Project Integration Ar chitecture:
Application Architecture

Dr. Wlliam HenryJones
NationalAeronauticandSpaceAdministration
JohnH. GlennResearciCenterat Lewis Field

Cleveland,OH 44135
216-433-5862
William.H.Jones@grc.nasaxyo

X00.00 22 Cct 1998
X00.01 08 Dec 1998
X00.02 29 Mar 1999
X00.03 24 Aug 2000
X00.04 28 Aug 2000
X00.05 19 Sep 2000
X00.06 21 Jun 2002
Keywords:

PIA; PRICE;CORRA; KnowledgeManagementApplicationIntegration;
TechnicallntegrationTechnologiesSemantidencapsulationSelf-Revelation;

ABSTRACT: TheProject Integration Architectue (P1A) implementsa flexible, object-orientedwrappingarchitectue
which encapsulateall of theinformationassociatedvith engineeringapplications. Thearchitectue allowsthe progress
of a projectto betrackedanddocumentedh its entirety. Additionally by bringingall of theinformationsourcesandsinks
of a projectinto a singlearchitectuial spacetheability to transportinformationbetweerthoseapplicationsis enabled.

1 Intr oduction

In the late 19805, the Integrated CFD and Experiments
(ICE) project[1, 2] wascarriedout with the goal of pro-
viding a single, graphicaluserinterface (GUI) and data
managemengrvironmentfor a variety of CFD codesand
relatedexperimentaldata. The intent of the ICE project
was to easethe difficulties of interactingwith and inter-
mingling thesedisparatanformationsources.The project
wasa succes®n a researctbasis;however, dueto various
technicallimitations (for instance the difficulty of devel-
oping object-orientedconstructsin a non-object-oriented
language)and the loss of key personnel,it was deemed
inappropriateto advancethe effort beyond the successes
achieved to that point. Thus, a re-engineeringof the
project was initiated in 1996. The effort was first re-
namedPortable,Redesignedntegrated CFD and Exper
ments(PRICE) projectandthen,asthe wide applicability
of the conceptsameto be appreciatedProjectintegration
Architecture(PI1A).

Two key re-engineeringlecisionswere made: the C lan-

guageusedby thelCE projectwouldbeabandoneth favor
of the now-available C++ object-orientedxtensionto that
languageandthe graphicaluserinterfacewould be elimi-

natedasaproductelemenbf theproject. Thefirst decision
wasbut a matterof circumstanceiadC++ beenavailable
to the original ICE teamat projectoutset,it would almost
certainlyhave beenselectedor use. The seconddecision,
to remove the GUI from the projectproductset,wastaken
only after a period of time andreflectedtwo truths: first,

thata cross-platformGUI with the scopeof functionality
ervisionedwasfar beyondtheresourcesf the PIA project
and, secondthat sucha GUI wasduplicative of otheref-

forts within the Agengy.

During the intervening years, work has proceededand
an operationaldemonstratiorof the PIA projecthasbeen
achiered. The currenteffort has not achieved the com-
pleterangeof functionality developedin the original ICE;

however, thearchitecturadlividing line hasbeenmorethor-

oughlydefinedandadherencéo it hasbeenmorerigorous.
Portability of the architecture not only acrossplatforms,
but to distributed object architectureshas beendemon-



strated.This pathaheads moreclearlydefined.

2 Goals

Putin simpleterms,the basicgoal of the PIA effort is to
capturein its entiretythe usageof ary technicalapplica-
tion in a single,useful,well-definedform. This capturing
is not limited to the simpleoutputof the applicationitself,
but furtherincludescoordinatingnformationandthetech-
nologistsown insightsinto themeaningof theinformation.

The natureof a ‘technical application’is, by projectde-
sign,nehulus: it is consideredo beary computefrealized
‘thing’ which provides or generatesuseful information
abouta project. This may include geometrydefinitions
extractedfrom ComputerAided Design(CAD) programs,
geometryor otherspecificationglerived from designcode
predictionsyesultsof experimentainvestigations,analysis
andsimulation,andmore.

By bringingall of theinformationof the technicalprocess
into one architecturakdesign,a numberof adwvantagesare
expectedo (and,it is believed,do) accrue.

1. Theinformationaboutthe information(referredto in
someconceptionsas the meta-data)s encapsulated
with theinformationitself. Informationaboutthecon-
ditionsatwhichtheinformationwasgeneratedor the
meritof theinformation,is nolongerseparatelgtored
in atechnologiss unlocatablgournal.

2. A commontool setfor the useof applicationss pos-
sible. A single GUI with a singlelook-and-feelcan
be devisedso asto reducethe technologiss learning
cune for additionalapplicationgo thatsolelyrelated
to theapplication.Thetechnologist habitsof explor-
ing aproblemcannow bethe samefrom oneapplica-
tion to thenext.

3. Commonbrowsersandsearchenginesmaybeimple-
mentedto perusethe supply of informationin detail
andcorvertit into informationin generafor endcon-
sumerf thatknowledge.

4. By wrappingevery applicationin awell-definedarch-
itecture,it is now possibleto codeinto suchapplica-
tionsthe knowledgeto acquireinformationautomat-
ically from otherapplications.Becauseof the archi-
tecturaldesign,suchcodedknowledgeis basedupon
the kind of informationdesired ratherthanuponthe
applicationgeneratinghatkind of information.

5. Wrappedapplicationscoded to obtain information
baseduponits kind may then be combinedin a di-

rected applicationgraph to build, in effect, super
applications. Applicationsof differing fidelities and
disciplinesmay be mixed togetheras appropriateto
theproject.

6. The building of superapplicationsenablesproject-
wide optimization and/or sensitvity analysisto be
conducted.

3 SelfRevelation

Perhapghe key technologythat enablesthe goalsabove
is that of self revelation,the ability of a thing to revealto
othersits own nature.Sucha capacitycanbeimplemented
by mary differenttechniqueshowever, this capacityis a
very naturalelementf object-orientedechnology

The concepibof selfrevelationasdiscussedn thetwo sec-
tions below canbe very quickly understoody the simple
analogyof meetinga new personat a party One of the

naturalthingsto do in sucha situationis to askwhat the

persondoes;if that personanswersfor example,thatshe
is amedicaldoctor anentirecoursemaybesetbasedipon
theinquisitor's needs.If the inquisitorhasa medicalcon-
dition for which he desiresa free opinion, it may be ap-

propriateto inquire furtherasto the doctor’s specialty On

the otherhand,if theinquisitor hasnot thefirst interestin

medicaltopics,it maybetimeto discretelyspill something
andhurry off for anapkin.

To seethe importanceof this concept,considerthe anal-
ogousalternatve: whatif onedid not have the ability to
inquire of new peoplemet at a party? In that event one
would be either non-functionalas a party animal, or par
tieswould have to beincrediblyrigid in their formulation
so asto meetthe practicalbreadthof programmedsxpec-
tationin the participants.Eitherno corversationsouldbe
permittedbecaus¢heability to predicttherelevancewould
beentirelylacking,or all guest-to-gueshteractionsvould
have to be predetermine@nd pre-scriptedso asto assure
that one talked with othersaboutrelevant subjects.In ei-
thercasealackof selfrevelationwould bequickly seeras
truly confining.

3.1 SelfRevelation of Kind

Therevelationof kind identifiesthe essentiatharacteiof
therevealingentity. In the object-orientedmplementation
of PIA, this setsexpectationsasto the kind of informa-
tion andfunctionality a particularobjecthas: it is a free-
streamMach numberparameteror it is an operationthat
may or may not be enabledand, if enabledwill execute



anddo somethingor it is anapplicationoffering parame-
ters,identifications,and operationspr it is any oneof an

almostunlimited variety of otherthings. The key feature
is that,uponfinding outits kind, preciseexpectationsasto

whatit hasandwhatit is willing to do maybe confidently
inferred.

The revelation of kind is effectedin two ways: an inter

rogative form anda declaratve form. In the interrogative
form, a predicateof kind is posedto the objectandeither
affirmed or denied. In the declaratve form, aninquiry is

madeof the objectand a simple codedvalue s returned
declaringthetypeof the object.

Becauseof the derivational natureof objecttechnology
both of theserevelational forms supportthe conceptof
depth. Thatis, an objectmay be of a particularkind at
somederivationaldepthbut, becausef furtherderivation,
may not appearto be of that kind on its surface. The
examinationof suchlayersof meaningis referredto in
the PIA nomenclatureas ecdysiasticahnalysis(from the
Greekekdysisgkdyeinto getoutof, strip off).

3.2 SelfRevelation of Content

Therevelationof contentidentifiesthe extentto which ex-
pectationsbasedupon the revelation of kind are, in fact,
fulfilled. Here,the revealedkind of an objectallows one
to expectthatit hascontentof a given nature,but that na-
turemayyetbenehulusby design,or maybevariablein its
amount,or maybevariablein otherspecifiedvays.

Consideffor exampleanapplicationobject.As will bedis-

cussedshortly anapplicationobjectis known to have a set
of operationseencapsulateéth operationobjects;however,

by specificationjt is not known whetheror not thereac-
tually are ary operationobjects(thatis, the setcould be
null), norif therearearny suchoperationobjects,precisely
which kindswill be present.Codeconsuminganapplica-
tion objectmustdealwith it on that basis;that while an
operationobjectsetis defined,it may be emptyand, if it

is not empty that furtherinterrogation of individual oper

ation objectswill be necessaryo determinethe natureof

theoperationsvailable.

4 Application Architecture

Building uponthe conceptof self revelation, an applica-
tion architectureasdepictedn Figure4.1hasbeendevised.
While the structuremay, at first, appeardaunting,it is, in
fact,aquite orderlythingwhich maybe easilyunderstood.

An applicationpresentedn theimageof PIA beginswith
a centralapplicationobject,labeledPacAppl in the upper
centerof thefigure,whichis theroot structurefrom which
all further componentemanate. Four principal compo-
nentsarecurrentlyprovidedby the PacAppl object:

1. A setof operationghat the applicationis willing to
perform,

2. A massof datawhich the applicationcurrently con-
tains,

3. A structureby which the containeddatais identified,
and

4. An ecdysiasticalsorting of the information-bearing
objectsin theapplication.

Thefirst threecomponentsiredepictedn thefigurein the
upperleft, theuppercentralto lower left diagonal,andthe
centralright, respectiely. Thefourth components notde-
picteddueto its structuralcompleity. Eachof thesecom-
ponentss takenupin its own subsectiorbelow.

4.1 Application Components
4.1.1 Parameter Configurations

Thearchitecturabiscussiorbeginswith the holdersof pa-
rameters(the objectswhich hold applicationdata of all
forms)depictedasthestructurgproceedingdo thelowerleft
fromthePacAppl object. Theseobjects)abeledPacCfgin
thefigure,arecalled‘configurations’.If oneconsiderghe
aggreateof all datain anapplication(bothinputandout-
put of all typesandforms)to constitutean n-dimensional
space(where,admittedly n canbe quite a large number),
thena parameteconfiguratioris consideredo identify ex-
actlyonepointin thatdimensionakpace Putlessformally,
aconfigurations simply a distinctsetof input dataand(as
appropriate}he outputdatait givesriseto.

Becauseof this definition, a changeddata value consti-
tutesa new dataconfigurationand,commonly resultsin a
new PacCfg object. Becausehe datasetof atypical PIA-

wrappedapplicationis expectedo belarge,it wasdecided
thatsimplereplicationof theentiredataseteachtime anew

configurationoccurredwould be wasteful. Thus, as de-
pictedin thefigure,PacCfgobjectsarearrangedn ann-ary
treeandthe PacAppl objectidentifiesthe PacCfgactingas
the patriarchof thattree. DescendenPacCfg objectsare
consideredo inherit missingdatacomponentgrom their
ancestratonfigurationsthuseliminatingthe needto repli-

cateunaltereddata.
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Figure4.1: PIA ApplicationArchitecture

The potentialoperationof this architecturecanbe seenin

the figure. The PacCfg objectacting asthe patriarchof

the configurationtree (thatis, the PacCfg objectdirectly

pointedto by the PacAppl object)will often containthe

fully populateddata set of the problem being explored.
In the figure this would be the parametebjectslabeled
A/Inl/Cfd throughF/Noz/Cfd. DescendenPacCfg objects
would containonly the parameteiobjectsbeing changed
in the courseof researchinvestigation. In the figure, the

firsttwo directdescendentsf the patriarchchangeonly the

E/Duc/Cfdparametepbjectwhile the third directdescen-
dent also changeghe F/Noz/Cfd parametemmbject. The

threefurther descendentsf the first direct descendengo

on to hold modifiedvaluesof the A/Inl/Cfd parametepb-

ject. The bottom leftmost configurationthus hasits own

A/Inl/Cfd parameterobject, inherits its E/Duc/Cfd item

from its direct parent,and inheritsall remainingparame-
ter objectsof thecomprehense setfrom the patriarch.

Parameterobjectswithin a configurationare maintained
as a map (implementedin fact as a balanced,binary
tree) sortedby a fully-qualified name (for example, the
A/Inl/Cfd name abore). Duplicate namesare not al-
lowed,soeachparametepbjectmusthave a unique fully-
qualifiedname.Thereasorfor this arrangemens to avoid
the needlesgeplicationof datastructurein caseswhere
only that structureuniquelyidentifiesa particularparam-
eterobjectto be heldin modifiedform in adependenton-
figuration. The structureof datais movedinto the content
of the fully-qualified nameso that only that particularpa-
rameterobjectneedbe replicated(in modifiedform) in a
descendertonfiguration.

To male this fully-qualified nameconceptmore concrete,
considera multi-block CFD codein which eachblock has
asetof repeatedttributeswhoseparticularvaluemayvary

from block to block. Thus, block 1 would have the at-

tributesA, B, andC, aswould block 2, block 3, andsoon.

Without the mavementof structureinto the fully-qualified

name,it would be at leastnecessaryo replicateblocks1,

2, and 3 in orderto changethe B attribute of block 3 so

asto male it clearthatthe modifiedB attributeis, in fact,

the B attribute of thethird block. By moving structureinto

the fully-qualified name,perhapsby namingthe attribute

B/Block3/SomeCfdCodst is only necessaryo replicate
the modified B attribute in the descendentonfiguration.
Thefactthatit is the B attribute of the third block is made
clearby thefully-qualified name.

By expandingthe configurationtreeaswork progressesa
researchemay parametricallyexplore a designspacewith
reasonableconomywhile leaving a comprehensie docu-
mentingtrail behind.As will bediscussedh alatersection,
anumberof distinctpoliciesmaybeimplementedvith re-
gardto theestablishmeraf anew configuratiorasopposed
to themodificationof anexisting configuration.

4.1.2 Parameter Identification

The configuratiorstructurediscusse@boveintroducedhe
conceptof the fully-qualified namewhosepurposewasto
capturethe structureof datawithout requiringthe needless
replicationof thatstructurewithin eachparameteconfigu-
ration. Therevelationof structurewithin thedata(whichis



arevelationof contentfor the PacAppl object)is takenup
by the identificationstructuredepictedat the centralright
of theFigure4.1. Thesearethe objectswhoselabelsbegin
Pid, eachof whichis followed by a nametext.

This parameteridentification elementof the application
architecturels, again, arrangedas an n-ary tree. In this
casethetreestructureis usedto revealthe corresponding
datastructureof the application. The fully-qualified name
of aparameters developedby concatenatinghe namesof
eachof thetreeelementdeadingto thefinal identification
of thatparameterin theexampleof thefigure,all datapro-
ceedsrom the applicationroot, Cfd. Cfd hasthreemajor
datastructures:Duc (Duct), Inl (Inlet), andNoz (Nozzle).
Descendindrom this level, Inl hasthreeparametersA, B,
andC, Duc hastwo parameterd) andE, andNoz hasone
parameterF. Thus,the fully-qualified nameof the B pa-
rameterobtainedby concatenatinghe namesof the path
elementdeadingto its identificationwould be B/Inl/Cfd.

Beyondthis point, the parameterdentificationstructureis
unremarkable.The only point to be madeis that, at ary
particularlevel of the tree, the namesof identified data
items/structuresnustbe unique. Thus, the Noz identifi-
cationcannotberepeatedtits level. Shifting to theexam-
ple of the multi-block CFD code,this meanghatthename
‘Block’ may not simply be repeated.Instead namessuch
as'Block01’, ‘Block02’, ‘Block03’ andsoon mustbegen-
erated(probablyasa dynamicresponseo problemsetup)
to make the multiple-blocklevel of the datastructureun-
ambiguous.

4.1.3 Operations

A key elementof mostapplicationds not solely thatthey

hold data,but thatthey do somethingwith thatdata.Often
somealgorithmis executedduringwhich inputsareturned
into outputs. To reveal theseoperationsthe PacAppl ob-
jectidentifiesa mapof operationabbjects(labeledOp fol-

lowed by a namein upperleft of Figure4.1) sortedby op-
erationname which mustbeunique.In the exampleof the
figure, threeoperations/nit (Initialize), Kill (Kill a run-
ning operation),and Run (take the input dataandrun the
operationto completion,acquiringnew outputdata),are
provided.

Someoperationgnay requirespecificinteractionwith the
researcher~or instanceanoperationobtaininginputfrom
a file may needto promptthe researcheto identify the
file to be used. For this purpose,a GUI call-backclass,
PacGUI, is definedwhich providesa known, well-defined
setof suchinteractions Suchanobjectmustbesuppliedto
eachoperatioreachtime thatoperations invoked.

While standardsas to what a particular operationname
shouldconnotearebeingcontemplatedfor instance;Run’
will probablyconnoteabatchstylerunto completiorwhile
‘Start’ would indicateaninteractve operationinitiation to
be terminatedby somelater ‘Stop’), thereis no standard
or requiremenfor the operationghatary particularPIA-
wrappedapplicationis to provide. Thusit is thatthe High
SpeedResearch{HSR) Inlet Unstarttestsupport(the first
applicationactually adaptedo this architecture)provides
neither'Start’ nor‘Stop’, butinsteadprovides‘LoadFrom-
File’ and‘CreatePlaceHoldeOperations.

4.1.4 Object Sorting

A fourthstructurehasbeendefinedandimplementedbut it
is notshawn in thefigure. The structureprovidesa sorting
of objectsof the applicationby their derivationalheritage.
For example,a farfield Mach numberparameteobjectis
sortedasbeing

1. A farfield Machnumberparameter
2. A Machnumberparameter

3. A dimensionaldoublescalarparameterwhich is, in
fact,non-dimensional,

. A dimensionaldoublescalarparameter
. A double,scalarparameter

A scalamparameter

. A parameter

. A describablepplicationobject,

© o N o o N

. A directedgraphobject,

10. A status-bearingbject,and,finally,

11. An object.

The needfor this derivationally-exhaustve sorting arises
becausa particularapplicationmay specializeparameters
beyondthelevel thatis well known. Continuingthe exam-
pleabove,anapplicationrmaydefineandusemary particu-
lar, customtypesof far-field Machnumberparametersyut
have no parametebjectinstanceshat are exactly a far-
field Machnumbemparameteasdefinedfor all applications
by the architecturalstandard. Without the derivationally-
exhaustve sorting,aninquiring applicationwould have to
examineeachparameteto determineif it was,in fact, a
kind of farfield Mach number while with the sortingan
inquiry can be directedimmediatelyto thosespecialized



parametepbjectseventhoughnonemay be exactly a far-
field Machnumberparametepbject.

This object-sortingstructurehasbeenunusedo this point
sinceits utility is principally of useto searchenginesand
thelike, which arethemselesasyetunrealized.

4.2 Operating Context

By now the readerwill be impatientto learn the signifi-
canceof thegreat,sweepingcurvesthatrunfrom eachter
minal nodeof the parameteidentificationtree, and from
eachnodeof the operationidentificationtreeto the lower
leftmostnodeof the configurationtree. The answeris that
the objectsof boththesestructureperatewithin the con-
text of a particularparameteconfigurationwhich mustbe
identifiedwhencertainfunctionsareinvoked.

Identificationsandoperation®ffer IsVisibleandisEnabled
memberfunctions,respectrely. Theseoperationsndicate
whetheror nottheirpresentingbjectsareactive (aftertheir
kind) within the context of the currentparameteconfigu-
ration. By this meansan Initialize operationcould refuse
to work whenqueriedin the context of a parameteicon-
figurationthat eitherhador inheriteda populateddataset.
Similarly, anidentificationof, say a turbulencemodelpa-
rametemwould respondhatno suchparameteexistsif the
turbulencemodel,itself, is turnedoff in theidentifiedcon-
figuration,eventhoughit mightwell inheritsuchaparame-
terfrom anancestratonfiguratiorin whichthemodelwas
turnedon.

5 Configuration Policy

As illuminatedabove, the applicationarchitecturds quite
abstractandleavesan enormousamountof room for ma-
neuer in adaptingan applicationto the PIA ervironment;
however, thearchitecturealsoleavesconsiderabldattitude
to theconsumingool (mostcommonly aconformingGUI)
to male of thingswhatit will. Oneof theseareasis the
configurationpolicy to be appliedwhenmodifying a data
item.

As notedin the architecturesection,the modificationof a
dataitem identifiesa new pointin the n-dimensionadata
spaceand, customarily resultsin the generatiorof a new
configurationobjectattachedo the configurationtreeat a
pointappropriatdo inheritall theotherunmodifiedparam-
eterobjects. This is a policy whichis, itself, not actually
provided by the PIA implementationnor is it necessarily
mandatedy the architecture The decisionto actuallyim-
plementthis policy is left to the consumingool.

Thereasorfor leaving this policy decisionto the consum-
ing tool is thatthis is not the only reasonablgolicy. Se-

eraladditionalpoliciesaresuggestedh thefollowing sub-
sectionsandit maybethata GUI might well wish to offer

someor all of thesepoliciesto the researcheto facilitate
thework beingconducted.

5.1 Replication

This policy is the oneinitially suggestegbore. A new
configurationis generateéndattachedpresumablyasthe
directdescendendf the configurationcontainingthe data
itemto bemodified,andtheencapsulatingarameteobject
is replicatedin that new configurationwith the modified
value. This might be consideredhe basicstepin design
spaceaxploration.

5.2 Modification

If thedataitemis containedn a configuratiorwith no de-

scendentonfigurationgor, for additionalcompleity, no

descendertonfigurationsnheritingthe dataitem), theen-

capsulatingparametepbjectcanbe modifiedasit resides
in the existing configuration,provided that no outputre-

sultsexist in that configurationor that suchoutputresults
asdo exist areeithermarledinvalid or arediscardedThis

policy, while not so utterly clearasthe previous, might be

usefulwhencastingabouttrying to find ameaningfulstart-
ing point.

5.3 Invalidation/Re-execution

In this policy, the dataitem may be modified despite(in-
deed,becausef) the fact that descendentonfigurations
inherit the datavalue. Here,the policy goesbeyond sim-
ply invalidatingthe outputdatadependenbn the dataitem
to bemodified. The policy would specifytheautomaticare-
executionof theapplicationto regenerate¢hoseresultswith
the effect thatan entiredesignspacemight be analyzedas
theresultof a singleact. Note, though,thatthe semantics
of architecturallyidentifying the re-executionact have not
yet beendevised; however, if andwhenthe implementa-
tion of sucha policy shouldcometo hand thedevelopment
of appropriatesemanticavould not seemto be a difficult
problem.

5.4 SubgraphReplication

Thepreviouspolicy hasthedisadwantangef discardinghe
previousresultsof the designspacerepresentedly the de-
scendent®f the configuration.A further extensionof the



policy could beto (1) replicatethe encapsulatingparame-
ter objectfor modificationin a new, sibling configuration,
(2) replicatethe descendersubgraphinheriting the origi-

nal valueasa descendergubgraplinheritingthe modified
valueand,then,(3) invalidateandregeneratéhe outputre-

sultsin that replicatedsubgraph. This policy allows the

parametricstudyof completedesignspacesvhile retaining
all of the previously generatedesults.

6 The BaseObject

Very nearlyall of theobjectclassesnvolvedin implement-
ing the PIA applicationarchitecturedescribedabore are
derived from a commonbaseclass,PacBObj. This base
classprovidesseveralkey features:

1. The (inherited) ability to participatein a directed
graph,

2. Theability to be‘described’,
3. Theability to transmitdeclaredevents,and

4. Theability to traverseupwardthroughtheapplication
structure.

6.1 DirectedGraph Capabilites

The ability to participatein a directedgraph allows the
directimplementatiorof the n-ary treesof the parameter
configurationand identification structuresthroughinher
ited characteristics.An n-ary treeis, after all, merelya
directed,agyclic graphin which only oneimmediatepre-
decessois ever allowed.

As will benotedlater, furtheruseof thedirectedgraphca-
pability is made.

6.2 Descriptive Capabilities

The ability to be describedbrings a good deal of useful
functionto theentiretyof thearchitectureThedescriptions
that may be addedto ary suchobjectinclude but are not
limited to

1. A name(with synorymsif desired),
2. A setof accesgontrols,
3. An annotation,

4. A short,descriptve text,

. A changehistory,
. A drop-davn prompt,
. Oneor moregraphicaldescriptions,

. A UniversalResourcé.ocator(URL),
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. A descriptve, multi-line text,

10. A type,

11. A measuremeninit descriptionand

12. A relatedparametereference.

Indeedvirtually ary sortof descriptve elementanbede-
visedandaddedo therepertoiremerelyby derving aclass
fromtheappropriatalescriptve baseclass(whichis, itself,

derivedfrom PacBObj andmay, thus,be described).

Becausenotall objectswill necessarilyrave descriptve el-
ementsaandcertainlynotall objectswill haveall descriptve
elementsit wasdesiredo make thedescriptve systenone
of minimal overhead. Thus, insteadof a seriesof com-
ponentsembeddedn the PacBODbj class,the only fixed
componenbdf the descriptve systemis a pointerto anor-
ganizingheadwhich, if presentecdysiasticallysortsa set
of descriptionobjectsby type. Thus,the only unavoidable
overheadis that of a single pointerwhich, occassionally
maybenull.

Theonly limitation of thedescriptve systemis that,within

a descriptve set,only oneinstanceat most,of ary partic-
ular controllingdescriptve type (thatis, at mostonename,
oneannotationone URL, etc.) is permitted. This limita-

tion is offset to an extent by the fact that the descriptve
systemis implementedn a layered,hierarchialmannerin

parallelwith the deriational classhierarcly andthat dis-
tinct descriptve setsmayexist ateachsuchlevel. Thus,for

example,a scalardoublekinematicviscosityobjectmight
bedescribedtthelevel of

1. A kinematicviscosity
. A viscosity

. A dimensionakcalardoubleparameter

. A scalarparameter

2
3
4. A scalardoubleparameter
5
6. A parameteror

7

. A PacBObj object.



This presumespf coursethatthatis the derivationalclass
hierarcly of theobject.

Within this descriptve hierarcly, the top-mostdescription
(thatis, the descriptionof the mostderived classlevel) of
ary kind is consideredo bethepreferreddescriptionhow-
ever, thefacilitiesexist to revealthe entiretyof thedescrip-
tive hierarcly shouldit bedesired.

6.2.1 EngineeringLogs

Themulti-line, descriptve text formis providedasthepos-
siblebasisof anengineerindog facility. Hereanindefinite,
expandableaumberof text stringelementsn anorderedist
canbe associateavith any PacBObj derived object. All
thatis lackingis for the consumingGUI to provide anap-
propriateeditingfacility to accessmodify, andupdatethe
text. Thisform doesnot offer ary implicit time stamping;
however, if sucha featureweredesired,t could be added
easilyenoughin aderivedclass.

6.2.2 ChangeHistories

A changehistory descriptve form is provided. It provides
animplicitly time-stampedorderedmulti-line descriptve
form. This form is implicitly usedby the PacPara (pa-
rameter)baseclassto record parametemodificationsas
previous valuetexts. All currentlyimplementedoarame-
ter classesltilize this capabilityin their correspondinget-
Valueservices.

6.2.3 AccessControls

The final descriptve form worthy of further discussion
is the accesscontrol description. Again, any PacBODbj-
derived object can attach accesscontrol descriptions
throughoutits descriptve hierarcly. Thesedescriptions,
while definedonly in termsof baseclassfunctionality typ-
ically consistof an orderedlist of accesscontrol entries
againstwhich anidentifieduseris checled. The first en-
try matchingthe user provides the accesscharacteristics
granted. Shouldno suchmatchbe made,a default policy
is applied.Sincedescriptionsandhenceaccesgontrolde-
scriptions,arethemseles derived from PacBObj, access
controlsmay be appliedto accessontrols. This recursve
loop is broken by a self-controlledaccesscontrol which
providesaccesgontrol characteristiceot only for the ob-
jectit describeshut for itself aswell.

Perhapshemostremarkablehing abouttheaccessontrol
descriptve form is thatit wasaddedo the descriptve sys-
temontheorderof ayearafterthe descriptve systemhad

beendesignedimplementedind,in aprojectsense;put to
bed’, thusillustratingthe power andflexibility of thebasic
descriptve concepts. It is alsoimportantto notethat the
accesgcontrol descriptve form (aswith all the otherde-
scriptive forms) incursno object‘cost’ beyond the single
map headpointer (which may be null) until it is actually
used.

6.3 Declared Events

The PacBObj baseclassimplementsan event facility in
which someutilizing entity mayattachoneor moreobjects
of PacEvent derivationto a PacBObj-derived object. This
eventbaseclassdefinesa numberof differenteventtypes
but, as a baseclass,provides at most a default response
shouldthe eventbe declared The PacBObj baseclassim-
plementscorrespondingventfunctionswhich, if invoked,
will identify eachattachedevent object and transmitthe
eventdeclaratiorto it.

Utilizing codeis responsibldor developingandattaching
derived eventclassformswhich do somethingmeaningful
shouldan event be declared.Justexactly whatact occurs
is left entirelyto the utilizing code.Automatedcorrections
may be applied, email may be sentto a user a notation
madein alog file, or nearlyarny otherthing may occurin

responseFurther thereis norequirementhattheeventob-

jectsusedbe of thesamekind and,evenbeyondthis, there
is noartificial limitation onthenumberof eventobjectsthat
may be attachedo a particularPacBODbj object,nor upon
the numberof PacBObj objectsthat may be attachedo a

particulareventobject.

As a facility definedand implementedin the PacBODbj
classtheeventmechanisnis availablethroughoutirtually
all of theapplicationarchitecture Applications,parameter
configurationspperations parametersparameterdentifi-
cations,descriptionsandmoremay all declareeventsfor
notation,action,or otherresponséy utilizing code.

6.4 Upward Reference

The basicdirectionof the applicationarchitecturds down

from encompassingomponentgo more specificcompo-
nents. Applications identify operations,configurations,
and parametelidentifications,configurationsdentify pa-

rameters parametersdentify descriptionsandsoon. In

implementationthough,it is frequentlynecessaryo tra-

versein the oppositive direction; an operationobjectmay
needto identify its applicationobjectso thatit canthen
locatethe parameteidentificationstructure.



This needis metby a pointermemberandsupportingcode
in thePacBObj classwvhichreferencethenext higherlevel
elementof the applicationstructure. Parametersfor ex-
ample,referenceheir containingparameterconfiguration
object.

Thesupportingcodepermitstraversalsof this upwardlink-
agein searctof aparticularkind of object. Thus,simplere-
guestamaytraverseseveral structurallevels. Further such
codeneednot be sensitve to the numberof levels skipped
to locatethe desiredstructurallevel. A descriptionseek-
ing to locatethe applicationobjectneednot be concerned
whetheror notit directly describes parametem aconfig-
urationof anapplication;its uplevel referencecodingwill
work equallywell if it is a descriptionof a descriptionof
a descriptionof a parameteiin a configurationof an ap-
plication, or if it is a descriptionof anidentificationof an
application,or a descriptionof an operationof an appli-
cation. This allows wide applicationof codingthat must,
itself, still traversethe structurafform of applications.

7 Parameters

Dataitemsto be placedin configurationsareencapsulated
in objectsderived from a commonparametebaseobject,
PacPara, which s itself derived from PacBObj. As men-
tionedin the previous section,the PacPara classimple-
mentsanimplicit changehistory protocolwhich notesall
the previous valuesof the encapsulatedataitem astime-
stampedext entrieskeptin anorderedist.

7.1 DependentParameters

The parametebaseclassutilizes the directedgraphcapa-
bilities inheritedby it to implementa dependenparame-
ter mechanism.PacPara providesimplementingcodeto

regard eachsuccessoof a graphin which the presenting
objectparticipatesasbeingdependentiponthe datavalue
which the presentingobjectencapsulatedn the eventthat

that value is changedthoseobjectsdependentipon that

value(throughoutherangeof the graph)areinformed.

Of somavhatgreatercomplicationthanthis is therealiza-
tion thatthereplicationof a benefctorparameterequires
thereplicationof its dependenparameterslf a beneéctor
parametein a particularconfigurationis to be replicated
andmodifiedin a descendentonfigurationthe dependent
parameter®f that original benefctor cannotalso be de-
pendent®f thereplicatedparameterin turn,thereplicated
(andmodified)beneéctorcannotsimplyinheritthe depen-
dentsof the original parametesincetheir values(presum-
ably) representorrectdependentaluesfor that original

parametemotthe modifiedvalueof thereplicatedparame-
ter. Thus,PacPara must(anddoes)provide codethatwill
correctlyreplicatethe dependensubgrapiof a replicated
parametesothatthemodifiedvalueof thereplicatedoene-
factormaybecorrectlypropagtedto thereplicateddepen-
dentsin thatsubgraph.

7.2 Infusion of SemanticMeaning into Parameter Ob-

jects

The self revelation of kind mechanismprovided by the
foundationobjectof the developedclasssystemis usedby
the parametepbjecthierarcly to infusesemantianeaning
into parameter§3]. Thefirst derivationsof parametepb-
jectsspecializeparameterdy their basicstructuralforms;
scalar vector matrix, organizationalandthelike. Further
derivation then associatesn atomic kind; long, double,
Boolean,string, and the like with theseforms as appro-
priate.

A furtherspecializatiorof doubleparametekindsdeclares
themto be dimensionalin nature thatis beinga measure-
mentin somesystemof measuremenguchasthe metric
systemof measurement(The conceptof dimensionality
arediscussedn greaterdetail in [4].) From this point a
greatmajority of engineeringparametersnay thenbe de-
rived, eachdraving upon the dimensionalbasefacilities
to presentthemselesin the systemof measuremente-
guested.

Many other engineeringparametersare non-dimensional.
Thus, the next specializationof dimensionalobjectsis,
paradoxicallyto a non-dimensionalorm which maythen
be used as a basis for these non-dimensionalparame-
ters. Thebasingof non-dimensionalityponadimensional
foundationallows the free combinationof theseparame-
terswith dimensionalalues. Thus,a Mach numbermay
be multiplied by a computedspeedof soundto resultin a
dimensionakpeedavailablein whatever systemof unitsis
desired.

Therelatedparametedescriptve mechanisnis utilized to
associatether parametridnformationwith semantically-
definedparametepbjects. Considerthe following utiliza-
tion of the capability

1. A vectorof doublevaluesis specializedhroughsev-
erallayersof dervationto be a one-dimensional-grid
of total-pressurgalues.(Thederivationof theclassis
shavnin Figure7.1.) Thatkind of parameteobjectis
thendefinedasassociatinghroughtherelatedparam-
eterdescriptve mechanisna vectorof linearposition



measurementahich reveal the X-coordinatevalues
of thatone-dimensionagrid.

2. Another parameteispecializationthrough derivation
createsa vector of thoseone-dimensional-gridotal-
pressurearameteobjectswhich is declaredto be a
time-historyof thoseparameters(The deriation of
the classis shavn in Figure7.2.) Therelatedparam-
eterdescriptve mechanisnis again usedto locatea
time-value vector the elementsof which are defined
asbeingthe timesassociateavith the corresponding
elementof thetime historyvector

By working to the semantianeaning®f thesetwo classes,
aconsumenf the secondparametepbjectmaydiscover it
to beatime history of one-dimensional-gritbtal-pressure
valuesfor whichit mayfurtherobtain(1) thetimesatwhich
eachgrid resultis valid and (2) the positionsof the grid
points.

This infusion of semanticmeaningthrough derivational
specializatiorexposedthroughself revelationof kind and,
to anextent,contentis anenablingtechnologyfor theprop-

agationof informationbetweerapplicationsaswill bedis-
cussedshortly

PObject
PObjSta
PObjDgn
PacBObj
PacPara
PacParaArr I
PacParaArrDoub |

|- PacParaArrDoubDim I

|- PacParaArrDoubPrs I

|- PacParaGasArrPtl I

|- PacParaGas1DGridPtl I

Figure7.1: Derivationof a One-Dimensionatrid of Total
Pressures
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PObject
PODbjSta

PObjDgn
PacBObj I
PacPara I
- PacParaArr I
PacParaArrPara I

|- PacParaTimHist I

|- PacParaGasTHst1DGridPtl I

Figure 7.2: Derivation of a Time History of One-
DimensionalGrid of Total Pressures

8 Persistence

Saving the stateof an encapsulate@pplication,whether
implicitly or explicitty commandedijs a self-evident re-
guirementandwas,in fact,oneof the very first challenges
confronted.Review of variouscommerciabdatabaseprod-
ucts at the start of the projectrevealedall of themto be
generallyintolerantof evolutionary change,which itself
was anotherrequiremenbf the PIA effort. This was not
an overriding concernthoughbecausefor administratve
reasonstheseproductssimply were not available to the
project.

To meetthe persistenceequirementan object serializa-
tion capabilitywasimplemented.In this approachobject
contentsare written out to or readback from an archve
file (or otherrepository)underthe control of a Serialize
function. (The ‘Serialize’ nameis entirely arbitrary) An
archive objectkeepstrack of what objectshave beenseri-
alized or de-serializedso that redundantreferencego an
objectaretreatedassuchanddo not causeredundanseri-
alizationsor de-serializationsf the object.

Thedravbackof this serializations alsoits strongpoint: a
Serializefunction mustbe manuallycodedfor every class
that might participatein suchan operation. For the most
part suchcoding amountsto meretedium; however, it is
in this codingthatthe groundvork for evolutionarychange
canbe laid. If onetakesthe precautionof serializingan
archive versionnumberasthe very first stepof objectse-
rialization,thenconditionalcodefor the de-serializatiorof



old objectversionscanbe generatedvhenobjectrevisions
aredefined. By this meanspld objectsmay be recovered
evenwhenthebaseclassof aclasshasbeenchangedThis
allows quiteextraordinaryrevisionsto animplementedlA
wrappingto be effectedwithoutloosingold, archved ver-
sionsof theimplementation.

As utilized in the C++implementatiorof the architecture,
theserializatiorof objectsis explicitly commande@ndre-
sultsin an actwhich savesthe entire applicationwrapper
instancdo persistenstoragepr recoversthatentireobject
setfrom storage.As will be discussedater, the Common
ObjectRequesBroker Architecture(CORBA) implemen-
tation of the architecturds implicitly persistenthowever,
the sameserializationmechanisnis, in fact, used,but on
an object-by-objecbasisratherthanacrossthe entire ap-
plicationwrapperobjectsetasawhole.

9 Information Propagation

The infusion of semanticmeaninginto parameteiobjects
through derived class specializationand self revelation
mechanismé$ormsthe basisfor the interapplicatiortrans-
fer of informationby allowing oneapplicationto ‘look’ at
parameter®f anotherapplicationanddiscernon an auto-
matic basisthe semanticnatureof the obsered parame-
ter objects. This basictechnologyenablesa numberof in-
terapplicatiorinformationtransfermodesfrom userdriven
collaboritive exchangeshroughautomatedrowser/search
enginehanestingof informationto completelyautomated
applicationgraphsfor comprehensie engineeringnalysis
of aprojectasawhole.

Because the propagtion of parametric information
throughoutapplicationgraphscould be implementeden-
tirely within the PIA framework, it was the first form of

informationtransferimplementedoy the PIA project[5].

The basicgoalis ashasbeenpreviously suggestedto ar

rangedisparatapplicationsnto acooperatie graphwhose
operatiorcarriesoutall of theanalyseselevantto anengi-
neeringprojectasawhole.

Considerasanexampleof thearrangementf applications
into a graphfor the purposesf information propagtion
thesituationdepictedn Figure9.1. Here,ananalysiscon-
trol applicationis madethe initial nodeof the application
graph. This pseudo-applicatioexists solely as a corve-
nient point for declaringnewv configurationsof the overall
problemandsettingparameterwithin thoseconfigurations
to controlthe analysisdone.Two read-onlyapplicationsa
wrappingof CAD geometryinformationand a wrapping
of Particle ImagingVelocimetrydataaretheinitial nodes
immediatesucessorsachleadingto the ‘real’ application
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in this example,a wrappingof an two-dimensionaflow
solver. The designof this particulargraph,then,is to pro-
vide threesourcesf informationto the flow solver, each
of thosepiecesproviding anindependenpart of the input
wholefor thatsolver.

The basicconceptualiiew behindthe arrangemenbf an
applicationgraphis that therealways exists somesource
definitionof a proposedconfigurationof the projectwhich

thenfeedsasinput to variousanalysef that configura-
tion. Thoseanalyseghen produceresultswith two po-

tential aspects:intermediatevalueswhich are of usefor

furtherformsof analysisandfinal answersontrikbuting to-

wardajudgemenbf theengineeringnerit of thedesign.

Anotheraspecimplicit in this view of informationpropa-
gation throughoutdirectedapplicationgraphsis that such
applicationsoperatan whatmight be calleda batchmode
that reliably turnsinput informationinto outputinforma-

tion. Theinformationpropagtionschemesimplemented
to datedoesnot contemplatean interatve cycle uponthe

graphuntil someresultbalances achiesed. Note,though,
thatthe architecturedoesnot precludesucha formulation

atsomefuturepoint.

Yetanotheifeatureof informationpropagtionaspresently
implementedy thearchitecturas theforcedsynchroniza-
tion of parameteconfigurations.Informationpropagtion
is requiredby the implementingcodeto be from a par
ticular parameterconfigurationand, potentially the con-
figuration subgraphwhich it heads,to a preciselycorre-
spondingparameteconfigurationin thereceving applica-
tion and, potentially the configurationsubgraphwhich it
eitherheadsor which is createdfor the purposesf prop-
agation with the particularreceving parameterconfigura-
tion asits headerBy this enforcedstipulation the concept
of a projectconfigurationasencapsulatetly the configu-
rationobjectscheméas mademorerealand,it is expected,
the problemof mismatchedatonfigurationsvithin a project
analysiswill be eliminated. No longerwill the weight of
thethintankwall becombinedwith thestrengttof thethick
tank wall to producea winning designin all departments
exceptmanufcturing.

To seethis synchronizatiorf configurationsgconsideffirst
the pre-propagtion situationdepictedfor two application
graphmembersin Figure9.2. The parameterconfigura-
tion graphof the successoapplicationis, clearly a subset
of the configurationgraphof the predecessaapplication.
(Thesuppositiorhereis thatthe configurationgraphof the
successonpplication,in fact, correspondexactly to the
left portionof thegraphof thepredecessapplicationpre-
sumablybecausef prior actsof informationpropagtion.)
After informationpropagtionhasoccurred asdepictedn



Analysis Control Application I
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Particle Imaging Velocimetry (PIV) I

NPARC/WIND 2D Flow Analysis I

Figure9.1: A SimpleArrangemenbf Applicationsinto a Graphfor InformationPropagtion

Figure9.3, new parameteconfigurationgraphnodeshave
beencreatedn the graphof the successoappplicationso
asto exactly duplicatethe configurationnodefrom which
theinformationpropagtion occurredandto duplicatethe
subgraphwhich that configurationnodeheads from each
elementof which information propagtion has also oc-
curred.

The information propagtion implementationalso recog-
nizesthat not all applicationsare entirely reliablein their
operation. (Indeed,it wasthe twitchy natureof sophisti-
cated, high-fidelity CFD codesthat gave part of the im-
petusto the PIA projectin the first place.) To dealwith
this, theinformationpropagtion supportutilizesthe event
mechanisnbuilt into thePacBObj baseclasso allow inap-
propriateoperationgo alertsupposedlygorrectie entities,
whetherautomatear human-interactie. Thereis, through
this facility, the ability to apply correctve measuresand
re-attempfa particularoperationin the overall propagtion
activity. Failing suchcorrectie actions,the information
propagtion systemwill markthe affectedparametecon-
figurationsasbeingdefective andwill preventfurtherprop-
agative actsbaseduponthoseconfigurations.

Theproces®f informationpropagtionascurrentlyimple-
mentedproceedsn thefollowing generaimanner

1. Theprocesss begunby deliveringapropagtioncom-
mandciting a specificparameterconfigurationto an
applicationobjectwhichis, itself, amemberof anap-
plicationgraph.Typically, this applicationobjectwill
beactingastheinitial nodeof thatapplicationgraph.

2. The applicationobject doeswhat it may to corvert
its own input information into output information.
Shouldthis elementof the procesdfail, information
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propagtionis discontinued.

. Theapplicationthenpasseshe propagtionoperation

onto eachof its immediatesuccessorm the applica-
tion graph. The identified parameterconfigurationis
passednin thisact.

. Eachreceving successoapplicationestablisheshat

it hasacorrespondingarameteconfigurationpr cre-
atessucha correspondingprarameteconfigurationin
its own configurationgraph. Furtherit verifies that
it has,or it createsa subgraplhcorrespondindo ary
subgraphheadedby the identified sourceparameter
configuration.

. Eachreceving successoapplicationthen examines

the parameteobjectsavailablein the sourceparam-
eterconfiguration(andin the subgraphwhich it may
head) and, basedupon the semanticmeaningsre-
vealedby thoseparametersacquiresuchinformation
asit may Theinformationis encapsulateah the cor
respondingparameteiconfiguration(s)f the recev-
ing application.

Eachreceving successoapplicationis free to exam-
ine the extendedpredecessoapplicationsof its own
propagtingimmediatepredecessapplicationto the
extent that those may exist, to acquireinformation
from the parametersf thoseapplicationstoo, in the
eventthat not all relevantinput is available from its
own immediatepredecessapplications.

. Wheneachreceving successohasreceiveda propa-

gationactfrom eachof its own immediatepredecessor
applicationsjt thenoperateso asto corvert its own
inputsinto outputsandthenpasseshepropagtionact
onto its immediatesuccessors.

. Thepropagtionof informationcontinuesn thisman-

ner throughoutthe graphuntil terminalnodesof the
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graph are reachedand, recognizingthat they hase 10 Documentation
no successorghoseterminal applicationsreturnthe
propagtion act back up the graphicalchainto the =~ Completeclass-by-classnembetby-membedocumenta-
originatorof theact. tion hasbeengeneratedn HyperText Markup Language
(HTML) format and placedon a central sener the the
GlennResearciCenter The documentatiorprovides not
It shouldberememberedh all of thisthatit is thetechnol-  only basicexplanatorytext asto what particularcompo-
ogy of self revelationexposinginfusedsemanticmeaning nentsdo, but alsotries, whenappropriateto discusswhy
thatmakestheimplementatiorof informationpropagtion  particularchoiceswere made,what expectationsexist for
tenable Applicationswrappersieedonly becodedto look  the useof particularcapabilities,and the like. The root
for the kinds of informationthey desireto acquireduring URL for this documentatioris
propagtion, asin a procesf filtering thatthatis of in-
terestfrom thatthatis not. It is not necessaryo codefor
connectiorto a specificsourceapplicationto obtainanex-
pectedkind of information,nor is it necessaryo codefor
specifictopologicalarrangementsf applications. It mustbe stronglyemphasizethatthesepagesarethein-
formal generatiorof theresearcheinvolvedanddo not, in
ary way, shapepr form, represenan official statemenbf
the Governmenbf the United States.

http://lwww.lerc.nasa.gov/WWW/price000/index.html
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11 Experience

To date,threeapplicationshave beenwrappedin the C++
implementatiorof thePIA ApplicationArchitecture:apre-
sentationof experimentaldatafrom an inlet unstartex-
perimentfor the High SpeedResearclproject(known as
HIU), a presentationof flowpath geometryinformation
from ComputerAided Design (CAD) sourcesaccessed
throughthe ComputationalAnalysis Programminginter
face (CAPRI) cross-endor package,and an operational
wrappingof the Large Perturbationinlet (LAPIN) analy-
siscode.

11.1 HSRInlet Unstart

Thewrappingof theHIU testwasencouragindpecause,p
until theinvitationto dothateffort, experimentabspectof
the PIA taskhadbeengreatlyde-emphasized?enetration
of the ICE projectinto the experimentalarenahad been
shallav and,asa consequencexperimentaatahandling
by the PIA projectwas consideredf minor importance.
Thus,it wasgratifyingto seetheconcepteoncevedalmost
entirelywith analyticaltoolsin mind bentsoamiablyto the
needof theexperimentaknvironment.

On the other hand, the experiencewith the HIU testhas
instantlyandforcibly demonstratethe inadequayg of the
singlevirtual addresspacdn whichthe C++implementa-
tion of thePIA effort mustlive. TheHIU testhasgenerated
somethingon the order of 25 GigaBytesof experimental
data. Without lapsingto a meta-dataconcept,sucha data
loadis utterly crushingio the C++implementatiorerviron-
ment. While a meta-dataolutionis possible pthergrownth
directions(to bediscussedhortly) mitigateagainstsuchan
implementationevenasa short-termsolution.

Onejudgementhatwasderived from the HIU experience
is thatthe 25 GigaBytesizewasnot an unusualhing. Ex-
perimentalpropulsionefforts are expectedto often have
datavolumesof this magnitude.Further a comprehensie
CFD investigtionsaving all intermediateesultsandsteps
as ervisonedby the architecturecould also producedata
volumesof this magnitude. Given the fact that the PIA
effort is to allow the researcheto browse from one such
volume of datato the next and, ultimately migrateinfor-
mation contentbetweensuchrepositoriesthe needto ex-
pandtheimplementatiorinto amoreaccommodatinfprm
is unavoidablyclear

It shouldbenotedthattheHIU implementatiompredatedll

of theactualwork relatedo theinfusionof semantianean-
ing into parametepbjects. This wasan expedientguided
by schedulingfactors. Becauseno information propag-
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tion activity wasprojectedwithin the usefullifetime of the
HIU application(indeedjnformationpropagtionwasonly
a distantly conceved notion at that time), this expedient
wasconsiderentirelyacceptable.

11.1.1 HIU Implementation

The datato be managedn the HIU applicationconsists
of time-seriesdata streamssampledat several thousand
sampleger secondirom eachof somel50 differentdata
sources. For the most part these data sourcesconsist
of high-responseressurdransducersariouslydistributed
betweerstaticandtotal pressureneasurementgiovever, a
numberof otherinlet, engine andfree streamdatasources
arealsoinvolved. The datafrom an individual datapoint
is provided astwo computerfiles: an interleared, binary
datafile of all the datasourcesin round-robinorderand
anassociatedext-basedormatfile identifying theprecise
contentf thebinaryfile.

It was immediatelydeterminedthat eachindividual data
point from the experimentwould be loadedinto a single,
private parameterconfigurationobject. To allow the re-
searchetto structureconfigurationobjectsinto an easily
comprehensiblarrangementit was also decidedto pro-
vide aplaceholdecapabilityby whichemptyconfiguration
objectscouldexist asthedirectparentof a seriesof related
datapoints.

Becauseof the essentiallystatic nature of experimental
data,the HIU applicationrequiredlittle further function-
ality. Thefollowing tasksweretheonly onesof ary signif-
icance.

1. An operationto convert anemptyPacCfg objectinto
a placeholdemwasdeveloped. In the corversionpro-
cessthe subjectPacCfg objecttook on a non-empty
appearance.

2. Several operationswere developedto read a co-
ordinated format and data file pair and place the
parameteencapsulatednformation into an empty
PacCfgobject.

3. A CreateApplicatiormemberfunction (of the Hiu-
Appl application class derived from the PacAppl
class)was developed. The main task of this mem-
ber function overridewasto constructthe identifica-
tion structuradentifyingall thedataelement®of atest
point.

The PlaceholderOperation



The placeholdeoperationis quite simple. A protocolin-
ternalto the HIU applicationwrapperwas establishedy
which the presensef areadingnumbermparameterknown
internally by the name'RdngNo’, wasconsideredo male
a configurationnon-empty Sincethe dataloadingopera-
tionswould becodedto refuseto operataf areadingnum-
ber parametemvere presentin the target configuration,it
wasonly necessaryor the placeholdeiperationto place
anemptyreadingnumbermarametem the selectedconfig-
urationto give it a non-emptyplaceholdingappearance.

As a side effect of the operation the useris promptedto
provide a namefor the placeholdingconfigurationwhich
is thensetinto the descriptve systemfor the target Pac-
Cfg object. This allows the placeholdingobjectto exhibit
auseful,memory-jogginghamein all furtheroperations.

The Data Loading Operations

Threedataloadingoperationclassesre,in fact, currently
provided by the HIU application. Eachdiffersonly in the
expectedlayout of anindividual binary valuein the data
file. This differenceis effectedby a function overridein

dataloadingoperationclasseslerived from the basedata
loadingoperation. Thus, the real guts of the dataloading
operationwaswritten only onceandwasinheritedby the
variantforms.

As would be deducedfrom the descriptionof the place-
holder operation,the first significantstepof dataloading
is to assurethat the target configurationobjectis, in fact,
empty basedupon the establishednternal readingnum-
ber parameteprotocol. With that mattersatisactorily re-
solved, the useris then promptedvia a suppliedPacGUI

objectto provide the namef theformatanddatafiles.

Mostof thedataloadingoperationis relatively uninspiring;
however, a few pointsof interestdo exist which illustrate
thesortof implementatiorireedomwhich existsbehindthe
PIA architecturaivall.

The first of theseinterestingpointsis the handlingof the
mismatchbetweerthe dataitem namesusedin the format
file andthe correspondingnamesusedin the HIU applica-
tion. The experimentalistsput of whatever basisseemed
reasonabléo them, usedstrictly uppercasealphanumeric
identifiers. The HIU applicationelectedto usemixed-case
identifiersto achieze a more estheticallypleasingappear
ance. To bridge the gap betweenthesetwo selections,
a synorym table was addedto the developedapplication
class HiuA ppl. Whenthe formatfile specifiesa dataitem
namethatis not directly found in the identificationstruc-
ture, an attemptis madeto resole the problemthrough
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applicationof the synorym table. Sincethis protocolis en-
tirely internalto the HIU application,the addition of the
facility to thederivedapplicationclassis entirelyappropri-
ate.

A relatedextensionwas touchedon above: the location
of dataitems by namein the identificationstructure. It
was considerediesirablenot to codethe dataloadingop-
erationwith explicit knowledgeof the structuralizatiorof
the dataencapsulatetby the n-ary tree of the application
dataidentificationstructure.(To do otherwisewould mean
thateachalterationof theidentificationtreewould have to
be matchedby a codingchangeto the dataloadingopera-
tions.) On the otherhand,the n-ary tree of the identifica-
tion structureoffers no find-by-namefacility sincethereis
no requirementhat nodesof the tree have namesunique
acrossthe tree, even thoughthat is in fact the casein
this particularapplication.(The directedgraphclassupon
which theidentificationstructureis baseddoeshave afind
capacity but it consumesn orderedsetof namego make
branchselectionsas eachnode of the tree is traversed.)
Thus, it was consideredexpedient,thoughnot absolutely
necessaryto provide in the patriarchof the identification
grapha map sortingidentificationobjectsby their simple
names By consultingthis map,the dataloadingoperation
is ableto locatetheidentificationobjectfor aparticulardata
item, for instancehe‘RdngNo’ parameterdirectly. Again,
sincethis mappingis a matterentirelyinternalto the HIU
application,it is somethingappropriatelydonebehindthe
PIA architecturaivall.

The dataloadingoperationprovidesa non-catastrophice-

sponsen theeventthattheformatfile identifiesa dataitem

that cannotbe locatedin the existing identificationstruc-
ture. Subjectto the consentof the userthroughthe pro-

vided PacGUI interactionobject,an entry is madein the

‘Found’ category of the identificationstructureusing the

namesuppliedby the formatfile for the dataitem. Thus,
eventhoughthewrappingof theHIU experimentis arela-

tively staticthinginvolving theproductionof programming
languagecode,a certainmodestflexibility to adaptto new

dataitemsonthefly is built in.

With regard to the actualmechanicsof dataloading, the
processingf theformatfile identifiesthe orderof the data
itemscontainedn the binary datafile. As eachsuchitem
is identified,its identificationobjectis located(throughthe
variousinternalmechanismgistdiscussedandusedo ob-
tain the fully-qualified nameby which the corresponding
parametepbijectis to be sortedwithin the parametecon-
figuration. A new parametepbjectis obtained(in point of
fact,aPacParaArrDoub object),the fully-qualified name
associateavith it, andit is placedin thedataconfiguration
object. A pointerto the parametepbjectis alsorecorded



in an orderedlist calledthe interleare list and automatic
changenotationis turnedoff in theparameteobjectfor the
durationof dataloading. Whenall of this is accomplished
andthe formatfile is exhausteddataloadingcommences
(after appropriatentialization of indiciesto 0) by succes-
sively obtainingthe next binary item from the binary file
andplacingit in the next slot of the next parametepbject
in the interleave list. As the processproceedsthe inter-
leave list is indexed mostrapidly. Eachtime theinterleare
list endis reachedts index is resetto 0 andthe next item
counterfor the parameterrraysis incrementedWhenthe
binaryfile is exhausteddataloadingstops.

As mentionedpreviously, the actualobtainingof a single
binarydataitemis encapsulateih aseparatenembeffunc-
tion of thedataloadingoperatiorobject. Thebaseclassm-
plementatiorof the dataloadingoperationsimply assumes
thatbinary dataitemsaredoubleitems(thatis, the prima-
tive C++ datatype double) in the native form of the exe-
cuting machine. The othertwo derived operationclasses
differ from the baseclassonly in overriding the dataitem
acquisitionfunctionto load itemsasfloat itemsin native
formator asfloat itemsin byte-reversedformat.

Identification Extension

An adjustmento thedataidentificationprocessvasneeded
in the HIU application. As touchedon abore in the de-
scriptionof the dataloading operation the needto locate
identification objectsdirectly by the simple nameof the
dataitem was met. This capacitywas introducedin the
HiuPid classwhich wasdirectly derived from the PacPid
class. The actualcreationof the emptymapwasaddedto
anoverrideof the CreatelnitialNodenemberfunctionand
additionsto themapweremadeautomatiahroughanover-
ride of theAddSuccessanembeirfunction. Sinceanobject
of the HiuPid classis usedasthe patriarchof theidentifi-
cationgraphandsincethe inheritedAddMemberfunction
assureghata graphmay only addmemberghat areof or
derivedfrom the classof the patriarchi|t is certainthatev-
eryidentificationaddedo theHIU identificationgraphwill
necessarilynake anentryin this internally-definednap.

CreateApplication Function

The implementationof the CreateApplicationmember
function, while beinga greatmassof tediousdrudgery is
not particularlyremarkablegiventhe discussiorabove. A
few remarksaremorethanenough.

A scriptengines executedo build theidentificationgraph,
organizingthe potpourriof some150 dataitemsprovided

by the experimentalistanto more manageablgroupings
thoughtto be appropriateo the situation.By usingidenti-
fication objectsof the HiuPid class,the internalmapping
from simplenameto associateddentificationobjectis au-
tomaticallyconstructed.

In building identificationsjt wasrecognizedhatin anex-
perimentabatasituation the parametemheritancenecha-
nismof theparameteconfiguratiorgraphshouldbeturned
off. In the courseof testing,dataitemsarelost dueto in-
strumentatiorfailuresandthe like. Sometimeshad data
are simply recordedand a record madethat they are, in
fact, bad. Other systemssucceed(often at some point
down streamfrom the point of acquisition)in discarding
suchbaditems. It wasrealizedthatshouldsuchbaditems
be discardedy the time of presentatiorthroughthe HIU
PI1A wrappervaluesinheritedfrom previousconfigurations
whentheitem wasgoodwould not be appropriatefor dis-
play. Thus,asmallfeatureof theidentificationclassrequir
ing thata parametenctuallyexist in the identified config-
urationwasturnedonto curethis problem.In practice the
actrequiredfar lesseffort thanits explanation.

A secondscriptenginebuildsthesynorym tablein theHiu-
Appl applicationobjectfor the known text differencede-
tweenthe experimentalnomenclaturendthe namesused
by theHIU application.Yetathird suchengineobtainsin-
stance®f eachof theimplementedperationsbjectsand
addsthemto theapplication.

11.1.2 HIU Work Not Completed

TheHIU implementationeportecabore wasconsideres
only aninitial plungeinto the demonstration.The experi-
mentalistinvolved wantednot merely to seeand browse
the data, but to reducethat datathrougha numberof de-
fined computationgesultingin derved quantitiessuchas
thelocal Machnumber It wasplannedto implementsuch
calculationsas additionaloperationsof the HIU applica-
tion, in accordancevith generalPIA design;however, due
to the demiseof theentireHigh SpeedResearchrroject,it
is doubtfulthatthis work will ever bedone,atleastfor the
HIU application.

This missingeffort is broughtup to illustratea philosoph-
ical pointof PIA design:that,to the extentthe HIU appli-
cationis differentfrom every otherapplication,suchcom-
putationsareappropriatespecialization®f the application
thatarewell encapsulatetdehindthe PacOp operationob-
ject architecturalwall. A point of discussionmay arise,
though,shouldone careto asserthat the computationof
things suchas local Mach numberis, in fact, something
commonacrossmary applications.To the extentsuchan
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assertiormight be true, suchoperationsvould thenprop-
erly fall beyondthePIA architecturaivall into theprovince
of thecodeconsumingheapplicationthatbeinggenerally
aGUI. Sincethe PIA architecturedoesnot constrainitself
to ary particularoperatingernvironment, it might be that
different, specializedGUIs could be developedto address
suchcommonyrepeateaperationaheeds.

Additionally, it shouldbe notedthat, even thougha par
ticular PIA applicationmight provide suchspecializedp-
erations,the architecturecannotprevent consumingenvi-
ronmentsfrom applying suchinferential computationgo
datawhich is exposed.This applicationof consumingen-
vironmentoperationdecomesnorelikely, andis indeed
enabledasmore semantidnformationis provided by the
derivationalspecializatiorof parameteobjects.In theHIU
applicationall datawas placedin PacParaArrDoub pa-
rameteiobjectsfor thesimplereasorthatPIA work hadnot
yet developedary more semanticallymeaningfulclasses.
As classeddentifying the dataas somethingon the order
of fluid flow total pressurefluid flow static pressureand
thelike,becomeavailable,it is likely thatspecific,special-
ized consumingervironmentswill be ableandinclinedto
provide common,computationallyderived quantitieseven
though the specific applicationmight also provide such
guantities.

Also, it is expectedhatmary parameteformswill provide
widely-applicablefunctionality peculiarto their kind. For
example corversiondrom experimentalaluesobtainedn
differing flow regimes(for example,subsonictranssonic,
supersonicandhypersonic)o ‘true’ total pressurevalues
would bewell includedin atotal pressurgparameteclass
wherethey could be utilized by experimentalapplication
wrappers.

11.2 Cross-\éndor CAD Access

A wrappingapplicationwasdevelopedwhich presentge-
ometryinformationdevelopedfrom CAD informationob-
tained throughthe cross-endor CAPRI applicationpro-
gramminginterface. This wrappingis reportedin detalil
in acompaniorpublication[6].

Thekey achievementof this wrapperwasto presenta Pac-
ParaGeoBdry boundaryobject,alongwith its supporting
componenbbjects.This objectdemonstratekey elements
of the parameterbject concept. First, by its revelation
of kind, it presentghe semansiof a logically-complete
boundarybuilt upontheconcatenationf anumberof open
geometridfaces.Then,afterbeingrecognizechsa bound-
ary object,a numberof definedservicesamongthesethe
ability to obtainopenandclosedcrosssectionandto com-
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putethe areaof suchclosedcrosssectionsasmight be ob-
tained.As will bediscussedhortly theLarge Perturbation
Inlet (LAPIN) analysiscodeusedhis objectwith its known
servicedo obtainneededyeometridnputinformation.

Another aspectof the geometrywrapperwas the con-
siderablebehind-the-scenemaneuering that went on in
achieving its function. Theimplementatiorof the CAPRI
interfaceandthe CAD toolkit underneattthatinterfacepre-
cludeda straightforvard parentto child to grandchildpro-
gramstructureto obtainthedesiredgeometrianformation.
Insteadjt wasnecessaryor the wrappingprocesdayerto
invoke a shellscript(in actuality a DOSbatchfile), which
in turn invoked the CAD toolkit, which at the direction of
theshellscriptconnectedo aDynamicLink Library (DLL)
createdo implementheneededyeometryextractionfunc-
tionality, whichin turncreatedhegeometriggarameteob-
jectsand‘piped’ themthroughto the patriarchialwrapper
applicationlayer by serializingthemto a file from which
thatpatriarchiallayer subsequentlyleserializedhem. All
in all, arathercorvolutedapproacho informationretrieval,
andstill entirelytransparento the consumingcode(in this
casethePIA testbedGUI). As did the HIU experiencein
a differentway, this demonstratethe natureof the archi-
tecturalmechanism:provided functionality (the acquisi-
tion of geometrydata)wasobtainedthroughanapparently
straightforvard interfacewhile, in fact, highly cornvoluted
maneuersoccurredo implementthatinterface.

11.3 LargePerturbation Inlet

As with the geometrywrapper the wrapperto the LAPIN

codeis reportedfully elsevhere[7]. Thiswrapperis more
representatie of the expectationgor a typical application
wrapper It presentshe comprehense data set of the
LAPIN applicationand several operations. Theseoper

ationsinclude the ability to load the parameterset from
sourcedraditionalfor the legacy applicationandto oper

atethecodeandrecoverits output.

Of particularinteresthereis the partsof the wrappersup-
porting informationpropagtion. The specializationpro-

vided by this wrapperare, as expectedby the generalde-

signof informationpropagtion,relatively narraw, consist-
ing principally of codefor the parametehanestingstage
of theinformationpropagtionact. Theimplementatioris

in theform of afilter looking for parameteobjectsof the
kind PacParaGeoBdry, the very kind the geometrywrap-
perworksto present.

Whenthe parametehanestingoperationis complete the
following decisiontreeis executed.



1. A geometricitem is selected.A geometricassembly
is selectedn preferenceo geometricboundaries.If
otherthanexactly one geometricitem parametehas
beenidentified, the geometrypart of the information
propa@tionprocesss abandoned.

Currently thereis no discriminationappliedbetween
multiple geomtricitems;however, mechanismso ex-

ist by which inappropriateitems might be excluded
from consideratiorso that exactly onegeometricpa-
rametersurvivesthe hanestingprocess.

. The geometricitem is sectionedn the (X:Y) plane,
whichis aserviceprovidedby boththe PacParaGeo-
Asmb andPacParaGeoBdry classes.

. Heuristicsare appliedto the obtainedcross-section
cunesto identify two opensectiongakento bethose
of theflow path. If two opensectionsannotbeiden-
tified by theserules,thegeometrypartof theinforma-
tion propagtion processs abandoned.

. The obtainedopensectionsare sortedandorderedto
proceedradially outward (thatis, in ascendingarith-
meticorderfor theY coordinatevaluesjandfrom fore
to aft (thatis, in ascendingrithmeticorderfor the X
coordinatevalues).

. If the two sectionsare mirror imagesof eachother
(a serviceprovided by the PacGeoCuw classwhich
encapsulatesectioningcurves),a LAPIN typeO in-
let formulationis generatedrom the outercurve and
the geometrypartof informationpropagtionis con-
cluded.

ThetypeO inlet designations aninternalformulation
of LAPIN andmerelydesignatesnaxisymmetrian-
let with no centerbody

. If thefirst sectioncurve beginson the X axis (thatis,
if thefirst curve pointhasaY coordinatevaluethatis
approximately0.0),aLAPIN type1 inlet formulation
with an axisymmetricassumptioris generatedrom
thetwo sectioncurves.

Thetypelinletis, again, adesignatiorinternalto the
LAPIN codeindicatinganinlet with atranslatingcen-
terbody

. Shouldthe decisionprocesgseachthis point, the only
option (currently) left is that of a LAPIN type 1 in-
let with atwo-dimensiona(the alternatve to axisym-
metric) assumption.Cowl and centerbodygeometry
is generatedrom the two sectioncurves. Duct width
geometryis computedo resultin cross-sectionadr-
easmatchingthoseobtainedfrom the geometridtem
parameteobject.(Thecomputatiorof cross-sectional
areais anotherserviceof the PacParaGeoAsmband
PacParaGeoBdry classes.)
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Figurell1.1:GUI OpeningApplicationQuery

The interplayof parametewith consumeis illustratedin
the above process. The sectioningof boundariesand the
computatiorof cross-sectionareasarebothtasksthatare
consideredo be relevantandcommonacrossa wide vari-
ety of consumer®f objectsof the PacParaGeoAsmband
PacParaGeoBdry classes.Thus,oncethe LAPIN propa-
gation codeidentifiesan objectof that class,it is assured
not only of the kind of information available, but of the
servicesavailablefor the usefultransformatiorof thatin-
formation.

11.4 TestbedGUI

Although a GUI is not consideredo be a productof the
overall project, sucha tool is neverthelessnecessaryor
testingpurposesindeed,a GUI is the mostexpedientway
to seethatthe conceptslescribedabore do, in fact, work.

Thefirst demonstratiomf thearchitecturés shovn in Fig-
ure 11.1. This is a screencaptureof the applicationse-
lectiondialogboximplementedy the GUI. Thedialogal-
lowstheuserto selecioneof theavailableapplicationtypes
througha mutually-exclusive radiobuttoninteraction.

Theremarkableghingabouttheapplicationselectiordialog
is thatit is generate@n-the-flyby theGUI, ratherthanby a
staticcodingof the dialog. At thetime of dialoginitializa-
tion, a scanis doneof all PIA classesisolatingthosethat
arederivedfrom thetypePacAppl. (TheclassPacAppl it-
selfis excludedfrom this set.) A radiobuttonis generated
for eachsuchidentifiedapplicationclass draving thename
text from thesupportingclassinformation. Thus,thefigure
shavs that,atthetime this dialogwascapturediwo appli-
cationsweresupportedithe HSR Inlet Unstart(HiuA ppl)
applicationandthe LAPIN (LapAppl) application.

In all of the GUI, there is only one spot in which
application-specificodingexists: in theimplementatiorof
the documentlassa seriesof include statementsransmit
commentgo thelinkerthatcauset to incorporateheclass
codeof the variousPIA library componentseven though
thereis noreferenceo thoseclassegnd,thus,no needap-



parentto thelinker for thatsupportingcode. It is expected
thatoncethemigrationof thearchitectureo thedistributed
object environmentof CORBA is complete,the needto
forcibly include codebeyond the generic,well-known li-
brarylevelswill ceaseo exist, allowing new applications
to beintroducedto the systemwithout the necessityof re-
compilingevery consumingool.

Figure 11.2 illustratesnearly all the rest of the features
of the architectureas exercisedby the testbedGUI. The
window labeledPacAppl1:1 views a LAPIN application
chooserfrom anapplicationselectiondialogin the course
of GUI startup. The window labeledPacAppll:2 views a
secondapplicationn thiscaseanHIU applicationthathas
beencreatedhsasuccessaio theLAPIN applicationin the
applicationgraph.

A window viewing anapplicationlists from top to bottom

1. The parameteiidentificationtree (which is not ex-
pandedn eitherwindow of the figure for reasonof
space),

2. Theparameteconfiguratiorgraph,
3. Theoperatiortree,

4. The applicationgraphpredecessdist (exceptin the
caseof the PacAppl1:1 window which views theini-
tial nodeof thegraphwhich, by definition,hasnopre-
decessorshnd

5. Theapplicationgraphsuccessalist.

Comparingthe differencesbetweenthe two windows, in
particular the different operationslists, shavs the self-
revealing nature of applicationswithin the architecture.
The PacAppl1:1 window lists the variousLAPIN opera-
tions; the creationof LAPIN parametersthe loading of
LAPIN parameterfrom traditionalFortrannamelistinput,
the runningof LAPIN, andthe validation of the parame-
ter setasinputto a potentialLAPIN run. Meanwhile,the
PacAppll:2 HIU window lists an entirely differentsetof
operationsthecorversionof aparameteconfiguratiorto a
placeholderandseveral differentdata-loadingpperations,
all as previously discussed. Thesedifferencesare all as
a direct result of the GUI inquiring of the applicationas
to the applications contentand generatingan appropriate
viewing window in response.

The two viewing windows alsoreveal the connectionbe-
tweenthetwo applicationsasparticipantsn anapplication
graph. The PacAppll:1 window views the initial nodeof
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theapplicationgraph,aswitnessedy theabsensef aPre-
decessoApplicationselementn its view. (An application
is madean initial nodeof an applicationgraphasanim-
plicit partof the OnNevDocumentprocess.)The Succes-
sor Applicationslist of thatview shows the HIU applica-
tion viewed by the PacAppl1:2 window asits successor
The HIU application,in turn, lists the LAPIN application
of the PacAppll:1 window asits predecessorThe appli-
cationgraphcanbe, of course,expandedto the practical
limits of thehostmachinejt is only for reason®f spacen
thefigurethatjusttwo applicationgn a directparentchild
relationshipareshavn.

The operation of the information propagtion process
throughouthe applicationgraphis alsoillustratedby Fig-
urell.2. Theparameteconfigurationgraphof the LAPIN
applicationviewed throughthe PacAppll:1 window has
beenexpandedbeyond is default single-patriarcorm to
includetwo child configurationsand a grandchildconfig-
uration attachedto the secondchild. By the act of in-
formation propagtion citing the root parameterconfigu-
ration of the LAPIN application(effectedby first select-
ing theroot parameteconfiguratiorof thatapplicationand
thendouble-clickingthe applicationelementof the view-
ing window), that parameteiconfigurationgraphis repli-
catedin the successoHIU application. This is further
confirmedby the fact that the default parameteiconfigu-
ration object namesgeneratedn the LAPIN application
as the configurationgraph was expanded(for example,
LapCfg:00F939D0xpre, in fact, replicatedin the config-
urationgraphof the HIU application. This is preciselyas
expectedby the act of informationpropagtion asa result
of its effort to keepparameteconfigurationsynchronized
betweercooperatingpplications.

12 Future Directions

At this point, theroadaheador the PIA projectseemsel-

atively clear Thekey technologyof self-revelationandits

ability to enablecommontools, information propagtion

throughoutan applicationgraph,andthe like canbe con-

sideredwell demonstratedFurtherwork nov mustcenter
ontwo areasmakingthe applicationarchitecturegractica-
ble by moving it to a distributed objectervironment,and
filling in themary semantigapssoasto have afully pop-
ulatedsetof informationforms.

12.1 Distrib uted Object Implementation

As notedin the discussiorof the HIU application,the de-
mandsof realapplicationsasilyoverwhelmthe capacities
of asinglevirtual addresspacemplementatiorof the ap-
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plicationarchitectureThereis no possibilityof accommo-
dating multiple applicationsin a cooperatie graphwhen
evenasingleapplicationis beyondtherangeof reason.

For this reasorof practicalityalone,it is necessaryo mi-

gratethe applicationarchitectureto a distributed, sened-
object architecture. This work has already begun uti-

lizing the CommonObject RequestBroker Architecture
(CORBRA) technologystandardizethy the ObjectManage-
mentGroup(OMG, http://iwww.omg.org).

12.1.1 Distributed Object Fundamentals

Thebasicideaof thedistributedobjectis to corvinceclient
codethatit is using an objectwithin its own operational
spacewhile, in fact,the actualobjectexists somavherere-
motefrom theclient. Frequentlytheideaof remotemeans
thatthe objectexistson anothemachineaccessedcross
network, notuncommonlthatnetwork beingthe Internet.

To understandhe underlying mechanismf distributed
objectsasimplementedby the CORBA standardgconsider
the conceptualdiagrampresentedn Figure 12.1. Con-
suming code at the upperleft has pointersor references
to whatare, in fact, client stubsof the distributed objects
it believesit is working with. Whena methodis invoked
on a client stub, insteadof performingthe requestedp-
eration, the methodinvokation along with its aguments
are passedhroughto the Object RequestBroker (ORB)
residentin the consumingcodewhich marshalghe infor-
mationinto a transportablenessageThe messagés then
routed frequentlyoverthelnternetto aservingORB. That
ORB cooperatesvith a objectadapter(in earlierformula-
tions a Basic Object Adapteror BOA and, morerecently
a PortableObjectAdapteror PQA) to demarshathe mes-
sageandtransmitthe methodinvokationto animplemen-
tation skeletonobject,whichin mary casessimply passes
theinvokationonto afinal, implementingobject.

When the remote method operationis complete, the
processis simply reversed. The resultsof the opera-
tion are passedback through the skeleton object to the
[BOA/POA]/ORB combinationwhich marshalgheminto
arespondingnessag@androutesthat messagdackto the
ORB servingthe client. Theresponsés demarshalednd
passedackthroughthe client stub objectsto the waiting
consumercode. Exceptfor the generallylongerresponse
times, the consumingcodeis unavare that the operation
did notoccurwithin its locally held object.
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12.1.2 Distributed Object Advantages

This distributedobjecttechnologybringswith it a number
of key advances.

1. The CORBA standardoffers a particularly relevant
featurecalled object serviceactiation. Simply put,
asenedobjectneednot actively exist atall times,but
may insteadresidein a dormant(or etherealizedin
CORBA terminology)stateon somesecondarystor
agedevice. Shoulda methodinvokationcomein for
such an object, a protocol exists which allows the
senerto firstre-creatgor incarnate) thatobjectfrom
its dormantform beforemethoddelivery occurs. At
somelatertime, shouldthe sened objectbecomen-
active, it maybe placedbackin its dormantstate.

Thekey contrikutionhereis thatnotall theobjectsof a
givenapplicationneedto be active within theaddress
spaceof a sener at ary giventime. An application
suchasHIU maywell have terabyteof data,but only
thatdataactively in useatary givenmomenteeddo
besenedby suchasener.

2. Distributedobjecttechnologyallows PIA applications
to be serned to consumingtools (and other applica-
tions) by multiple servingmachines. Thus, it is not
necessaro getall of thedataandimplementingcode
of all thewrappedapplicationsontoonephysicalma-
chine.

This ability to sene different wrappedapplications
from differentmachinesallows thosemachinego be
locatedwith the groupssupportingthe applications.
For example, experimentaldata applicationscan be
sened from machinessupportedoy the dataacquisi-
tion groupwhile aconsuminganalysisapplicationcan
besenedby amachineprovidedby thegroupgenerat-
ing andsupportinghatapplication.Furthermoreboth
suchapplicationscanbe usedby a consumingclient
widely separate@rom bothdistributedobjectseners.

3. Distributed objecttechnologyseparateshe issuesof
functionality from implementation. Thus, the ser
vicesof a PIA-wrappedapplicationmay be supplied
throughdistributed objectswithout exposingthe im-
plementatiorof thoseservices.

This featureis of particularinterestto commercial
providers of applicationswho may wish to sell the

servicesof a particularapplicationwithout revealing

the proprietarymethodsby which thoseservicesare
achieved. The PIA technologyfurther facilitatesthis

by allowing general-purpostols of potentiallywide

availability to interactwith such provided services,
thuseliminatingthe needfor a customaccessoolkit

for every suchofferedproduct.
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12.1.3 Distrib uted Object Difficulties

The migrationto a distributed object ervironment, while
necessargndadwantageousverall,doesbringwith it cer
tain difficulties.

1. Distributed objects, being exposedupon the net by
well-known services,are accessibldyy, literally, the
entire community of the net. Mechanismanustbe
implementedto limit the accessibilityof distributed
objectsto thosethatshouldhave access.

. Having presumablyeliminatedthosewho shouldnot
accesdlistributed objectsof an PIA implementation,
it muststill be recognizedhat the remainingacces-
sor sethasmore than one element. It is, thus, still
necessanto arrangemechanismgso assurethe in-
tegrity of PIA structuracomponentsvenwhenquasi-
simultaneouslaccessely memberof thatconsum-
ing set[8].

12.1.4 Distrib uted Object Persistence

In the CORBA standardtheconnectiorbetweerclientand
objectdoesnot definethe periodof existanceof the object.
An objectmayexist prior to a client connectingo it andit
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mayexist aftertheclienthasfulfilled its desiresandexited.
Indeed the CORBA standardbrovidesno specificatiorfor
eitherthe beginningor endingof asenedobject. Thestan-
dardleavessuchissuedo thediscretionof the application.

The PIA projectprovidesanswerdor the questionof the

beginning and ending of objects. The class(or, in the

CORBA nomenclaturethe interface)informationsupport
systemprovidesa Createlntedicemethodwhich createsa

new instanceof the supportectlass.To endsucha created
object,every classmplementedy the PIA projectinherits

from the baseclassa SetDefunctmethodwhich declares
theterminationof the presentingnstance.

Betweerbegginningandending,the CORBA objectsof the
PIA implementationexist without regard to the comings
andgoingsof clients. As indicatedpreviously, whensuch
an objectappeardo beidle, the sener programarranges
to remove the objectfrom active serviceandsavesits con-
tentto persistenstoragethroughthe serializationmecha-
nismsoriginatedin the C++ implementatiorwork. When
amethodinvokationon suchanobjectarrivesatsomelater
time, the objectis re-createdindits contentgestorecby a
deserializatiorperationbeforemethoddelivery proceeds.



12.2 Populating the SemanticSet

The mechanisnof self-revelation of kind dependsupon
exacting definition of the semanticnatureof a particular
object. In the work to datethis hasbeenrelatively easy
sincethedefinitionsinvolvedstructurakcomponentsappli-
cationsin a genericsense parameteidentifications,con-
figurations,and the like. Even the geometricparameter
kinds were definedwith comparitve easesincethe issue
of geometryis relatively well settled.

The usability of the PIA technologyis closely relatedto
the supplyof ‘building blocks’ availableto the application
wrapper particularlyto the supplyof semanticallydefined
parameterclassefrom which to choose. While the cod-
ing of parameterss oftenquitetrivial, the needfor experts
in thevariousdisciplineswho canformulateclear broadly
applicabledefinitionsof particularparameteformscannot
beoveremphasized.

13 Summary

An abstract, highly flexible, object-orientedapplication
architecturehasbeendefined. The architecturehasbeen
implementedin C++ and real applicationshave been
wrapped according to that architecture. Applications
wrappedn this mannerhave beenconnectednto directed
applicationgraphsand the automaticpropagtion of in-
formationfrom sourceapplicationto consumerashbeen
demonstrated.
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