])
that of self revelation, the ability of a thing to reveal to oth-AN @pplication presented in the image of PIA begins with

ers its own nature. Such a capacity can be implemented Bycentral application object, label@acAppl in the upper

many different techniques; however, it is a natural elemegEnter of the figure, which is the root structure from which
of object-oriented technology. all further components emanate. Four principal compo-

nents are currently provided by tRecAppl object:

1.2.1 Self Revelation of Kind 1. A set of operations that the application is willing to

The revelation of kind identifies the essential character of ~ Perform,
the revealing entity. In the object-oriented implementation
of PIA, this sets expectations as to the kind of information
and functionality a particular object has.

2. A mass of data which the application currently con-
tains,

3. A structure by which the contained data is identified,
The revelation of kind is effected in two ways: an inter- and
rogative form and a declarative form. In the interrogative o .])]
form, a predicate of kind is posed to the object and either4- An ecdysiastical sorting of the information-bearing
affirmed or denied. In the declarative form, an inquiry is ©Pjects in the application.
made of the object and a simple coded value is returned

declaring the type of the object. The first three components are depicted in the figure in the

Because of the derivational nature of object technolog ’pper left, the upper central to lower left diagonal, and the

both of these revelational forms support the concept ntral right, respectively. The fourth component is not de-
depth. That is, an object may be of a particular kind a;eicted due to its structural complexity. Each of these com-
some derivational depth but, because of further derivatioﬁ’,O nents is taken up in its own subsection below.

PacAppl

PacCfg

Op: Init Op: Run I

Par: C/Inl/Cfd I
Par: A/Inl/Cfd I Par: E/Duc/Cfd I

Par: B/Inl/Cfd | Par: D/Duc/ctd | Par: F/Noz/Crd |

Pid: Cfd |

FEE L FEEC L FEEC L Pid: Duc I Pid: Inl I Pid: Noz I
par: E/Duc/Cfd | Par: E/Duc/ctd | par: E/Ducfid [. / / . / \ \ - \ .
Par: F/Noz/Cfd | Pid: D I Pid: E I Pid: A I Pid: B I Pid: C I Pid: F I

PacCfg I PacCfg I PacCfg I

Par: A/Inl/Cfd I Par: A/Inl/Cfd I Par: A/Inl/Cfd I

Figure 2.1: PIA Application Architecture

2.1 Application Components ing the names of each of the tree elements leading to the

. . final identification of that parameter.
2.1.1 Parameter Configurations P

Parameter objects (the objects which hold application data
of all forms) are held in configuration objects, labeRat- 2.1.3 Operations
Cfg in the figure. A configuration is considered to be a

distinct set of input and output data for the application”*PPlications not only hold data, but usually operate on that

A configuration is further considered to parallel the varidata, turing inputs into outputs. To reveal these opera-
ns, the architecture provides for a map of operational

ous investigated designs of an engineering project so thté‘?_ k
synchronization of the engineering process is maintainétPiects (labele®p followed by a name in the upper left
across the entirety of the project. of Figure 2.1) sorted by operation name.

Configurations are arranged as mmry tree and inherit Some operations may require specific interaction with

missing parameters from their ancestors, the most immedf® researcher. For this purpose, a GUI call-back class,

ate ancestor taking precedence for a given parameter. ThG@CGUI, is defined which provides a known set of inter-
repetition of unchanging parameters is avoided. actions. Such an object must be supplied to each operation
each time that operation is invoked.

Parameters often exist in structural forms which may be re-
peated within an application. To avoid the needless replica-
tion of unchanged parameters simply to indicate parametr&1.4 Object Sorting
structure, individual parameters are identified by a fully

" . !) e A fourth structure has been defined and implemented, but it
qualified name in which their structuralization is encoded P

is not shown in the figure due to its complexity. The struc-
ture provides a ecdysiastically-exhaustive sorting of objects
of the application by their derivational heritage. The need
2.1.2 Parameter |dentification for this sorting arises because applications are permitted to

The parameter identification structure (built of objects beSPecialize parameters beyond the level that is well known.
ginning with the labePid in the figure) is the mechanism BY means of this sorting, applications seeking particular

by which the structuralization of parameters is revealed@rameters by their well-known types may be quickly di-
This parameter identification element of the application afcted to those parameters, even though those parameters

chitecture is, again, arranged asraary tree. The fully- a'€ customized at their derivational surface.
qualified name of a parameter is developed by concatenat-

2.2 Operating Context 3.1.1 Engineering Logs

The parameter identification and application operation oA multi-line, descriptive text form is provided as the possi-
jects both operate in the context of a selected parametegle basis of an engineering log facility. Here an indefinite,
configuration, a concept shown in the figure by the sweegxpandable number of text string elements in an ordered
ing curves from those kinds of object to a single configlist can be associated with aacBObj derived object.
uration. These object kinds offer IsVisible and IsEnabled

member functions, respectively, which indicate whether or

not the functionality is active within the context of the se3 1.2 Change Histories

lected parameter configuration. This feature allows, for ex-

ample, the internal parameters of an optional analysis corfi-change history descriptive form is provided. It provides
ponent to be made invisible when that component has be@R implicitly time-stamped, ordered, multi-line descriptive
disabled in a particular configuration, even though thos€®rm. This form is implicitly used by thé>acPara (pa-

parameters might exist in, or be inherited by, that Conﬁgdameter) base class to record parameter modifications as
ration. previous value texts. All currently implemented parame-

ter classes utilize this capability in their corresponding Set-
Value services.

3 The Base Object

Very nearly all of the object classes involved in implement3:1-3 Access Controls

ing the PIA application architecture desc_ribed above are d@n, access control descriptive complex is implemented.

rived from a common base clagsacBObj. Among other Any pacBObj-derived object can attach access control de-

things, this base class provides several key features: scriptions throughout its descriptive hierarchy. This allows
per-user read, write, execute, and delete controls to be ap-

1. The ability to be described, plied on an object-by-object basis.

2. The ability to transmit declared events, and

3. The ability to traverse upward through the applicatios-2 Declared Events

structure. A simple subscribe/publish event facility is provided by the
PacBODbj base class. This facility allows utilizing entities
to attach one or more objects BfacEvent derivation to
3.1 Descriptive Capabilities a PacBObj-derived object. ThéacEventbase class de-

o . . fines a number of different event types but, as a base class,
The ability to be described brings a good deal of usefu,rovides only a default response should the event be de-

function to the entirety of the architecture. A wide varietyp i .
of descriptions, such as access controls, descriptive tex%ared' ThePanObl ba}se C.Ia.s' S |mplem§n§s correspond—
. . . ; ng event functions which, if invoked, will identify each
dimensionality, and others, are implemented. Indeed, Vittached event object and transmit the event declaration to
tually any sort of descriptive element can be devised anI)
added to the repertoire. Because not all objects will nec-

essarily have descriptive elements and certainly not all ol?J—tiIiZin code is responsible for develoning and attachin
jects will have all descriptive elements, the descriptive sys: 9 b ping 9

tem is one of minimal overhead. derived event class forms which do sqmethmg .m.ear!m'gful
should an event be declared. There is no artificial limita-
S - : ... tion on the number of event objects that may be attached
Th Iyl fth h h . R

e only limitation of the descriptive system is that, wit Into a particularPacBODbj object, nor upon the number of

a descriptive set, at most one instance of any particular cop- S)
trolling descriptive type is permitted. This limitation is off- BaCBObJ ohjects that may be attached to a particular event

set by the fact that the descriptive system is implemente%PJeCt'

in a layered, hierarchial manner in parallel with the deriva-

tional class hierarchy and that distinct descriptive sets ma

exist at each such level. Within this descriptive hierarch);,z3 Upward Reference

the top-most description (that is, the description of the most, pasic direction of the application architecture is down
derived class level) of any kind is considered to be the prggzy encompassing components to more specific compo-

ferred description; however, the facilities exist to reveal thgants. |n implementation, though, it is frequently necessary
entirety of the descriptive hierarchy should it be desired.

to traverse in the opposite direction. This need is met by4.2.1 Related Parameters

pointer member and supporting code in BecBODbj class o N
lﬁ‘ related-parameter descriptive mechanism is utilized to

cation structure. Implemented functionality allows traveraSSociate other parametric information with semantically-

sal of this upward chain of reference until an object of gefmed parameter objects. For example a grid of informa-

particular, specified kind is found. Thus, code can be jnion may identity a parameter giving the positions ofits grid

sensitive to the exact placement of its presenting object Ithoordlnates through the related parameter mechansism.
the architectural hierarchy.

5 Persistence

4 Parameters Saving the state of an encapsulated application was a self-

]evident requirement. To achieve this, an object serialization
quability was implemented. Object contents are written
out to or read back from an archive file under the control of
a Serialize function. An archive object keeps track of what
objects have been serialized or de-serialized so that redun-
dant references to an object are appropriately handled.

Information is encapsulated in a derivationally-rich set o
parameter objects. The parameter derivational structure
based upon th@®acBObj base class and, thus, all of the
capabilities of that foundation are inherited.

4.1 Dependent Parameters The drawback of this serialization is also its strong point: a

The parameter base class utilizes the directed graph cag&rialize function must be manually coded for every class
bilities inherited by it to implement a dependent parametdhat might participate in such an operation. For the most
mechanism. Each successor (dependent) in such a grapRt such coding amounts to mere tedium; however, it is
informed of any change in any of its predecessor (benefali! this coding that the groundwork for evolutionary change
tor) parameters. This dependency mechanism is accounte®! be laid. If one takes the precaution of serializing an
for during the act of parameter replication, causing th@’chive version number as the very first step of object se-
replication of dependent parameters as needed. rialization, then conditional code for the de-serialization of
old object versions can be generated when object revisions
are defined. By this means, old objects may be recovered

4.2 Infusion of Semantic Meaning into Parameter Ob- even as object coding evolves.

jects

The self revelation of kind mechanism is used by the P35
rameter object hierarchy to infuse semantic meaning into

parameters [3]. The first derivations of parameter obrye jnfysion of semantic meaning into parameter objects

jects specialize parameters by their basic structural formg;.q,gh derived class specialization and self revelation

scalar, vector, matrix, organizational, and the like. Furthgp,s'the pasis for the interapplication transfer of informa-

derivation th_en assomate; an a_tomlc kind, long, doublg,, by allowing one application to ‘look’ at parameters of

Boolean, string, and the like, with these forms as approgother application and discern the semantic nature of the

priate. observed parameter objects. This basic technology enables
o . a number of interapplication information transfer modes.

A further specialization of double parameter kinds declares

them to be dimensional in nature, that is being a measureyq propagation of parametric information throughout an

ment in a specified system of measurement. (The concepiSpjication graph is the first form of information transfer

of dimensionality are discussed in greater detail in [4]'?mplemented by the PIA project [5]. The goal is to arrange

From this point a great majority of engineering parametergisnarate applications into a cooperative graph whose oper-
may then be derived. ation carries out all of the analyses relevant to an engineer-

. . . ing project as a whole.
By setting the dimensional elements to null values, di-

mensional parameters are further specialized to be Nofpe graph of applications is currently constructed by op-
dimensional. By doing this, non-dimensional parameters,ations of the testbed GUI. The first application created
may be freely intermixed with their dimensional Coumer"through the GUI is always made the initial node of an ap-
parts i_n dimgnsionally-sen_sitive operations. From this b_asﬁrication graph. A right click on that application (or upon
non-dimensional engineering parameters are then derlvegny application subsequently added to the graph) pops up a

Information Propagation

menu with a pick for adding a successor application to the
right-clicked application. The standard select-application
dialog is then executed and the application-graph member-
added.

A basic conceptual view behind the arrangement of an ap-
plication graph is that there always exists some source def-
inition of a proposed configuration of the project which
then feeds as input to various analyses of that configura-4.
tion. Those analyses then produce results with two po-
tential aspects: intermediate values which are of use for
further forms of analysis and final answers contributing to- 5.
ward a judgement of the engineering merit of the design.

Another aspect implicit in this view of information propa-
gation throughout directed application graphs is that such
applications operate in a mode in which a single operation
(from an external viewpoint) reliably turns input informa-
tion into output information, as opposed to a scenario in
which the propagation act must be iteratively performed
until parametric values, in some sense, reach a balance or-
converge. Note, though, that such an iterative propagation
form is not precluded by the PIA architecture, but is only
in opposition to the assumptions of the information propa-
gation form first implemented for study.

acting GUI.

The application object converts inputs to outputs after
its manner.

3. The application then passes the propagation operation

on to each of its immediate successors in the graph.
The configuration is passed on in this act.

Each receiving application establishes or creates a cor-
reponding configuration.

Each receiving application then examines each of the
parameter objects available in the source configuration
and, based upon the semantic meanings revealed by
those parameters, acquires such information as it may.

Each receiving successor application is free to exam-
ine the extended predecessor applications of its own
propagating immediate predecessor application for in-
put information.

$. When each successor has received a propagation act

from each of its own immediate predecessors, it then
operates to convert its own inputs into outputs and
then passes the propagation act on to its immediate
SuUCCeSSors.

7. The propagation of information continues in this man-

Information propagation as presently implemented also
forces the synchronization of parameter configurations. By
this, the concept of a project configuration is made more
real and, it is expected, the problem of mismatched config-
urations within a project analysis will be eliminated.

The propagation implementation also recognizes that not
all applications are entirely reliable in their operation. To

ner throughout the graph until terminal nodes of the
graph are reached and return the propagation act back
up the graphical chain to the originator of the act. Ul-
timately, this rolls up to a single return of control to
the original initiator of the propagation act, indicating
that the operation is complete.

deal with this, the support utilizes the event mechanism should be remembered in all of this that it is the technol-
built into the PacBObj base class to allow inappropriate ogy of self-revelation exposing infused semantic meaning
operations to alert supposedly corrective entities. There ighat makes the implementation of information propagation
thus, the ability to apply corrective measures and re-attemginable. Applications wrappers need only be coded to look
a particular operation in the overall propagation activityfor the kinds of information they desire to acquire during
Failing such corrective actions, the information propagapropagation. It is not necessary to code for connection to
tion system will mark the affected parameter configurationg specific source application to obtain an expected kind of
as being defective and will prevent further propagative ac{aformation, nor is it necessary to code for specific topo-
based upon those configurations. logical arrangements of applications.

The process of information propagation as currently imple-

mented proceeds in the following general manner. .
P 99 7 Documentation

1. The process is begun by delivering a propagation Ccmq_:_omplete, cIass-by-cIass,_member-by-member documenta-
mand citing a parameter configuration to an applicallon has been generated in Hyper-Text Markup Language
tion object which is, typically, the initial node of an (HTML) format and placed on a central server at the Glenn

application graph. The event is typically deliveredResearCh Center. The root URL for this documentation is

from an external, organizing entity, for example a per-
son controlling the overall process through an inter- http://www.lerc.nasa.gov/WWW/price000/index.html

PRICE Application Selection | Fle. Edi Vs window oy

SEEIEEEEEE)
% CapriGuitppl |58 -lojx|
I LTS = E_ompulatlona\ Analyzis Programrming |nterf
™ Hiudppl & Capi
f-" ':Ell'll:E.'l | E--Vplulla'ne‘l s
[#- Boundanes
Lap'ﬂlppl -+ BoundingBox
(- Edges
- Faces
[Nodes
. . . A - Yalume
Figure 9.1: GUI Opening Application Query =) Foot Configuration
i PacClg:02E10760
=) PacClg:02DBD350
. ... PacCfg:02DFBCED
It must be strongly emphasized that these pages are the || &-Operstiors =) Root Configualion
i } | i ChoosedchiveFile i PacClg:02E10760
formal generation of the researcher involved and do not, | .- ChooseCADFie & PacClg 02DBD3A0
1AL =- 5_uccessor Applications PacCfg:02DFBCED
any way, shape, or form, represent an official statement i o2 t4ED s O
the Government of the United States. teate All Lapin Paramelers
nad Fortran MNamelist
un Lapin in Batch Mode
alidate Parameter Configuriation
[Predecessor Applications
1 ¢ e Computational Analysiz Programming Interface
8 Experlence . Sucoessar Applications

To date, three applications have been wrapped in the C-
implementation of the PIA Application Architecture: a pre-2fereest I N
sentation of experimental data from an inlet unstart ex-) o
periment for the High Speed Research project (known &dgure 9.2: Display of Two Independent Applications Con-
HIU), a presentation of flowpath geometry informationn€cted in a Graph

from Computer Aided Design (CAD) sources accessed

through the Computational Analysis Programming In_terf xt from the supporting class information. Thus, the figure
face (C.:APRI) cross-vendor pack_age [6], and an operatlo.néiows that, at the time this dialog was captured, three ap-
wrapping of the Large Perturbation Inlet (LAPIN) analysi

S . .
x . . lications were supported: the CAPRI cross-vendor CAD
code [7]. Propagation of geometry information from thep PP

. geometry CapriGuiAppl) application, the HSR Inlet Un-
CAPRI/CAD wrapper to the LAPIN wrapper is currently ; o)
being demonstrated. start HiuAppl) application, and the LAPINL@pAppl) ap

plication.

Figure 9.2 illustrates nearly all the rest of the features of the
9 Testbed GUI architecture as exercised by the testbed GUI. The window
labeledPacAppll:1 views a CAPRI application choosen
Although a GUI is not considered to be a product of thérom an application selection dialog in the course of GUI
overall project, such a tool is nevertheless necessary fetartup. The window labeleBacAppl1:2 views a second
testing purposes. Indeed, a GUI is the most expedient wayplication, in this case a LAPIN application, that has been
to see that the concepts described above do, in fact, workreated as a successor to the CAPRI application in the ap-
plication graph.
The first demonstration of the architecture is shown in Fig-
ure 9.1. This is a screen capture of the application selectignwindow viewing an application lists from top to bottom
dialog box implemented by the GUI. The dialog allows the
user to select one of the available application types through
a mutually-exclusive radio button interaction. 1. The parameter identification tree (which is only par-
tially expanded in either window of the figure for rea-
The remarkable thing about the application selection dialog ~ sons of space),
is that it is generated on-the-fly by the GUI, rather than by a
static coding of the dialog. At the time of dialog initializa-
tion, a scan is done of all PIA classes, isolating those that3 The gperation tree,
are derived from the typRacAppl. (The clas$acApplit-
self is excluded from this set.) A radio button is generated 4. The application graph predecessor list (except in the
for each such identified application class, drawing the name case of théPacAppll:1 window which views the ini-

2. The parameter configuration graph,

tial node of the graph which, by definition, has no preisted at the time of this writing. Thus, the descendent con-
decessors), and figurations are, in fact, empty. They exist to demonstrate
L , the configuration bookkeeping aspects of the architecture.

5. The application graph successor list.
Another aspect of this information propagation figure is

Comparing the differences between the two windows fofiso not fulfilled at the time of writing in that no actual
example the different operations lists, shows the SeH'_nformation was transferred between applications as a re-

revealing nature of applications within the architectureSult Of the act that produced the display. This is due to two

The PacAppl1:1 window lists the two CAPRI operations: factors. First, there were still bugs in the program which
the selection of a CAD file from which an internal CAPR|Were being tracked down and corrected at the time of writ-
archive of information will be produced, and the selectiodd: Second, no sematically correct CAD file for the sample

of such an archive from which a geometry parameter set P{oblem, the inlet flow path of the Rocket Based Combined

the selected configuration will be produced. Meanwhile,CyCIe engine being developed at the Glenn Research Cen-

the PacAppl1:2 LAPIN window lists an entirely differ- ter, was available at the time of writing. It is believed and
ent set of operations; the creation of LAPIN parametergepresented in good faith that both these difficulties will be

the loading of LAPIN parameters from traditional Fortran®Vercome in the near future.

namelist input, the running of LAPIN, and the validation of
the parameter set as input to a potential LAPIN run.

10 Future Directions
The two viewing windows also reveal the connection be-
tween the two applications as participants in an applicatioft this point, the road ahead for the PIA project seems rel-
graph. ThePacAppl1:1 window views the initial node of atively clear. The key technology of self-revelation and its
the application graph, as witnessed by the absense of a Padility to enable common tools, information propagation
decessor Applications element in its view. The Successthroughout an application graph, and the like can be con-
Applications list of that view shows the LAPIN application sidered well demonstrated. Further work now must center
viewed by thePacAppl1:2 window as its successor. The on two areas: making the application architecture practica-
LAPIN application, in turn, lists the CAPRI application of ble by moving it to a distributed object environment, and
the PacAppll:1window as its predecessor. filling in the many semantic gaps of the parameter object

set so as to have a fully populated set of information forms.
The effect of information propagation throughout the appli-
cation graph is also illustrated by Figure 9.2. The paramA/ork has already begun on the migration to a distributed
eter configuration graph of the CAPRI application viewedbject environment based upon the Common Object Re-
through thePacAppll:1 window has been expanded be-quest Broker Architecture (CORBA). At this point, all
yond its default single-patriarch form to include two childfoundation classes have been migrated to this environment
configurations and a grandchild configuration attached @nd operationally demonstrated. Work on application-level
the second child. By the act of information propagatiortlasses and concepts is now beginning.
citing the root parameter configuration of the CAPRI appli-
cation (effected by first selecting the root parameter config-
uration of that application and then double-clicking the ap 1
plication element of the viewing window), that parameter

configuration graph is replicated in the successor LAPIN apsiract, highly flexible, object-oriented application ar-
application. This is further confirmed by the fact that the-hitecture has been defined. The architecture has been im-
default parametgr qonflguratlon opject names generatedﬂibmented in C++ and real applications have been wrapped
the CAPRI application as the configuration graph was &X¢cording to that architecture. Dimensional parameter ob-

panded (for example, PacCfg:02E10760) are, in fact, repliacts wrapped in this architecture are self-aware of their di-
cated in the configuration graph of the LAPIN applicationmensionallity and automatically convert their values to a

This.is precisely as ex_pected by the act of information PrORequested unit system. Applications wrapped in this ar-
agation as a result of its effort to keep parameter configurgpitecture have been connected into directed application
tions synchronized between cooperating applications. graphs and the automatic propagation of information from

o . . . o source application to consumer has been demonstrated.
This illustration of information propagation is somewhat

overextended in order to demonstrate features of the ar-
chitecture that reach beyond current realities. In fact, no
CAPRI/CAD data source with multiple configurations ex-

Summary

Author Biography

DR. WILLIAM HENRY JONES is a Computer Engi-
neer at the National Aeronautics and Space Administration,
John H. Glenn Research Center at Lewis Field, in Cleve-
land, Ohio. He has been the sole architect for the PIA
Application Architecture since the initiation of the project
in 1996. Dr. Jones also has wide ranging interests in the
computer field including direct computer control of manu-
facturing machinery, specialized CAD/CAM systems, elec-
tronic hardware design and implementation, compiler the-
ory and implementation, object-oriented design, computer
systems security, computational fluid mechanics, and oth-
ers, as well as considerable experience in aeropropulsion
and the practicalities of flight.

References

[1] The American Society of Mechanical Engineehste-
grated CFD and Experiments Real-Time Data Acquisi-
tion Developmentumber 93-GT-97, 345 E. 47th St.,
New York, N.Y. 10017, May 1993. Presented at the In-
ternational Gas Turbine and Aeroengine Congress and
Exposition; Cincinnati, Ohio.

[2] James Douglas Stegeman. Integrated CFD and Ex-
periments (ICE): Project Summary. Technical mem-
orandum Number not yet assigned, National Aeronau-
tics and Space Administration, Lewis Research Cen-
ter, 21000 Brookpark Road, Cleveland, OH 44135, De-
cember 2001.

[3] William Henry Jones. Project Integration Architec-
ture: Formulation of Semantic Parameters. Draft paper
available on central PIA web site, January 2000.

[4] William Henry Jones. Project Integration Architecture:
Formulation of Dimensionality in Semantic Parame-
ters. Draft paper available on central PIA web site,
March 2000.

[5] William Henry Jones. Project Integration Architecture:
Inter-Application Propagation of Information. Draft
paper available on central PIA web site, December
1999.

[6] Robert Haimes. Computational Analysis PRogram-
ming Interface (CAPRI): A Solid Modeling Based
Infrastructure for Engineering Analysis and Design
Cambridge, MA, November 1999. Web Reference:

http://raphael.mit.edu/capri/.

M. O. Varner, W. R. Martindale, W. J. Phares, K. R.
Kneile, and J. C. Jr. Adams. Large Pertubation Flow
Field Analysis and Simulation for Supersonic Inlets:

[7]

Final Report. Contractor Report NASA CR-174676,
National Aeronautics and Space Administration, Lewis
Research Center, 21000 Brookpark Road, Cleveland,
OH 44135, September 1984.

