
Project Integration Architecture:
Distributed Lock Management, Deadlock Detection,

and Set ITeration

Dr. William HenryJones
NationalAeronauticsandSpaceAdministration
JohnH. GlennResearchCenteratLewis Field

Cleveland,OH 44135
216-433-5862

William.H.Jones@grc.nasa.gov

X00.00 26 Apr 1999

Keywords:
PIA; PRICE;CORBA; KnowledgeManagement;ApplicationIntegration;

TechnicalIntegrationTechnologies;SemanticEncapsulation;Self-Revelation;
Concurrency Resolution;DistributedLock Management;DistributedDeadlockDetection;

ConcurrentSetIteration;DistributedComputing;

ABSTRACT: Themigration of the Project Integration Architecture (PIA) to the distributedobjectenvironmentof the
CommonObject RequestBroker Architecture (CORBA) brings with it the nearly unavoidablerequirementsof multi-
accessor, asynchronousoperations. In order to maintain the integrity of data structures in such an environment,it is
necessaryto providea locking mechanismcapableof protectingthecomplex operationstypical of thePIA architecture.
Thispaperreportson theimplementationof a locking mechanismto treat that need.Additionally, theancillary features
necessaryto make thedistributedlock mechanismworkarediscussed.

1 Introduction

TheProjectIntegrationArchitecture(PIA) [1] is anobject-
orientedarchitecturewithin which practicallyany techni-
cal applicationmaybewrapped.Informationin this arch-
itectureis provided not only throughthe isolatedobjects
which it presents,but alsothroughthe structuralrelation-
shipsof thoseobjectsto oneanother. For instance,while
engineeringdatais maintainedin a configurationobjectin
a conceptually-flat,balanced,binary tree, the logical or-
ganizationof thatdatainto structuralunits intuitive to the
applicationuser is revealedby an accompanying, n-ary
tree of identificationobjects. The revelationof informa-
tion throughstructurebringswith it the consequencethat
many, if not all, PIA transactionaloperationsinvolve sets
of objectsratherthansingleobjects.

In migrating the Project Integration Architecture to the
CommonObject RequestBroker Architecutre(CORBA)
environment of distributed objects, the complexities of
multi-accessoroperationsarebroughtinto thedesignmix.
While onemight wish to serve the objectsof a particular

�

�

�

�

�

���	��
	����������

���	��
	����������

Figure1.1: WhichSemaphorefor IntersectingSets?

PIA applicationinstanceto a singleclient, nothingin the
basicCORBA specificationallows for sucha restriction.
Thus,it is appropriate,if perhapsnot explicitly necessary,
to provide for thelockingof suchtransactionalobjectsets.

A simple, mutual-exclusion semaphorelocking capabil-
ity, as is commonlyprovided in many software products
and environments,is not appropriateto the task of lock-
ing multiple objects.Suchsinglelockscontrolsingleenti-

1



ties. Thus,for a singlesemaphoreto beeffective, it would
haveto beunderstoodasprotectingthesinglesetof objects
to manipulatedin a transaction;however, sincethatobject
setis dynamicallydeterminedat thetime thetransactionis
proposed,suchasinglelock cannotbepre-establishedand
recognizedby themultiple clientswhich might interfer in
sucha transaction.Further, sinceanotherclient’s interfer-
encemight involve a distinctobjectsetnot identicalto the
first set,yet neverthelessintersectingthat first locked set,
theefficacy of thesingle,semaphore-like lock approachis
clearlylacking.This is illustratedin Figure1.1.

�

�

�

�

�

���! #"%$�&('

���! #"%$�&*)

Figure 1.2: Client TransactionsCompetefor Distributed
Locks

To control dynamicallyselectedsetsof objects,it is nec-
essaryto provide a matchingsetof locks,eachlock dedi-
catedto a particularobject. By having a distinct, identifi-
ablelock associatedwith eachindivisible object,compet-
ing transactionsmay contendwith eachother for control
of theindividual objectsnecessaryto make thetransaction
go forward, as is depictedin Figure1.2. Additionally, it
is desirablefor suchlocks to provide not merelya yes/no
responseto anacross-the-boardusagerequest,but agraded
setof accesslevelsto thecontrolledobjectsothattransac-
tionswith compatibleneeds(in particular, readaccess)may
progresstogetherwhile assuringthattransactionswith con-
flicting requirements(in particular, write or deleteaccess)
areexcluded.

Anotherdesirableaspectof a lock mechanismis that it be
distributed,evenaswasimplicitly suggestedin Figure1.2.
This is, perhaps,moreclearly seenwhenthe statementis
examinedfrom thecontrapositive view: a centralizedlock
managementsystemis very undesirable.In a centralized
locksystem,therateatwhichtransactionscanproceedvery
rapidly becomesdeterminedby the rateat which the cen-
tralizedlock systemcanprocesslock operations.By dis-
tributing lock operations,the operationalresourcesof the

transactionmay be broughtto bearupon the lock opera-
tion, too. Thus,as transactionalresourcesgrow (through
multiply-threadedserversandmulti-server environments),
lock processingresoucesgrow proportionately.

+�,.-�/1032�4

+�,.-�/1032�56

7

Figure1.3: A SimpleDeadlockCondition

With the introductionof multiple-lock environments,the
possibilityof deadlock,anirresolvableconflict in thehold-
ing andrequestingof locksbetweentwo or moreclients,is
introducedaswell. In its simplestform (depictedin Figure
1.3),adeadlockoccurswhenclientA holdsalockonobject
1 anddesiresa lock onobject2 while clientB holdsa lock
on object2 anddesiresof lock on item 1. As theexample
suggests,the detectionof deadlocksis relatively straight-
forward;however, it, in turn,bringswith it theproblemof
iterationupona dynamicallychangingset,in this case,the
setof lock holders.Furtheringtheexample,theremaybe
a client C holding a lock on object2 with no designson
object1. Thetransactionof clientC mayrunto completion
andreleasethelock on object2 while client A is perform-
ing its evaluationof thedeadlockcondition.

Reviewing all of the above, distributed lock management
bringswith it a seriesof interestingproblems. Eachare
amenableto solutionand,while eachsolutionis no partic-
ular actof genius,theeffort asa wholemaybeinstructive
asto theissuesthatmustbeconfrontedin providing mean-
ingful locksin adistributed,structural,objectenvironment.

2 The Solution

Thesolutionof thelock managementproblemposedabove
involves three interfacesin the CORBA environment: a
lock, a lock context, anda positionaliterator. As shown
in Figure2.1,an instanceof the lock interface,GLock, is
attachedto a lockableinterfaceinstance. A lock context
associatedwith aclient is suppliedto thelockableinstance
to provide a context within which a lock may be held. A
positionaliteratorinstance(notshown in thefigure)is cre-
atedinternally by the lock context and is initialized and
maintainedby thelock in theevent thatanevaluationof a
potentialdeadlockconditionmustbemade.

2



8�9.:�;1<3=

>@?*ACB1D�8�=	E

?*ACB1D�F1GH9.;JIKG�LM;1B1=

>@?*ACB1D

Figure 2.1: Relationshipof Principal Distributed Lock
Components

2.1 The Lock and Lock Context

The lock interface, GLock in this implementation,pro-
vides, as would be expected,the basic locking function.
That is, it provides a decisionto a requesterwhetheror
not, at thepresenttime, a requestedform of accesscanbe
granted.

Thisdecisionform of lock managementis in oppositionto
thealternativeblockingform in whichaprocessrequesting
a resourcelock is suspendeduntil the lock is grantedor a
deadlockexception(of whateverform) is thrown. Here,the
GLock servicerespondsto a lock requestnot by blocking
the requesteruntil the lock canbe granted,but by simply
issuinga yes-or-no decision.Thedecisionform wasnec-
essarybecauseof the lack of any generic,cross-platform
capacityfor suspendinganexecutingthreadandqueuingit
onsomesubsequentlock event.

TheGLock interface,asit iscurrentlyimplemented,recog-
nizessix locking levels: Release,Reference,Read,Write,
Execute,andDelete.

1. The holding of a Releaselock grants,paradoxically,
a completedisassociationof the requesterfrom the
lockableentity. It is introducedinto the lock design
for the clarity of the implementation.By its nature,
a Releaselock may be obtainedby any requesterat
any time. Thus,a new requestermaybeimmediately
grantedaReleaselock and,asaresult,thelock grant-
ing process(andlock releasingprocess)maybetrans-
formedin all casesto a lock conversionprocess.

2. Theholdingof aReferencelockgrantsto therequester
the right to expect the lockableentity to continueto

exist. Thelockedentitymayberead,written,andoth-
erwisechangeits stateasaresultof operationscarried
out by otherclientsobtainingappropriatelocks, but
it maynot ceaseto exist underthe operationsappro-
priate to the grantingof a Deletelock. Multiple re-
questersmay hold this lock simultaneouslyand this
lock may be held in the presenceof other Release,
Read,Write, andExecutelocks.

3. Theholdingof a Readlock grantstheright to there-
questerto obtain,but notchange,thestateof thelock-
ableentity. Multiple requestersmayhold this lock si-
multaneouslyand this lock may be held in the pre-
senseof oneor moreReferencelocks; however, this
lock may not be held in the presenceof any Write,
Execute,or Deletelock.

4. Theholdingof a Write lock grantstheright to there-
questerto obtain,modify, andor set the stateof the
lockableentity. At most one requestermay hold a
Write lock at a given time andthe lock may only be
heldin theabsenseof any andall otherRead,Execute,
andDeletelocks.

5. Theholdingof anExecutelock grantstheright to the
requesterto exercisethefunctionalityof the lockable
entity. At mostonerequestermayholdanExecutlock
at a given time andthe lock mayonly be held in the
absenseof any andall otherRead,Write, andDelete
locks.

6. The holding of a Deletelock grantsthe right to the
requesterto remove from operationand discard(in
whateversense)thelockableentity. Subsequentto the
operationspermittedby aDeletelock, theexpectation
is that the lockableentity will no longerexist in any
meaningful,operationalsense.At mostonerequester
may hold a Deletelock at a given time andthe lock
mayonly be held in the absenseof any andall other
Reference,Read,Write, andExecutelocks.

Largely becauseof the Releaselock device, the lock re-
questprocesscanbeimplemented,in its essense,asa sim-
plefinite statemachinebaseduponthefollowing statevari-
ables: the currentlock grantedto the requester, the lock
requestedby therequester, andthemostconstraininglock
heldon the GLock instanceby anothercontext. With the
additionof a few amenitiessuchastheuseof a mutualex-
clusionsemaphoreto protecttheinternalsof theparticular
GLock instance,the unconditionalgrantingof a Release
locks to requesterswith no currentlock, andthe discard-
ing of any grantedReleaselocks at the conclusionof the
lock process,thebasicfunctionof theGLock interfaceis
complete.

3



A small further adjustmentexists in the basic lock pro-
cess.Becauseof the multiple-reader, single-writerproto-
col specifiedabove, it is possiblefor multiple, sequential
Readlocksto blockaWrite lock for anindefiniteperiodof
time, even thoughno fundamentalwrite inhibition exists.
To adjustfor this problem,the implementedGLock inter-
facewill suspendthe grantingof Readlocks for a short
periodof time after the refusingof a Write lock request.
This is donein theexpectationthatno requesterwill sim-
ply make onerequestandgive up. Instead,it is expected
that theWrite lock requestwill berepeatedshortlyduring
theperiodin whichReadlocksarebeingdeclinedandthat,
during that period,existing Readlocks will be completed
andreleased,allowing theWrite lock requestto begranted.
It is furthersupposedthatthewrite operationwill complete
shortlyandthatrefusedReadlockswill begrantedonsub-
sequentrequest.

It shouldbe notedexplicitly for the purposesof later dis-
cussionthatthelock instancemaintainsamapof lock con-
texts holding locks on it. This map includesthe level of
lock eachsuchcontext holds.

The lock context interface,GLockCtx, provides the op-
eratingcontext in which the set of locks necessaryfor a
single,logical transactionis held. Typically, a singlelock
context is utilizedby aclientto holdthelocksof thatclient.
In termsof basicfunction, the lock context is not particu-
larly complicated.

The lock context handlesthe mechanicsof requestinga
lock on a particularGLock lock instance,implementing
theretryprotocolmentionedabovewhenlocksarerefused.
Thus,whenthe lock context reportsthat a lock hasbeen
refused,that lock hasalreadybeenrequestedanddenied
severaltimes.

Also the lock context providesa programmaticallyuseful
lock-nestingconcept.A particularoperationmayrequesta
lock nestandobtainmultiple lockswithin it. Whentheop-
erationis complete,it mayrely on theunnestingoperation
of the lock context to releasethoselocks to their previous
state. Througha programmaticslight-of-hand,this nest-
ing capabilitymaybeusedto assurethereleaseof obtained
locksevenwhenexceptionsarethrown pasttheoperational
scopein which thelockswereobtained.

2.2 Deadlock Detection

Whena lock context repeatedlyis refuseda lock it is re-
questing,it is of interestto determinewhethersucha re-
fusal representsa deadlockcondition(asdepictedin Fig-

ure1.3onpage2), or whetherit is theresultof somemore
indefinite(andprobablyirresolvable)condition. This task
falls (in this implementation)to thelock context interface,
thoughthefacilitiesof thelock interfaceprovidekey infor-
mationin thisoperation,andit is in thatlock context thata
deadlockdeclarationis made.

It is true that, if client A is deadlocked becauseof client
B, client B is then also deadlocked becauseof client A;
however, theapproachimplementedhereleavesit to each
client’s lock context to detectthatreciprocaltruthfor itself.
Thus, it may be that if client A detectsand resolves the
deadlockwith client B, client B may not ever necessarily
identify thatthereciprocaldeadlockconditionexisted.

As mentionedpreviously, the simplestform of deadlock
occurswhenclientA holdsa lock onobject1 andrequests
a lock on object2 while client B holdsa lock on object2
while requestinga lock onobject1. Theimplementedlock
systemrefinesthis basicexampleto include the concept
of conflictinglocksbaseduponthemultiple-reader/single-
writer protocolthesystemimplements.Clearly, if clientsA
andB areholdingandrequestingReadlocks,no deadlock
conditionexists.

N�O.P�Q1R3S�T

N�O.P�Q1R3S�UV

V�V
V1W

V1X

W

N�O.P�Q1R3SYN

Figure2.2: Multiple DirectDeadlockConditions

The next stepin wideningthe deadlockdetectionprocess
is to recognize,asdepictedin Figure2.2, that theremay
bemultipleholdersof conflictinglockson theobjectupon
which a particularclient desiresa lock. That is, client A
holding locks on objects1, 11, 12, and13 anddesiringa
lock on object2 may find that both clientsB andC hold
conflicting locks on object2 andeitheroneof themmay
causeadeadlockby requestinga lock onany of theobjects
lockedby clientA. Additionally, it is importantto notethat
thenatureof theconflictsbetweenclientA andclientB and
betweenclientA andclientC neednotbethesame.

While all of this is alreadyaninterestingalgorithmicexer-
cise,it is still not a sufficient definitionof a deadlockcon-

4



Z�[.\�]1^3_�`

a

b
Z�[.\�]1^3_�c

d

Z�[.\�]1^3_YZ

e

Z�[.\�]1^3_�f

Figure2.3: A Chainof DeadlockConditions

dition. As shown in Figure2.3,deadlockcanresultfrom a
chainof locksheldandrequested.Thatis, clientA holdsa
lock onobject1 andrequestsalock onobject2 while client
B holdsa conflicting lock on object2 andrequestsa lock
onobject3. MeanwhileclientC holdsaconflictinglock on
object3 andrequestsa lock on object4, andso on, until,
at last,someclient X holdsa conflictinglock on anobject
in thechainandrequestsa lock on object1, which cannot
be obtainedbecauseclient A holdsthe orginal conflicting
lock onobject1.

In quasi-technicalterms,let a directedgraphbeformedin
which the initial nodeis the lock context performingthe
deadlockanalysisand, for eachsuchnodeof the graph,
the immediatesuccessornodesarethosenodesholding a
conflicting lock on the lock instanceof which the subject
nodeis requestinga lock. A deadlockthenexists if that
graphprovesto becyclic at theinitial node.

As notedpreviously, it is to facilitatethis computationthat
lock instancesretaina mapof lock contexts holdinglocks
on thepresentinglock instanceandrecordthekind of lock
heldby eachsuchlock context. Thisis exactlytheinforma-
tion requiredfor the deadlockcomputation.Further, lock
contextsaresortedby lock level sothatthesetof lock con-
texts holding conflicting locks with a specifiedlock level
maybequickly identified.

The resolutionof the deadlockconditionis not a particu-
lar interestin this paper. Currently, theexpectationis that
deadlockswill be resolved by releasingand re-obtaining
all of a client’s locks. Theoverall projectfrom which this

work is reportedhasnot reachedthepointat which this is-
suehasbeendecidedand,indeed,it maybe thatmultiple
resolutionstrategiesarepossible.

2.3 Set Iteration

The implementationof the deadlockalgorithm is, itself,
reasonablystraightforward;however, oneissuedoescome
up: thesetof lock holdersis, itself, notconstantwith time.
Asaparticularclientmakesitswaythroughthecalculation,
otherclientsmayeitherreleaseor obtainlocksrelevantor
otherwise.A significantelementof theimplementationis,
thus,not simply implementingthe algorithm,but making
thatalgorithmtolerantof thefact that theproblemmaybe
changingas it is computed. In particular, anotherclient
mayalreadyhave identifiedits reciprocaldeadlockcondi-
tion andbe in the act of releasinglocks as its resolution
method.

This is, in fact, a particularcaseof a generalproblemin
multi-accessorenvironments: iterationsupon a set must
betolerantof thefact that thesetbeingiterateduponmay
changeduring thecourseof iteration. Becauseof this dy-
namicism,direct iteration upon structuressuchas linked
lists, directedgraphs,and the like is inadvisable. A ref-
erenceheld by a client to the next elementof an iteration
maybecomeinvalid dueto theoperationof anotherclient
upontheset. For examplein a linked list, shoulda linked
elementregardedas the next elementof traversalby one
client be removed from the list by anotherclient, the first
clientwill havethenastyproblemnotonly of having anext
referenceto an elementthat no longerexists, but alsoof
having to re-establishits currentoperatingpositionin that
list.

A solution to this problemis, of course,possibleby the
simple expedient of locking up the entire structureon
which the iterationis to occur, perhapsthroughsomepro-
tocol of obtaininga Readlock on a headeror controller
element. The difficulty with this solutionis exactly what
it does: it locks up the entirestructurefor the durationof
the iteration. If oneassumesthat iterative processeswill
beinherentlyfast,thatmultiple iteratorsonagivensetwill
be generallyrare,or that suchiterationswill be generally
disruptive of simultaneousoperationsanyway, thensucha
policy is, perhaps,not a badchoice. On the otherhand,
if any or all of theoppositesaregenerallytrue, thenlock-
ing upentireiterativestructuresfor iterative traversalsvery
quickly leadsto oneiteratorblockingall othersfor thedu-
rationof its operation.

To solve this problem,somethingcalleda positionalitera-

5



g*h�i�j�kml1n1o*l1p

qKr.l1sJl1t3j�u

qKr.l1sJl1t3jwv

qKr.l1sJl1t3jYx

qKr.l1sJl1t3jYy
z@{�| i�h�j}~o*l1t3j�qKr3u

}~o*l1t3j�qKr�v

}~o*l1t3j�qKr�x

}~o*l1t3j�qKr�y

z@{�| i�h�j}~o*l1t3j�qKr3u

}~o*l1t3j�qKr�v

}~o*l1t3j�qKr�x

}~o*l1t3j�qKr�y

Figure2.4: An InitializedGPosit Iterator

tor hasbeendevisedin theform of theGPosit interface.A
privateinstanceof this interfaceis obtainedfor eachclient
iteration.TheGPosit instanceis initializedwith theidenti-
ficationsof eachelementof theiterative set,asdepictedin
Figure2.4. This initializationdoes,indeed,employ theso-
lution above of locking theentireiterative setfor thedura-
tion of thatinitialization;however, it is hoped(if notproven
by practicalexperience)thatthetraversalfor thepurposeof
identificationonly will bereliably fasterthantraversalfor
the real purposeof iterative operation,whatever that real
computationalpurposemight be. For thedeadlockopera-
tion, this meansthat the lock instancewill (quickly) scan
all of the lock contexts holding a conflicting lock on that
lock instanceandloadtheir identificationsinto theGPosit
iteratorsuppliedby the client’s lock context deadlockal-
gorithm.Becauseof theinternalarrangementsmadein the
lock interface,this processproceedswith considerableef-
ficiency.

Thenext key elementof thissetiterationschemeis that,as
a final stepof iteratorinitialization, the iteratorinstanceis
madea primative successorof the interfaceinstancecon-
trolling additionsto andremovalsfrom theiterative set.In
the caseof the deadlockalgorithm, this meansthat each
GLock instanceinitializing an iterator makes that itera-
tor a successorof itself and,in this application,alsonotes
the lock level with which the iteratorwasconcerned.In
other iterative sets,this requirementto be a successorof
a controlling instancedoesplacea restrictionupon such
traversablestructures:somesingle instancemust be that
controlling,cognizantpoint. Thus,a linked list cannotbe
regardedasa perfectlycircular list in which any element
may be momentarilyregardedas the head. Instead,one
elementmustact asthe headin all casesso that a central
pointof controlfor iterativeoperationscanbemaintained.

Having received an iterator, a client may then obtain el-
ementidentificationsfrom that iteratorat its leisure,per-

forming such protractedoperationsas may be its wont.
Provision is madefor forward andbackward traversalsof
the set,the identificationof setelementsin variousways,
andfor definitive detectionof theend-of-setcondition.

Whentheactualiterativesetchanges,it is theresponsiblity
of thecentralpoint of control to locateeachGPosit itera-
tive setsuccessorandnotify it of the change.In the case
of the deadlockoperation,this meansthat the grantingor
releasingof a conflicting lock resultsin thenotificationof
thepositionaliteratorof that changein lock status.(Note
that this notificationprocessis sensitive to the lock level
associatedwith eachiterationandresultsin actualnotifica-
tion of the iteratoronly whenthat lock event is of interest
to thatdeadlockoperation.)

By encapsulatingthe iterative identificationoperationin a
separateinterfaceinstance,a key differencein the treat-
mentof iterative seteventsis possible.Theactualset,the
linked list structureor the mapof contexts holding locks,
maybeappropriatelychangedin responseto theevent,just
asit shouldbe.Meanwhile,thenotifiedGPosit iteratorin-
stancemakescrucially differentadjustments.In theevent
of additionto the setasshown in Figure2.5 (which con-
tinuesthe exampleof Figure2.4 on page6), not only are
the identificationsof new elementsaddedat the appropri-
atepoint,but theidentificationof eachnew elementis also
retainedfor specialconsiderationat thetimeof thenext it-
erativestepby theclient. But themostimportantdifference
is uponaremoval eventasshown in theexamplecontinued
by Figure2.6: the identificationof the removed element
is not actually itself removed, but only marked ashaving
beenremoved. Thus,at thenext iterative step,shouldthat
removedelementalsobethenext elementof the iteration,
the positionin the set is not lost. It is only necessaryfor
theiterationto recognizetheremovedstatusof thenext el-
ementidentificationand stepover it beforereportingthe
(new) next positionto theclient.

6



g*h�i�j�kml1n1o*l1p

qKr.l1sJl1t3j�u

qKr.l1sJl1t3j��

qKr.l1sJl1t3jwv

qKr.l1sJl1t3jYx

qKr.l1sJl1t3jY�

qKr.l1sJl1t3jYy

z@{�| i�h�j}~o*l1t3j�qKr3u

}~o*l1t3j�qKr3�

}~o*l1t3j�qKr�v

}~o*l1t3j�qKr�x

}~o*l1t3j�qKr��

}~o*l1t3j�qKr�y

z@{�| i�h�j}~o*l1t3j�qKr3u

}~o*l1t3j�qKr3�

}~o*l1t3j�qKr�v

}~o*l1t3j�qKr�x

}~o*l1t3j�qKr��

}~o*l1t3j�qKr�y

���%���

�������

�������

���%�

Figure2.5: Effectof SetAdditionsonanOperatingIterator

g*h�i�j�kml1n1o*l1p

qKr.l1sJl1t3j�u

qKr.l1sJl1t3j��

qKr.l1sJl1t3jwv

qKr.l1sJl1t3jY�

qKr.l1sJl1t3jYy

z@{�| i�h�j}~o*l1t3j�qKr3u

}~o*l1t3j�qKr3�

}~o*l1t3j�qKr�v

}~o*l1t3j�qKr�x

}~o*l1t3j�qKr��

}~o*l1t3j�qKr�y

z@{�| i�h�j}~o*l1t3j�qKr3u

}~o*l1t3j�qKr3�

}~o*l1t3j�qKr�v

}~o*l1t3j�qKr�x

}~o*l1t3j�qKr��

}~o*l1t3j�qKr�y

���%�������C�%�������%�

�������

�������

�������

Figure2.6: Effectof aRemoval from aSetonanOperatingIterator

7



The treatmentof the elementadditionevent by the posi-
tional iteratorbringson new possibilities. Generally, set
iterationis consideredan orderedprocess,proceedingfor
exampleforward througha linked list; however, with the
positionaliteratorit is possibleto considerthepresenseof
newly addedsetelementsat the time of the next iterative
step. If suchelementsarestill furtheron from thepresent
positionof the iteration (as identificationelement5 is in
Figure2.5onpage7), thenthey maybesimply left to con-
siderationin their properorder;however, shouldthe itera-
tion alreadyhavepassedthepositionof oneor morenewly
addedelements(as is the casefor identificationelement
4 in Figure2.5), it is possible(optionally) to backthe it-
erationup to thepoint of theearliestsuchaddedelement.
Sincetheiterativesetinterfacekeepstrackof bothelements
doneandelementsremoved,suchbackingup doesnot re-
peatiterative steps,but merelymakesthe iterationunpre-
dictablynon-monotonicin its nature.

In applicationto the caseof deadlockdetection,a newly
grantedlock introducinga new, alternatedeadlockcon-
dition canbe detecteddynamicallyas it occurs. Alterna-
tively, shoulda reciprocaldeadlockconditionbe preemp-
tively curedby the releasingof the locks held by another
client, the releaseof thoselocks will alsobe dynamically
notedandavoid the finding of a deadlockconditionthat,
in fact, no longer exists. The key point, though, is that
while a particularclient context is involved in the poten-
tially lengthy processof deadlockassessment,lock opera-
tions for locks involved in that issuecancontinue. Thus,
other clients who in fact come into no deadlocked con-
tentionwith the assessingclient may continuelock trans-
actionsandperformusefulwork.

3 Additional Commentary

Whentheiterative setis internallyheld,asit is in thecase
of the GLock interface,somesolution in the mannerof
the positionaliterator is mandatoryto exposethat which
is otherwiseconcealed;however, in the caseof exposed
iterative structure,as the linked list usedin the examples
above, sucha solutionis not required. Direct iterationof
suchexposedstructuresis clearlypossible.In thecaseof a
linkedlist, thesimpleexpedientof maintainingaReadlock
on the current iteration item will assurethat someother
accessordoesnot succeedin removing that item from the
list.

Despitethe fact that the positionaliterator is not strictly
necessaryin thecaseof exposedstructures,thecurrentex-
pectationis that it will form the basisof the standardit-
erative mechanismin the CORBA-served PIA migration.

The following reasonsareput forward in supportof this
outlook.

1. Theuseof thepositionaliteratorinterfacewill bring,
ipso facto, unity to the iterative form. In so doing,
codingwill be morepredictableandlesssensitive to
the structuralform supportingthe operation. Later
changesin structuralform dueto software revisions
andthelike will have lessimpact.

2. The introductionof derived positionaliterator inter-
faceformsprovidestheopportunityto addfurtherin-
ternal iterative context for thosestructuralforms for
which it is necessarywithout the necessityof dis-
ruptingthebasiciterative codingform establishedby
the positionaliterator interface. Suchderived forms
might, indeed,provide direct iterationupona struc-
turewithoutalteringthebasiccodingform.

3. The ability of the positional iterator to back up to
newly addedsetelementsis ausefulfeaturenotavail-
able to direct iterations. Providing an iterative set
eventnotificationto directiterationcodewould bean
extremelycomplicatedtask.

4 Concluding Remarks

A solution to the problem of distributed lock manage-
ment,deadlockdetection,andtheiterationondynamicsets
neededto solve the deadlockdetectionproblemhasbeen
presented.Thepresentedsolutionis neitherperfectnor the
only solutionpossible;however, the work is presentedas
neitherof those,but only asa workablesolutionto a prac-
tical problem. It mustbe rememberedthat in any multi-
accessor, asynchronousoperatingenvironment, solutions
alwaysrepresentanengineeringtradeoff betweenflexibil-
ity andperfection.

References

[1] William HenryJones.ProjectIntegrationArchitecture:
ApplicationArchitecture.Draftpaperavailableoncen-
tral PIA website,March1999.

8


