Project Integration Architecture:
Distributed L ock Management, Deadlock Detection,
and Set | Teration

Dr. Wlliam HenryJones
NationalAeronauticsandSpaceAdministration
JohnH. GlennResearclCenterat Lewis Field

Cleveland,OH 44135
216-433-5862
William.H.Jones@grc.nasaxgo

X00. 00

26 Apr

1999

Keywords:

PIA; PRICE;CORBA; KnowledgeManagementApplicationIntegration;
TechnicallntegrationTechnologiesSemanticEncapsulationSelf-Revelation;
Concurreng ResolutionDistributedLock ManagementDistributedDeadlockDetection;
ConcurrenSetlteration;DistributedComputing;

ABSTRACT: The migration of the Project Integration Architecture (PIA) to the distributed objectervironmentof the
CommonObject RequesBroker Architectuie (CORBA) brings with it the nearly unavoidablerequirementsof multi-
accessqrasynhronousopemtions. In order to maintainthe integrity of data structuesin sud an ervironment,it is
necessaryo provide a locking metanismcapableof protectingthe complex opemtionstypical of the PIA architectue.
This paperreportson theimplementatiorof a locking medanismto treatthat need. Additionally the ancillary featues
necessaryo male thedistributedlock metanismwork are discussed.

1 Introduction

TheProjectintegrationArchitecture(PIA) [1] is anobject-
orientedarchitecturewithin which practicallyary techni-
cal applicationmay be wrapped.Informationin this arch-
itectureis provided not only throughthe isolatedobjects
which it presentshut alsothroughthe structuralrelation-
shipsof thoseobjectsto oneanother For instancewhile

engineeringlatais maintainedn a configurationobjectin

a conceptually-flatbalanced binary tree, the logical or-

ganizationof thatdatainto structuralunits intuitive to the
applicationuseris revealedby an accompawing, n-ary
tree of identificationobjects. The revelation of informa-
tion throughstructurebringswith it the consequencthat
mary, if notall, PIA transactionabperationsgnvolve sets
of objectsratherthansingleobjects.

In migrating the Project Integration Architectureto the
CommonObject RequestBroker Architecutre(CORBA)
ervironment of distributed objects, the compleities of
multi-accessooperationsare broughtinto the designmix.
While one might wish to sere the objectsof a particular

Semaphore A I

/ \Wj
s

i/

4

Semaphore B |

Figurel.1: Which Semaphoréor IntersectingSets?

€

PIA applicationinstanceto a singleclient, nothingin the
basicCORBA specificationallows for sucha restriction.
Thus, it is appropriatejf perhapaot explicitly necessary
to provide for thelocking of suchtransactionabbjectsets.

A simple, mutual-exclusion semaphordocking capabil-
ity, asis commonlyprovided in mary software products
and ervironments,is not appropriateto the task of lock-
ing multiple objects.Suchsinglelocks control singleenti-

ties. Thus,for asinglesemaphoréo be effective, it would

haveto beunderstoodsprotectingthesinglesetof objects
to manipulatedn atransactionhowever, sincethatobject
setis dynamicallydeterminedatthetime thetransactions

proposedsuchasinglelock cannotbepre-establishednd
recognizedoy the multiple clientswhich mightinterferin

suchatransaction.Further sinceanotherclient’s interfer

encemightinvolve a distinctobjectsetnotidenticalto the
first set, yet neverthelessntersectingthat first locked set,
the efficagy of the single,semaphore-li&lock approachs

clearlylacking. Thisis illustratedin Figurel1.1.

Client A

W
i

C

Client B I

Figure 1.2: Client Transactions€Competefor Distributed
Locks

To control dynamicallyselectedsetsof objects,it is nec-
essaryto provide a matchingsetof locks, eachlock dedi-
catedto a particularobject. By having a distinct, identifi-
ablelock associatedavith eachindivisible object,compet-
ing transactionsnay contendwith eachotherfor control
of theindividual objectsnecessaryo make thetransaction
go forward, asis depictedin Figure1.2. Additionally, it
is desirablefor suchlocksto provide not merelya yes/no
responséo anacross-the-boamsageequestbutagraded
setof accesdevelsto the controlledobjectsothattransac-
tionswith compatibleneedgin particular readaccessinay
progressogethemwhile assuringhattransactionsvith con-
flicting requirementgin particular write or deleteaccess)
areexcluded.

Anotherdesirableaspecif alock mechanisnis thatit be
distributed,evenaswasimplicitly suggesteéh Figurel.2.
This is, perhapsmore clearly seenwhenthe statements
examinedfrom the contrapositie view: a centralizedock
managemensystemis very undesirable.In a centralized
lock systemtherateatwhichtransactionsanproceedrery
rapidly becomesieterminedoy the rateat which the cen-
tralizedlock systemcan procesdock operations.By dis-
tributing lock operationsthe operationaresource®f the

transactionrmay be broughtto bearuponthe lock opera-
tion, too. Thus,astransactionalresourcegrow (through
multiply-threadedsenersand multi-sener ervironments),
lock processingesoucegrow proportionately

Client A

]

Client B

Figurel.3: A SimpleDeadlockCondition

With the introductionof multiple-lock environments,the
possibilityof deadlockanirresohableconflictin thehold-
ing andrequestingf locksbetweertwo or moreclients,is
introducedaswell. In its simplestform (depictedn Figure
1.3),adeadlocloccursvhenclientA holdsalock onobject
1 anddesiresalock on object2 while client B holdsalock
on object2 anddesiresof lock onitem 1. As the example
suggeststhe detectionof deadlockss relatively straight-
forward; however, it, in turn, bringswith it the problemof
iterationupona dynamicallychangingset,in this casethe
setof lock holders. Furtheringthe example,theremay be
a client C holding a lock on object2 with no designson
objectl. Thetransactiorof clientC mayrunto completion
andreleasdhelock on object2 while client A is perform-
ing its evaluationof the deadlockcondition.

Reviewing all of the above, distributed lock management
bringswith it a seriesof interestingproblems. Eachare
amenableo solutionand,while eachsolutionis no partic-
ular actof geniusthe effort asa whole maybeinstructive
asto theissueghatmustbe confrontedn providing mean-
ingful locksin adistributed,structural pbjectenvironment.

2 The Solution

Thesolutionof thelock managemerproblemposedabore

involves threeinterfacesin the CORBA ervironment: a
lock, a lock context, and a positionaliterator As shavn

in Figure2.1, aninstanceof thelock interface,GL ock, is

attachedo a lockableinterfaceinstance. A lock context

associateavith aclientis suppliedto thelockableinstance
to provide a context within which a lock may be held. A

positionaliteratorinstancgnot shavn in thefigure)is cre-
atedinternally by the lock contet andis initialized and
maintainedoy thelock in the eventthatan evaluationof a
potentialdeadlockconditionmustbe made.

GLockCtx

Client I

Figure 2.1: Relationshipof Principal Distributed Lock
Components

Lockable Object I

2.1 ThelLock and Lock Context

The lock interface, GLock in this implementation,pro-
vides, as would be expected,the basiclocking function.
Thatis, it provides a decisionto a requestemwhetheror
not, at the presentime, a requestedorm of accessanbe
granted.

This decisionform of lock managemeris in oppositionto
thealternatve blockingformin whichaprocessequesting
aresourcdock is suspendedntil the lock is grantedor a
deadlockexception(of whatererform)is thrown. Here the
GL ock serviceresponddgo alock requeshot by blocking
the requesteuntil the lock canbe granted,but by simply
issuinga yes-orno decision. The decisionform wasnec-
essarybecausef the lack of ary generic,cross-platform
capacityfor suspendingnexecutingthreadandqueuingit
on somesubsequerbck event.

TheGL ock interface asit is currentlyimplementedrecog-
nizessix locking levels: ReleaseReferenceRead Write,
Execute andDelete.

1. The holding of a Releasdock grants,paradoxically
a completedisassociatiorof the requesterfrom the
lockableentity. It is introducedinto the lock design
for the clarity of the implementation.By its nature,
a Releasdock may be obtainedby ary requestemat
ary time. Thus,a new requestemay beimmediately
granteda Releaséock and,asaresult,thelock grant-
ing procesgandlock releasingprocess)naybetrans-
formedin all casedo alock corversionprocess.

2. Theholdingof aReferencdock grantsto therequester
the right to expectthe lockableentity to continueto

exist. Thelockedentity mayberead,written,andoth-

erwisechangéts stateasaresultof operationzarried
out by other clients obtainingappropriateocks, but

it may not ceaseo exist underthe operationsappro-
priateto the grantingof a Deletelock. Multiple re-

guesteramay hold this lock simultaneouslyand this

lock may be held in the presenceof other Release,
Read Write, andExecutelocks.

w

. Theholding of a Readlock grantstheright to the re-
guesteto obtain,but notchangethe stateof thelock-
ableentity. Multiple requestersnayhold this lock si-
multaneouslyand this lock may be held in the pre-
senseof oneor more Referencdocks; however, this
lock may not be held in the presenceof ary Write,
Execute or Deletelock.

4. Theholdingof a Write lock grantstheright to there-
guesterto obtain, modify, and or setthe stateof the
lockableentity. At most one requestemay hold a
Write lock at a giventime andthe lock may only be
heldin theabsensef ary andall otherRead Execute,
andDeletelocks.

5. Theholdingof an Executelock grantstheright to the
requesteto exercisethe functionality of thelockable
entity. At mostonerequestemayholdanExecutlock
at a giventime andthe lock may only be heldin the
absensef ary andall otherRead,Write, andDelete
locks.

6. The holding of a Deletelock grantsthe right to the
requesterto remove from operationand discard (in
whatever sensejhelockableentity. Subsequertb the
operationpermittedby a Deletelock, theexpectation
is thatthe lockableentity will no longerexist in ary
meaningful,operationabense At mostonerequester
may hold a Deletelock at a given time andthe lock
may only be heldin the absens®f ary andall other
ReferenceRead Write, andExecutelocks.

Largely becauseof the Releasdock device, the lock re-
guestprocessanbeimplementedin its essensegsa sim-
plefinite statemachinebasediponthefollowing statevari-
ables: the currentlock grantedto the requesterthe lock
requestedby the requesterandthe mostconstrainingock
held on the GL ock instanceby anothercontet. With the
additionof afew amenitiessuchasthe useof a mutualex-
clusionsemaphor¢o protecttheinternalsof the particular
GL ock instance the unconditionalgrantingof a Release
locks to requestersvith no currentlock, andthe discard-
ing of ary grantedReleasdocks at the conclusionof the
lock processthe basicfunction of the GL ock interfaceis
complete.

A small further adjustmentexists in the basiclock pro-

cess. Becauseof the multiple-readersingle-writerproto-

col specifiedabove, it is possiblefor multiple, sequential
Readlocksto block a Write lock for anindefiniteperiodof

time, even thoughno fundamentalwrite inhibition exists.

To adjustfor this problem,the implementedsL ock inter

facewill suspendhe grantingof Readlocks for a short
period of time after the refusingof a Write lock request.
This is donein the expectationthatno requestewill sim-

ply make onerequestandgive up. Instead,it is expected
thatthe Write lock requeswill be repeatedhortly during

theperiodin which Readocksarebeingdeclinedandthat,

during that period, existing Readlocks will be completed
andreleasedallowing the Write lock requesto begranted.
It is furthersupposedhatthewrite operatiorwill complete
shortlyandthatrefusedReadockswill begrantedon sub-
sequentequest.

It shouldbe notedexplicitly for the purposesf later dis-
cussiorthatthelock instancemaintainsamapof lock con-
texts holding locks on it. This mapincludesthe level of
lock eachsuchcontet holds.

The lock context interface, GLockCtx, provides the op-
eratingcontet in which the setof locks necessaryor a
single,logical transactions held. Typically, a singlelock
contet is utilized by aclientto hold thelocksof thatclient.
In termsof basicfunction, the lock context is not particu-
larly complicated.

The lock contet handlesthe mechanicsof requestinga
lock on a particular GLock lock instance,implementing
theretry protocolmentionedabore whenlocksarerefused.
Thus, whenthe lock contet reportsthat a lock hasbeen
refused,that lock hasalreadybeenrequestedand denied
severaltimes.

Also the lock contet providesa programmaticallyuseful
lock-nestingconcept A particularoperatiormayrequesta

lock nestandobtainmultiple lockswithin it. Whentheop-

erationis completejt mayrely ontheunnestingoperation
of thelock context to releasehoselocksto their previous

state. Througha programmaticslight-of-hand,this nest-
ing capabilitymaybeusedto assurdghereleasef obtained
locksevenwhenexceptionsarethronn pasttheoperational
scopein which thelockswereobtained.

2.2 Deadlock Detection

Whena lock contet repeatedlyis refuseda lock it is re-
guesting,it is of interestto determinewhethersucha re-
fusal represents deadlockcondition(asdepictedin Fig-

urel.3on page2), or whetherit is theresultof somemore
indefinite (andprobablyirresohable) condition. This task
falls (in this implementation}o thelock context interface,
thoughthefacilitiesof thelock interfaceprovide key infor-
mationin this operationandit is in thatlock contet thata
deadlocldeclaratioris made.

It is true that, if client A is deadlocled becausef client
B, client B is then also deadlockd becauseof client A;
however, the approachmplementechereleavesit to each
client’slock contet to detectthatreciprocalruthfor itself.
Thus, it may be thatif client A detectsand resolesthe
deadlockwith client B, client B may not ever necessarily
identify thatthereciprocaldeadlockconditionexisted.

As mentionedpreviously, the simplestform of deadlock
occurswhenclientA holdsalock on objectl andrequests
a lock on object2 while client B holdsa lock on object2
while requestingalock on objectl. Theimplementedock
systemrefinesthis basicexampleto include the concept
of conflictinglocks baseduponthe multiple-reader/single-
writer protocolthesystenimplementsClearly, if clientsA
andB areholdingandrequestingReadlocks, no deadlock
conditionexists.

Client C

Client A

Client B I

Figure2.2: Multiple Direct DeadlockConditions

The next stepin wideningthe deadlockdetectionprocess
is to recognize as depictedin Figure 2.2, thattheremay
be multiple holdersof conflictinglocks onthe objectupon
which a particularclient desiresa lock. Thatis, client A
holding locks on objectsl, 11, 12, and 13 anddesiringa
lock on object2 may find that both clientsB and C hold
conflicting locks on object2 and eitherone of themmay
causea deadloclkby requesting lock on ary of theobjects
lockedby clientA. Additionally, it is importantto notethat
thenatureof theconflictsbetweerclientA andclientB and
betweerclient A andclientC neednotbethesame.

While all of thisis alreadyaninterestingalgorithmicexer-
cise, it is still not a sufficient definition of a deadlockcon-

Client B
Client A

Client X I

Figure2.3: A Chainof DeadlockConditions

dition. As shown in Figure2.3,deadlockcanresultfrom a
chainof locksheldandrequestedThatis, client A holdsa
lock onobjectl andrequestslock onobject2 while client
B holdsa conflictinglock on object2 andrequestsa lock

onobject3. MeanwhileclientC holdsaconflictinglock on

object3 andrequests lock on object4, andso on, until,

atlast,someclient X holdsa conflictinglock on anobject
in the chainandrequests lock on objectl1, which cannot
be obtainedbecauselient A holdsthe orginal conflicting
lock on objectl.

In quasi-technicaterms,let a directedgraphbe formedin

which the initial nodeis the lock contet performingthe
deadlockanalysisand, for eachsuchnode of the graph,
the immediatesuccessonodesarethosenodesholding a
conflicting lock on the lock instanceof which the subject
nodeis requestinga lock. A deadlockthenexistsif that
graphprovesto becyclic attheinitial node.

As notedpreviously, it is to facilitatethis computatiorthat
lock instancesetaina mapof lock contexts holding locks
onthepresentindock instanceandrecordthekind of lock
heldby eachsuchlock contet. Thisis exactlytheinforma-
tion requiredfor the deadlockcomputation.Further lock
contts aresortedby lock level sothatthe setof lock con-
texts holding conflicting locks with a specifiedlock level
may be quickly identified.

The resolutionof the deadlockconditionis not a particu-
lar interestin this paper Currently the expectationis that
deadlockswill be resolhed by releasingand re-obtaining
all of aclient's locks. The overall projectfrom which this

work is reportechasnotreachedhe pointat which this is-
suehasbeendecidedand,indeed,it may be that multiple
resolutionstratgiesarepossible.

2.3 Set Iteration

The implementationof the deadlockalgorithmis, itself,
reasonablstraightforvard; however, oneissuedoescome
up: thesetof lock holdersis, itself, not constantvith time.
As aparticularclientmalesits way throughthecalculation,
otherclientsmay eitherreleaseor obtainlocksrelevantor
otherwise.A significantelementof theimplementatioris,
thus, not simply implementingthe algorithm, but making
thatalgorithmtolerantof thefactthatthe problemmaybe
changingasit is computed. In particular anotherclient
may alreadyhave identifiedits reciprocaldeadlockcondi-
tion andbe in the act of releasinglocks asits resolution
method.

This is, in fact, a particularcaseof a generalproblemin
multi-accessoervironments: iterationsupon a set must
be tolerantof the factthatthe setbeingiterateduponmay
changeduringthe courseof iteration. Becauseof this dy-
namicism,direct iteration upon structuressuchas linked
lists, directedgraphs,andthe like is inadvisable. A ref-
erenceheld by a client to the next elementof aniteration
may becomenvalid dueto the operationof anotherclient
uponthe set. For examplein a linked list, shoulda linked
elementregardedasthe next elementof traversalby one
client be removed from thelist by anotherclient, the first
clientwill have thenastyproblemnotonly of having anext
referenceto an elementthat no longer exists, but also of
having to re-establisthits currentoperatingpositionin that
list.

A solutionto this problemis, of course,possibleby the
simple expedientof locking up the entire structureon
which theiterationis to occut perhapghroughsomepro-
tocol of obtaininga Readlock on a headeror controller
element. The difficulty with this solutionis exactly what
it does:it locks up the entire structurefor the durationof
the iteration. If oneassumeghat iterative processesvill
beinherentlyfast,thatmultiple iteratorson a givensetwill
be generallyrare, or that suchiterationswill be generally
disruptive of simultaneou®perationsanyway, thensucha
policy is, perhapsnot a bad choice. On the otherhand,
if ary or all of the oppositesaregenerallytrue, thenlock-
ing up entireiterative structuredor iterative traversalsvery
quickly leadsto oneiteratorblockingall othersfor the du-
rationof its operation.

To solwve this problem,somethingcalleda positionalitera-

Ident El1 3 B
IdentE12 |
IdentE11 |
y 4
Ident E1 O I~ GPosit I

— Element O

v

Element 1
List Header +
A

Element 2

v

Element 3

Figure2.4: An Initialized GPosit Iterator

tor hasbeendevisedin theform of the GPosit interface.A

privateinstanceof this interfaceis obtainedfor eachclient
iteration. The GPosit instances initialized with theidenti-
ficationsof eachelementof theiterative set,asdepictedn

Figure2.4. Thisinitialization does,indeed emplg the so-
lution above of locking the entireiterative setfor thedura-
tion of thatinitialization; however, it is hoped(if notproven
by practicalexperience}hatthetraversalfor thepurposeof

identificationonly will bereliably fasterthantraversalfor

the real purposeof iterative operation,whatever that real
computationapurposemight be. For the deadlockopera-
tion, this meangthatthe lock instancewill (quickly) scan
all of the lock contexts holding a conflicting lock on that
lock instanceandloadtheir identificationsnto the GPosit

iteratorsuppliedby the client’s lock context deadlockal-

gorithm. Becausef theinternalarrangementmadein the
lock interface,this procesgroceedsith considerablef-

ficiengy.

Thenext key elemenbf this setiterationschemas that,as
afinal stepof iteratorinitialization, the iteratorinstances
madea primative successoof the interfaceinstancecon-
trolling additionsto andremovalsfrom theiterative set.In
the caseof the deadlockalgorithm, this meansthat each
GLock instanceinitializing an iterator makes that itera-
tor a successoof itself and,in this application,alsonotes
the lock level with which the iterator was concerned.In
otheriterative sets,this requiremento be a successoof
a controlling instancedoesplacea restrictionupon such
traversablestructures:somesingle instancemust be that
controlling, cognizantpoint. Thus,alinkedlist cannotbe
regardedas a perfectly circularlist in which ary element
may be momentarilyregardedas the head. Instead,one
elementmustactasthe headin all casessothata central
pointof controlfor iterative operationcanbe maintained.

Having received an iterator a client may then obtain el-
ementidentificationsfrom that iterator at its leisure, per

forming such protractedoperationsas may be its wont.
Provision is madefor forward and backward traversalsof
the set, the identificationof setelementdn variousways,
andfor definitive detectiornof the end-of-setondition.

Whentheactualiterative setchangesit is theresponsiblity
of the centralpoint of controlto locateeachGPosit itera-

tive setsuccessoandnotify it of the change.In the case
of the deadlockoperation this meansthatthe grantingor

releasingof a conflictinglock resultsin the notificationof

the positionaliteratorof that changein lock status.(Note

that this notification processs sensitie to the lock level

associateavith eachiterationandresultsin actualnotifica-

tion of the iteratoronly whenthatlock eventis of interest
to thatdeadlockoperation.)

By encapsulatinghe iterative identificationoperationin a
separatanterfaceinstance,a key differencein the treat-
mentof iterative seteventsis possible.The actualset,the
linked list structureor the map of contets holding locks,
maybeappropriatelychangedn responséo theevent,just
asit shouldbe. Meanwhile the notified GPosit iteratorin-
stancemakes crucially differentadjustmentsin the event
of additionto the setasshawvn in Figure 2.5 (which con-
tinuesthe exampleof Figure2.4 on page6), not only are
the identificationsof new elementsaddedat the appropri-
atepoint, but theidentificationof eachnew elements also
retainedfor specialconsideratiorat thetime of the next it-
eratve stepby theclient. Butthemostimportantdifference
is uponaremoval eventasshavn in theexamplecontinued
by Figure 2.6: the identificationof the removed element
is not actuallyitself removed, but only marked as having
beenremoved. Thus,at the next iterative step,shouldthat
removed elementalsobethe next elementof the iteration,
the positionin the setis not lost. It is only necessaryor
theiterationto recognizeheremoredstatusof thenext el-
ementidentificationand stepover it beforereportingthe
(new) next positionto theclient.

List Header I

Element O

v

Element 4

Figure2.5: Effect of SetAdditionson anOperatingterator

Ident E1 3
IdentEl15 |4 |
Ident El 2 < Next
Ident El 1 <{Done
— New
Ident El 4 = I
»
Ident E1 O [GPosit I
Ident E13 |™
Ident E15 |™
Ident E1 2 | 4Next. Removed
Ident El 1 <4Done
Ident E1 4 | P°ne
»
Ident E10 |“P°"® GPosit I

A

List Header

\

Element 1

v

Element 2

v

Element 5

v

Element 3

Element O

v

Element 4

v

Element 1

Element 5

v

Element 3

Figure2.6: Effect of a Remaoal from a Seton anOperatingterator

The treatmentof the elementaddition event by the posi-
tional iterator brings on new possibilities. Generally set
iterationis consideredan orderedprocessproceedingor
exampleforward througha linked list; however, with the
positionaliteratorit is possibleto considerthe presensef
newly addedsetelementsat the time of the next iterative
step. If suchelementsarestill furtheron from the present
position of the iteration (asidentificationelement5 is in
Figure2.50npage7), thenthey maybesimply left to con-
siderationin their properorder; however, shouldtheitera-
tion alreadyhave passedhe positionof oneor morenewly
addedelements(asis the casefor identificationelement
4 in Figure2.5), it is possible(optionally) to backthe it-
erationup to the point of the earliestsuchaddedelement.
Sincetheiterative setinterfacekeepdrackof bothelements
doneandelementsemoved, suchbackingup doesnot re-
peatiterative steps,but merelymakesthe iterationunpre-
dictablynon-monotonidn its nature.

In applicationto the caseof deadlockdetection,a newly

grantedlock introducinga new, alternatedeadlockcon-
dition canbe detecteddynamicallyasit occurs. Alterna-
tively, shoulda reciprocaldeadlockconditionbe preemp-
tively curedby the releasingof the locks held by another
client, the releaseof thoselocks will alsobe dynamically
notedand avoid the finding of a deadlockconditionthat,
in fact, no longer exists. The key point, though,is that
while a particularclient contet is involved in the poten-
tially lengthy procesof deadlockassessmenkpck opera-
tions for locks involved in thatissuecan continue. Thus,
other clients who in fact comeinto no deadlocled con-
tentionwith the assessinglient may continuelock trans-
actionsandperformusefulwork.

3 Additional Commentary

Whentheiterative setis internallyheld, asit is in thecase
of the GLock interface, somesolutionin the mannerof

the positionaliteratoris mandatoryto exposethat which

is otherwiseconcealed;however, in the caseof exposed
iterative structure,asthe linked list usedin the examples
above, sucha solutionis not required. Direct iteration of

suchexposedstructuress clearlypossibleIn the caseof a
linkedlist, thesimpleexpedientof maintainingaReadock

on the currentiteration item will assurethat someother
accessodoesnot succeedn removing thatitem from the
list.

Despitethe fact that the positionaliteratoris not strictly
necessaryn the caseof exposedstructuresthe currentex-
pectationis thatit will form the basisof the standardt-
eratve mechanisnin the CORBA-serned PIA migration.

The following reasonsare put forward in supportof this
outlook.

1. Theuseof the positionaliteratorinterfacewill bring,
ipso facta unity to the iterative form. In so doing,
codingwill be morepredictableandlesssensitve to
the structuralform supportingthe operation. Later
changedn structuralform dueto software revisions
andthelike will havelessimpact.

2. The introductionof derived positionaliterator inter
faceforms providesthe opportunityto addfurtherin-
ternaliterative contet for thosestructuralforms for
which it is necessarywithout the necessityof dis-
rupting the basiciterative codingform establishedy
the positionaliteratorinterface. Suchderived forms
might, indeed,provide directiterationupona struc-
turewithout alteringthe basiccodingform.

3. The ability of the positionaliterator to back up to
newly addedsetelementss a usefulfeaturenot avail-
able to direct iterations. Providing an iterative set
eventnotificationto directiterationcodewould bean
extremelycomplicatedask.

4 Concluding Remarks

A solution to the problem of distributed lock manage-
ment,deadlocldetectionandtheiterationon dynamicsets
neededo solwe the deadlockdetectionproblemhasbeen
presentedT he presentedolutionis neitherperfectnor the
only solution possible;however, the work is presenteds
neitherof those but only asa workablesolutionto a prac-
tical problem. It mustbe rememberedhatin ary multi-
accessqrasynchronousperatingervironment, solutions
alwaysrepresentin engineeringradeof betweerflexibil-
ity andperfection.

References

[1] William HenryJonesProjectintegrationArchitecture:
ApplicationArchitecture Draft paperavailableoncen-
tral PIA website,March1999.

