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Thiswork, situated at the confluence between CFD and tribology, isthe first
application of arelatively new numerical method, the space-time conservation el ement
and solution element (CE/SE) method, to flowsin thin films.

The general features of the numerical method are highlighted, and also the
concept of fluid film bearings is presented. The formulations of the governing equations
and boundary conditions for four main cases are shown: 1-D and 2-D cavitated bearings
using Elrod’ s formulation, hybrid gas bearings, and gas bearings including inertial

effects.



The numerical formulations applied on both uniform and non-uniform grids are
presented, with emphasis on the important features of the method when used to solve
these specific problems, including the formulation of the boundary conditions.

Based on the described formulations, numerical codes have been developed. The
results obtained are compared with experimental values, theoretical results, and
numerical results obtained by using other algorithms. In the case of cavitated bearings,
because the algorithm developed is capable of capturing potential discontinuities, the
differences between the results obtained with the CE/SE method and with previous
methods are significant when the position of the full film reformation point is not
imposed through the supply system (boundary conditions). Important differences have
also been noted in the case of gas bearings including inertia effects. Results demonstrate
that the inclusion of inertia effects becomes necessary when the bearing speed is very
high and/or the film clearance is large. Flow discontinuities are shown to occur in a
manner similar to that of shock wavesin supersonic flows.

Comparisons prove that the space-time CE/SE method, when contrasted to
previous numerical algorithms, can successfully predict the pressure distribution within
bearings, including cases with discontinuities in the lubricant film. Moreover, the
method accomplishes this without any special treatment and without introducing
distortion and/or excessive dissipation into the solution. The method is thus a strong
candidate in applications that require more precise results, such as accurate, robust
computation of the cavitation boundaries, as well as to solve transient problems. The
method is also a perfect candidate in more complex problems, such as flows at very

high speeds with inertia effects.
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Chapter One

Introduction, M otivation

Computational fluid dynamics (CFD), represents the methodol ogy to numerically

solve the equations governing physical phenomena of fluid mechanics and heat transfer.
Many fundamental ideas from CFD are relatively old. However, using the extraordinary
increases of computational speed and capacity during the last 30 years, CFD has evolved
as afull science field, smultaneously mature and extremely dynamic.

Tribology was created as aword in 1968 to identify the science that investigates

friction. Even though it is part of tribology, fluid-film lubrication has a much longer

history. Thefirst scientific paper in thisareais considered to be “First Report of Friction
Experiments’ by Beauchamp Tower, published by the Institution of Mechanical
Engineersin London, in 1883. While applications of fluid-film lubrication date back
thousands of years, thisfield has been founded as a science by Osborne Reynolds through
his work on lubrication theory [Reynolds, 1886]. Most modern industries, including
power generation, aerospace, transportation, manufacturing, and computer technol ogy,
are dependent on progressesin this field, and could not be even imagined without using

concepts of fluid lubrication.



Thisthesis placesitself at the confluence between CFD and tribology. On one
hand, the present work uses CFD methods. These schemes are applied to solve equations
that are derived from the governing equations of fluid mechanics and heat transfer. On
the other hand, the engineering applications solved are from the field of fluid-film
bearing lubrication. This feature imposes some particular characteristics on the governing
eguations and boundary conditions used.

There are many research studies involving numerical methods applied to fluid-
film bearing problems, and those relevant to this thesis will be referenced herein. This
fact attests the importance of the subject, but also suggests the continuous need to
improve the numerical predictions for these applications. Theoretical modeling
simplifications, associated with extensive experimental work, alowed for significant
advancements in the fluid-film lubrication even before the development of modern
computers. However, today’ s increase in computational power, as well as the important
progress in numerical methods, provide a different environment. Because numerical
solutions that can be used in practice are more powerful and accurate than ever, many
theoretical simplifications used to model the problem begin to reach their useful ness.
Thisis one aspect that will be shown in this work. Modeling ssmplifications are till
needed in order to solve real problems. However, some “classical” simplifications, till
universally used in engineering practice, have started to become superseded by today’s
progresses in numerical (and also experimental) techniques.

Thiswork is part of an ongoing research effort within the Department of
Mechanica Engineering at the University of Toledo to develop numerical models for the

solution of fluid film lubrication problems. On one hand, the significant achievements



obtained during the past several years, for example, [Vijayaraghavan and Keith, 1989],
[Vaidyanathan and Keith, 1991], [Yu and Keith, 1995] , [Dimofte, 1995], [ Y ang and
Keith, 1996 - 1 and 2], [Vijayaraghavan, Keith, and Brewe, 1996], [Dimofte, Proctor,
Fleming, and Keith, 2000], [Wang, Keith, and Vaidyanathan, 2001, 2002] , [Moraru €t.
a., 2003], have been important catalysts to improve the quality of the present research.
On the other hand, the experience accrued by the computational and experimental
thermal sciences focus group also allowed identifying problems that remained unsolved.
One of these problemsis related to the numerical prediction of discontinuitiesin the flow.

A theoretical analysis of the governing equations for flows with cavitation leads
to the conclusion that the fluid film reformation front can include flow discontinuities.
This aspect is a consequence of the character change of the governing partia differential
eguation from hyperbolic in the cavitated region to éliptic in the full film region
[Vijayaraghavan, Keith, and Brewe, 1990]. However, previous numerical methods
applied could not capture discontinuities, except for the cases when the location of the
reformation front is known apriori. An example of such a case is when the reformation
front isimposed by the presence of the supply system. This situation is known in the
CFD literature as shock fitting. Obviously, when the location is not known, a shock
capturing method [ Tannehill, Anderson, and Pletcher, 1997] must be used.

Another situation for which a shock capturing numerical scheme must be used is
the case involving gas bearings including the effects of the inertial forces. The classic
treatment of gas bearingsisto neglect the inertia terms in the governing equations, since
adimensional analysis shows that these terms are small. However, when the bearing

speed is very high, the magnitude of these terms can increase, so that they become more



important, and therefore must be included in the equations. In these conditions, the
character of the governing equations can change from one region to another, and
therefore discontinuities may occur, very similar to the situation in which shock waves
are present in a subsonic-supersonic flow.

During the same time, at the NASA Glenn Research Center in Cleveland, Ohio, a
novel numerical method was developed. The method was called the space-time
conservation element and solution element (CE/SE) method [S.C. Chang et. al., 1991]. It
took arelatively long time (5+ years) for this method to start to be used by the scientific
community outside of the workgroup where it has been developed. Thisis an indication
of the fact that it is not easy to understand and therefore was not readily implemented. In
recent years however, the CE/SE method has been successfully applied to flows both
with small and large discontinuities (sound waves and shock waves) [Chang, Wang, and
Chow, 1998], jets [Jorgenson and Loh, 2002], [Chang, 2002 - 1 and 2], viscous flows
[Chang, Zhang, Y u, and Jorgenson, 2000], cavitation [Qin, Yu, Zhang, and Lai, 2001],
detonation [Im and Y u, 2002], phase change [Ayasoufi and Keith, 2003], etc. These
complex applications are a proof of the capability and value of the CE/SE method.

Considering the necessity to use a numerical method capable to accurately capture
flow discontinuities, and considering the capabilities of the CE/SE scheme as described
in the literature, it was decided that this method could be a good candidate to calculate
the flow within cavitated bearings, gas bearings, and high-speed gas bearings including
inertial effects.

Thiswork is divided into five main parts. After this brief introduction, in the

second chapter fluid film bearings concepts are presented, together with the formulation



of the governing equations and correspondent boundary conditions. Gaseous cavitation
and Elrod’ s formulation are also shown there, as they will be used as a starting point
(model) for the numerical formulation.

Chapter Three starts with a general presentation of the space-time conservation
element and solution element method. Its main features, as shown in the literature by its
origina authors, are highlighted. The one-dimensional formulation of the method, as
applied to cavitated fluid film bearings, is then presented in detail, both for uniform and
non-uniform grids. The results obtained show the capability of the formulation to capture
flow discontinuities. The two-dimensional formulation applied to cavitated bearingsis
also described in detail, followed by some representative results obtained for both aligned
and misaligned journal and wave bearings.

Chapter Four is dedicated to gas bearings. After a short introduction to the
particularities of gas bearings compared to liquid (oil) bearings, the numerical
formulation is presented, with emphasis on the differences relative to the previous case.
The applications concentrate on pressurized, or hybrid, bearings. These bearings are able
to sustain aload with and/or without relative motion between the shaft and the bearing
sleeve. Special consideration is given to the modeling of the supply system through the
boundary conditions.

Chapter Five presents the application of amodel to include the inertial forcesin
the governing equation of the flow in gas bearings. The Reynolds equation requires the
solving of asingle differential equation. The inclusion of the inertial effects, in the two-
dimensional space, adds two more equations that need to be solved simultaneously with

the continuity equation. This fact substantially increases the complexity of the problem,



including the possibility of the occurrence of flow discontinuities. The analytical and
numerical formulations of the problem for this case are presented, followed by a
comparison between the results obtained with and without inertial effects for a given
geometry. The occurrence of flow discontinuitiesis also shown.

The last chapter is reserved for some conclusions regarding the application of the
CE/SE method to flows in thin films. The advantages of the method as reveaed
throughout the work are restated in a unified way, together with some possible directions

to continue this research.



Chapter Two

Fluid Film Bearings and the Reynolds equation

2. 1. The Reynolds Equation

Consider two solid surfaces separated by athin fluid film, as shown in Fig. 2. 1.

Fig. 2. 1 — Coordinate system for two solid surfaces separated by athin fluid film

Consider also an orthogonal reference system, with the origin O located on one of
the two solid surfaces, while axes Ox and Oz are contained in the same solid surface.
Because the surfaces can be curved (as in the case of journal bearings), the axes can also

be curved.



The film thickness, measured in the direction of axis Oy, is a function of two
gpatial coordinates and time

h=h(x,zt). 2.1
Thickness h is considered to be very small compared with the other dimensions of the
lubricated surfaces

lﬂ ~0(10?), (2.2)

where | is acharacteristic length of the lubricated surfaces. For dlider bearings| is usually
the length of the bearing, whereas for journal bearings, according to various authors, the
length | can be the bearing radius, diameter, or circumference. The hypothesis given by
Eq. (2. 2) alows the introduction of an important simplifying assumption: the curvatures
of the lubricated surfaces are negligible. Indeed, considering that the curvature radii of
the solid surfaces are at least of the order of magnitude | (for curved surfaces, a
characteristic length can be considered as the minimum radius of curvature), theratio

h/l = 0(10‘3) isan indication of the error introduced when neglecting the curvature. This
error is acceptable for all practical cases.

The two surfaces are considered to have a general instantaneous translation
motion given by (U,,V,,W,) and (U,,V,,W,), where U, V, and W are the vel ocity
components in directions x, y, and z, respectively, and indices 1 and 2 refer to the two
solid surfaces. Consider that surface 1, which contains the axis origin O, has amotion
tangent in all pointsto this surface. Thisisthe normal case for bearing lubrication
problems. This assumption is equivalent to the condition

V,=0. (2.3)



The boundary conditions for the fluid are then:

Onboundary 1: a y=0—-u=U,,v=V, =0,w=W,. (2.4

Onboundary 2: at y=h—u=U,,v=V,,w=W,. (2.5)

a)

b)

d)

The following assumptions are made:

The mediumis a continuum. This assumption is valid as long as the film thickness
islarger than the mean free path of the fluid molecules. For instance, the free path
of gas moleculesis about 65 nm in normal operating conditions, while the
minimum film thickness in gas journal bearings has the order of magnitude of one
um. However, in applications like the hard disk drive dlider, the film thickness
can attain values on the order of 10 nm. Thus, in this case the assumption is no
longer valid [Wu and Bogy, 2001].

Thereisno dlip at the boundaries. This assumption has been included in Egs.
(2.4) and (2.5). Again, in cases like the gas rarefaction that occur when the film
thicknessis extremely small, this assumption is not valid. Also, specia kinds of
fluids do not follow this assumption [Tipei, 1980].

The fluid is Newtonian. This assumption is considered to be accurate for gas
bearings, but the physicsinvolving oils can be significantly different from the
Newtonian model, especially in cases that involve high pressures. A non-
Newtonian model must be considered in such applications, asin [Wang, Keith,
and Vaidyanathan, 2001], or [Cioc et. a., 2002].

The flow islaminar. This assumption is based on the idea that the film thicknessis
very small, and therefore the Reynolds number is also very small. Hence viscous

forces prevent the initiation of turbulence. However, some practical applications
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that include high-speed bearings with film thickness discontinuities can develop
turbulence. A turbulence model must then be included [Ng and Pan, 1965], [Elrod
and Ng, 1967], [Hirs, 1974], [ Constantinescu and Galetuse, 1982].

The external body forces are negligible. Body forces, like gravity or centripetal
forces, are usually small compared with the pressure forces or the shear forces.
What is more, in normal applications these forces do not contribute to the fluid
flow [Bird, Stuart, and Lightfoot, 1960].

Theinertia forces are negligible. Again, these forces are usually small compared
with the pressure or with the shear forces. This assumption has profound
implicationsin the ssimplification of the flow governing equations. However,
when the flow has discontinuities or steep variations, these forces can have
significant influence, [ Constantinescu, 1995], [ Szeri, 1998].

The surfaces curvature is neglected. This assumption has been discussed earlier.
In certain cases, as when the film thickness has steep variations, the surface
curvature can have an influence, and it should be considered, [Szeri, 1998].

The surfaces are smooth. All surfaces have irregularities, resulting from the
manufacturing processes. When the fluid film thickness is much larger than the
surface irregularities, the influence of the roughness can be considered negligible
compared with other factors. This assumption is not valid for very thin films (for
example boundary lubrication), [Wang, Keith, and Vaidyanathan, 2002].

The surfaces arerigid. The pressure developed in the fluid film contributes to the
surface elastic, and possibly even plastic, deformation. Thisinfluenceis

negligible for most fluid film lubrication applications. However, when film
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pressures are very large, surface deformation must be considered. Because this
deformation affects the film thickness, it will also affect the pressure distribution,
so that the surface deformation equations must be solved simultaneously with the
fluid film equation(s) [Cioc €t. al., 2003].

The film thickness is small compared with the other dimensions. Thisis called the
fundamental hypothesis of lubrication, and isimplicitly included in many of the
above model assumptions, [Fréne et. a., 1997].

Fluid density and fluid viscosity are constant across the film thickness, i.e.,

p,U= p,u(x, z,t) . This assumption enables very important simplifications when
the governing equations are integrated across the film thickness. When the
temperature change across the film isimportant, the assumption of constant
density and viscosity across the fluid film may become a source of errors, [Fréne
et. al., 1997].

Pressure is constant across the film thickness, p= p(x,zt). More than an

assumption, thisis a consequence of the fundamental hypothesis of lubrication
applied to the momentum conservation equation, using dimensional analysis

[Fréneet. a., 1997].

m) The velocity componentsin x and z directions are

1dp h—y

y
u=——— -h)+U,—+U, =, 2.6
Zptaxy(y ) 1 h 2 (2.6)
1dp h-y y
w=——— —h)+W —+W, = . 2.7
2Hazy(y ) 1 h 2h (2.7)

These equations are a result of assumptions a)-1).

Based on conditions a) to m), the Reynolds equation [Fréne et. al., 1997] is
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o (ph®a d (ph®a dh oh
—[p——p}—[p——pj=6p(ul—u2)5+6p(vv1—vv2)—

OxX\ uw dax) dz\ u oz 2.8

) d ap

+6h—[pU, +U, )|+ 6h—|[p(W, +W, )|+ 12pV, +12h—.

(U, +U, )|+ 6n-" [p(ng +W, ) +12pV, +12n SE
Equation (2.8) can further be simplified when surface 2 has only avelocity

normal to the fluid film, i.e., iny direction. In that case,

oh
U, =W, =0, V, =20 (2.9)

Also, the x-axis coincides with the tangential velocity U of surface 1,

U=UZ+W? . (2. 10)

Considering Egs. (2.9) and (2.10), Eq. (2.8) becomes

3 3
i(ph)+i phU _ph"dp|, d [ ph"dp|_, (2.12)
ot ox\ 2 12udx) dz\ 12u9z

This simplified form of the Reynolds equation can also be easily developed in the
following manner. Consider an infinitesimally small control volume full of fluid as
shown in Fig. 2.2, where coordinates x and z, aswell astimet, can have any valuein the
domain considered. The upper and lower boundaries of the control volume are situated on
the solid surfaces, considered to be impermeable, while the lateral boundary surfaces are
fixed and permeable. The total volume of the control volume is thus

Vol = h(x, z,t)AxAz. (2. 12)
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T

Fig. 2. 2 — Control volume

The mass conservation principle states that the fluid mass accumulation in the
control volume must be equal with the sum of the mass flow rates that enter and exit the
volume through its boundaries.

The flow in the thin fluid film is, according to assumptions a)-i), the sum
(superposition) of aone-dimensional Couette flow (in direction x) and a two-dimensional

Poiseuille flow (in directions x and z). Consider first the Couette flow (Fig. 2.3).

Fig. 2. 3 — Couette flow in x direction



The mass flow rate in direction x for aunit width in the zdirection is

1
i =—phU .
rr]couate 2 p

Consider the Poiseuille flow in the x direction (Fig. 2.4).

Fig. 2. 4 — Poiseuille flow in x direction

The mass flow rate for aunit width in zdirection is

) h® 9
(mX)Poiss.JiIIe: P1cP

_phop 2.14

12u d x ( )

Similarly, in the z direction, the Poiseuille or pressure driven mass flow rateis
. h®o
(mZ)PoissJiIIe =P P : (2.15)
1210z
. . At At .
Consider thetimeinterval {t—;,H?} of length At. The fluid mass
accumulation in the control volume for thistime interval is
(phAXAZ)x,x,Hg - (phAXAZ)x,x,t—g : (2 16)
2 2

The mass flow balance for the same control volume, in the same time interval is:

(2. 13)

14
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- X dl reCtI on: (rhCouette + (mx )Poi%uille) X—— 7t (rnCOuette (mx )Poiseuille> X+&,Z,t :|AMt '
L 2 2
- z dl reCtI on: (rn)PoisajilleL'Z_%'t - (rnz )P0|seunle|x z+ 2 j|AXAt
The mass conservation principleis therefore,
(phAXAZ)x X t+ (phAXAZ)x Xt—— AZAt|:(rhCOuette + (mx )Poisajille) x—g,z,t
(2.17)

- (r'nC0uette + (mx )Poiseuille)

x+%,z,t :| + AXAt[(mZ )Poiseuille

%2220 T (mz )Poiseuille
2

Az }
X, Zz+—,t
2

Substituting the expressions for the mass flow rates per unit width, Egs. (2.13) and (2.15),

into Eq. (2.17) yields,

ph’ap
hAxAz hAxAz = At| Azl =phU —
(p )xxt+ (p >XXt A Z(Zp 12“‘ an AX o

(2.18)
3 3 3
. A{lphu _ﬂﬂJ . A{_ﬂ@] . A{_ﬂﬂj
2 121 d x X+%’Z’t 121 dz X'Z_%‘t 121 0z x,z+%,t
Equation (2.18) is now divided by AxAzAt to get
3 3
(ph)xxt+ (ph) 2 12“ a X X+&,Z,t 2 12““ a X x—ﬁ,z,t
2 2 2
At AX (2. 19)
ph®ap)  _(ph°ap
1200z) a2, \1200Z)  a,
+ T2 T2
Az

Taking thelimitsas Ax — 0, Az— 0, and At — 0, Eq. (2.19) becomes,

3 3
i(ph)z_i phU _ph"dp +i ph”adp , (2. 20)
ot ox\ 2 12udx) 9z(12uoz
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which isthe same as Eq. (2.11).

This shows again that the Reynolds equation is a particular form of the mass
conservation principle. The particular form assumes that the velocity profile across the
film thickness is the sum of the Couette and Poiseuille velocity profiles. This assumption
practically includes all assumptions a)-1) written for the ssimplified case given by Egs.
(2.9) and (2.10), and it also includes the boundary conditions at the walls.

The unknowns in the any of the forms Eq. (2.8) or Eq. (2.11) of the Reynolds

equation are the fluid density p and the pressure p at each point (x,z,t), while the film
thickness h and fluid viscosity p are usually known. In cases in which they depend on the
density and pressure distributions, then h,u = h,u(p, p); therefore, iterative procedures
are used where at each new iteration k they are expressed as functions of the old iteration
(k—1) value ie hy/ =h, p(p|k_l, p|k_l). Examples of applications where this technique

is utilized include: rotor dynamics, where the rotor position in the bearing depends on the
pressure distribution [Childs, 1993], or elasto-hydrodynamic lubrication, where the
pressures are very high, and the viscosity can no longer be considered constant [Cioc &t.
al., 2002]. In this work, when no other specifications are made, the film thickness h and
fluid viscosity u are considered known.

Because there are two unknown field variables, in order to close the problem, at
least one other equation is needed. The closure is completed in many different ways,
depending on the type of fluid used, or on the model considered.

a) Thefluidis perfectly incompressible. In this case the density is constant, and the
pressure is the only unknown:

p = const. (2.21)
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In this particular case the Reynolds equation islinear. Almost all analytical results
have been obtained for incompressible fluids, and of course most numerical
methods can be used to solve this problem.

b) Thefluidis compressible, but there exists a direct relationship between the fluid
density and fluid pressure,
p=p(p). (2. 22)
In this case the Reynolds equation is non-linear, and complex pressure and
density distributions can occur. The case of compressible fluids will be generally
considered in thisthesis. One specia situation in this study is that of cavitated
bearings.

c) Additiona equation(s) and variables are considered. One exampleisthe
introduction of one additional variable (fluid temperature), one additional
differential equation, (the energy equation), and one ore more additional
equation(s) to determine the density and/or viscosity as functions of pressure and

temperature [Arghir and Fréne, 2002].

2. 2. Boundary conditions

Boundary conditions must be individually prescribed for each problem solved.
Since Reynolds equation is essentially the same, the individuality of each problemis
therefore determined mainly by the boundary conditions. However, there are some
situations that occur frequently, which can be presented as genera boundary conditions

for journal bearings.
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a) Conditions at the bearing lateral ends.
At the bearing lateral ends the pressure can be either atmospheric pressure, or a
prescribed constant value for submerged bearings. For cavitated bearings, an additional
boundary condition referring to the fractional film content must be imposed when the
cavitation region reaches the bearing ends, since the pressure is not the defining
parameter for these regions.

b) Conditions at the bearing supply system.
Many bearings use a supply system that brings pressurized fluid into the bearing
clearance. Two choices occur in this case:
b-1) The supply holes are considered part of the bearing computational domain, i.e. the
supply holes areas inside the bearing are covered with grid points/elements. Thisisthe
most common choice, and it is treated by imposing a supply pressure value on the grid
points/elements that are inside the supply holes. Since this value is not determined from
the governing equation, and since the Reynolds equation is a mass conservation equation,
this condition is equivalent to imposing a mass flow rate into or out of these grid
points/el ements (the mass conservation is not satisfied at these locations). The same
argument is also valid at the bearing ends. More details will be included in subsequent
chapters of thiswork.
b-2) The supply holes are considered outside the computational domain. This choice may
be used mostly for supply systems with relative large pockets. For this case, the pressure
must be imposed on the contours of the supply holes, while the shape of the

computational domain becomes more complicated than in the previous case.
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¢) Conditions at the bearing center-plane.
When the bearing has a symmetry plane, the computational domain can be halved to
reduce the computation time. In this case, symmetry boundary conditions must be
imposed at the section plane.

d) Conditions at the cavitation region boundaries.

Cavitation is discussed in the following paragraph.

2. 3. Cavitation in liquid-lubricated bearings

Cavitation is a physical phenomenon that occurs when the pressure inside aliquid
is small enough so that pockets of vapors and gases form. In journal bearings for
example, the pressure tends to be smaller than the exterior pressure in relatively large
regions. In this case, there are three possible processes [Fréne et. al., 1997]:

i) Air, or more generally, gas from the atmosphere, enters into the low-pressure
region until the pressure becomes equal to the ambient pressure.

ii) Gasdissolved in the liquid is expelled from it until the pressure reaches the
saturation value.

iii) The pressure is smaller than the saturation pressure of the liquid, so that the
liquid vaporizes at the ambient pressure under low pressure. The vapor bubbles can later
implode, contributing to the surface deterioration. This case isthe only one strictly
meeting the definition of cavitation, but nonethel ess the first two processes, which are the
most frequent in fluid film bearings, are also considered part of this phenomenon.

Historically, the effects of cavitation on the performance of bearings were

disregarded in numerical calculations. The common practice, known as Gimbel (or half-
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Sommerfeld) boundary conditions, was to modify full film results by setting negative
relative pressures (relative to the cavitation pressure) to zero. Although the load carrying
predictions were reasonably accurate, especially for short bearings, the results violated
the mass conservation principle. Consequently, several other procedures have been
proposed. Jakobsson and Floberg (1957) and later Olsson (1965) introduced a set of self-
consistent boundary conditions for cavitation to be applied to Reynolds equation. This
procedure isvalid for moderately to heavy loaded bearings and is generally called JFO
theory. This methodology is commonly incorporated into modern computational
algorithms for bearings, and is also implicitly included in the present work, as shown
later. However, it must be mentioned that the modeling of the cavitation in fluid film
bearingsis still being researched [Groper and Etsion, 2001].

When cavitation occurs, the fluid film bearing domain is divided into two sub-
domains: the full film region and the cavitated region. While in the full film region the
classic Reynolds equation holds, in the cavitation region the pressure is considered to be
equal with the cavitation pressure p, which is a constant over the surface of the bearing.
In thisregion it is considered that only one fraction 6 of the film thicknessisfilled with
liquid, and this liquid adheres to both the bearing and shaft surfaces. The gasis
considered to have negligible density compared to the density of the liquid, so that the

density of the fluid in the cavitation region is (8-p). In these conditions, the Reynolds
equation [Fréne et. al., 1997] divided by (6h) becomes

0 0 oh oh (0
a[ep(ul+U2)h]+5[9p(V\/l+W2)h]=29p[U2$+W2$—2\/2}+2h%, (2. 23)
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or, considering, asin Eq. (2.9), that surface 2 has only anormal to the fluid film velocity,
Eq. (2.23) becomes
|

=~ l6p(U, +u )h]+ [ep(W+W)h] 2 (g‘t’h) (2. 24)

Because different equations govern the fluid flow in the full film and in the
cavitated film regions, boundary conditions must be used at the interface between the two
regions. These conditions must reflect the mass flow rate continuity across the cavitation
boundary. Consider a cross section through the cavitation boundary, as shown in Fig. 2.5
for the fluid film rupture boundary (the cross-section is normal to the boundary, in

direction n).

Cavitation
boundary

y
Vn boundar)/ T

»

Film rupture n

Full film region Cavitated region

Fig. 2. 5— Cavitation boundary

In the full film region, the mass flow rate of fluid entering through the boundary per unit

lengthis

h 2
m, = J-p(\/n in—Vn boundary )dy ph(u_ - h—% -V, boundary] , (2. 25)

0
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where V, . isthe velocity component of the fluid normal to the cavitation boundary, and

the boundary is considered to have the velocity V, in direction n. The fluid velocity

boundary
is due to the Couette and Poiseuille components, as previously shown in Eq. (2.20),
calculated in the direction normal to the boundary direction, n.

In the cavitated film region, the pressure is constant, and in agreement with the
cavitation model that considers a fraction 6 of liquid component that adheres to both

upper and lower surfaces, the mass flow rateis

h
, U,
m, = J-p(vn out +Vn boundary )dy = eph(? +Vn boundaryj (2 26)
0
The boundary condition thus becomes

My =My (2.27)

or,

U h? 9 U

Note that the same condition holds for the reformation boundary, since in this case all the

signs of the mass flow rates will change. Equation (2.28) can also be written as

U h> dp
1-0) —*-V, -——=0. 2.29
( { 2 n boundary) 12},l on ( )
For the steady state case, in which the cavitation boundary is fixed, (\/n boundary = O),

Eq. (2.29) becomes

2
@a- e)ﬁ_h_% =0

(2. 30)
2 12udn
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Note that the value of the fractional film content is calculated at the boundary inside the
cavitated region, while the pressure derivative normal to the boundary is calculated inside
the full film region.

Consider the case of the film rupture. Immediately before the rupture, the pressure

can only decrease ? < 0, because the minimum pressure occurs inside the cavitation
n

region p=p, = P, - Sincethe fractional film content can only be smaller than unity,

6 <1, the only possihility for the boundary condition, Eq. (2.30), to hold is

0=1, (2.31)
and

@:O. (2.32)

an

These conditions show that across the film rupture the pressure, pressure gradient, and
fractional film are continuous functions.

Consider the case of the film reformation. Using the same analysis as before, the

pressure after the reformation can only increase % > 0. When the pressure gradient is

strictly positive, % > 0, the fractional film content before the reformation must strictly

be smaller than unity, i.e., 6 <1. This shows that at the reformation boundary the
fractional film content, and al so the pressure gradient, can have discontinuities. Later, in
the next chapter, it will be shown that in this case the pressure must be a discontinuous

function as well.
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The location of the cavitation boundary is not known, and it must be determined
during the solution. The JFO theory includes equations for the cavitation boundary. Using
adifferent approach, as shown next, these equations have not been used in this work.

An alternative approach to considering two different kinds of domains (full film
and cavitated) with boundary conditions at the interface between them isto use Elrod's
formulation [Elrod, 1981]. In this case the governing equation is written in aunified way

for both regions using the definition of the bulk modulus B’

, 0
p=pSP (2.33)
p

In order to work in terms of density, a non-dimensional density variable, 0, isintroduced

o= (2. 34)

where p_ is the density of the lubricant at the cavitation pressure, considered constant.

The bulk modulus definition becomes in this case

, 0P
=0—= . 2.35
B T ( )

The Reynolds equation yields, in terms of the non-dimensional density

713 /143
Ipchd . 9 (phBU pfBh° 96| d ([ pfh'db)_ ., (2. 36)
ot  adx| 2 12u dx) dz\ 12y 9z

Considering that in the cavitation region the flow induced by the pressure is negligible,

i.e.,

0 (ph°dp|_d (pBh a6 _,
ox{12uox) ox{ 12u ox)

9 fph*ap)_ o (pfh06)_,
0z\12uoz) oz| 12u 9z

(2.37)
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aswitch function, g.,

_J1-full filmregion,6=1
°~ |0 —cavitated region,0<6<1

(2.38)
isintroduced into the pressure-density relation,

dJp

0. B’zpa— : (2.39)
p
so that the Reynolds equation can be written as,
71,3 /143
@+i hey —gCBh 901 9 cBh ki =0. (2. 40)
ot odx\ 2 12udx) dz{ " 12uaz
The pressure-density relation yields, by direct integration,
p=p.+9.81n6, (2. 41)

where the cavitation pressure p, is a constant as a result of the switch function

assumption.

Using one single field variable for both regions, and one single form for the
governing equations in both regions, this formulation is not only an elegant approach for
the modeling of the flow in cavitated bearings, but it also simplifies the numerical solver
because it allows the use of a single numerical method for both regions. However,
because the governing equation has different charactersin the two regions, and because
field discontinuities can occur at the reformation fronts, the numerical scheme must be
able to handle in an accurate way these potential problems.

A potential drawback of the method is related to the value of the bulk modulus,

B". This coefficient accounts for the compressibility of the lubricant in the liquid state,
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and it must be determined experimentally. Ideal liquids (incompressible) have B’ — .
Real liquids are compressible, and thus B’ = finite. However, the bulk modulus has high

values, with the order of magnitude being 7-8 or higher in the international (metric)
system of units. When an explicit numerical method is used to solve the governing
eguations the time step is bounded by the CFL condition. Therefore, higher values for the
bulk modulus will reduce the maximum allowed time step. Smaller time steps will
determine an increase of the computational effort and also an increase of the dissipation
in the cavitated regions, where the bulk modulus does not appear, and thus the Courant
number becomes much smaller than 1.0. This feature will also be discussed in the

following chapters.



Chapter Three

Application of the CE/SE Method to Cavitated Bearings

3. 1. Introduction: the CE/SE method.

The space-time conservation element and solution element (CE/SE) method was
proposed for the first time at the NASA Glenn Research Center, in Cleveland, Ohio,
[Chang and To, 1991]. Over the past several yearsit has been utilized in a number of
computational fluid dynamics applications; for example jet and fan noise prediction
[Jorgenson and Loh, 2002], flows with shock/acoustic wave interactions [Wang, Chang,
and Jorgenson, 2000], and shock tube problems [Chang, Wang, and Chow, 1998]. It has
also been applied to problems involving chemical reactions [Y u and Chang, 1997 - 2],
detonation, [Im and Y u, 2002], and phase change, [Ayasoufi and Keith, 2003]. One of its
main featuresisthat it can ssimultaneously capture small and large discontinuities (such as
sound waves and shock waves) without introducing numerical oscillations in the solution
[Wang, Chang, Jorgenson, 2000], [Chang, Wang, Chow, 1999], [Qin, Yu, Zhang, Lai,
2001], et a. Accordingly, this new method is an excellent candidate to be applied to the
flow in cavitated bearings.

The genera principles of the method are explained in [Chang, Wang, and Chow,

1998], and they show that “the method has been built from the fundamentals, and not as a

27



28

modification of any previous existing method”. As agenera feature, the CE/SE method
has been developed to solve conservation laws in continuum mechanics. The following
provides some features and advantages of the method, which are based on the guidelines
of the original authors of the method. These features will be illustrated in the applications
for the fluid film bearing flows.

1 Perhaps the most important characteristic of the CE/SE method is that space and
time are treated in a unified fashion. While most numerical methods (FD, FEM, FV)
handle space and time differenced terms in the governing equations separately, this
scheme treats them in aunified way. The solution is approximated with ssmple (linear)
functions within the “solution elements’ (SE), and the conservation law isimposed, on
each "conservation element” CE, in the space-time hyperspace. This resultsin very good
accuracy even though the unknowns are approximated locally in a simple fashion (linear
for example) and even when arelatively coarse grid is used.

2. The CE/SE method emphasi zes the integral form of the conservation laws. This
characteristic is also common for the FE and FV methods. However, as shown below, for
each CE, the CE/SE scheme enforces the conservation of the flux in the combined space-
time hyperspace. Some important advantages occur from this feature:

2a. Even when the differential form of the governing equation is second order, linear
local approximations can be used in the discretization process.

2b. Even when linear local approximations are used, the solution will be second order
accurate, i.e., theintegral form of the governing equation will be satisfied with second

order accuracy.
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2c. The accuracy of the method has the same order both in space and time when the
same order functions of space and time are used. Traditional methods address flux
conservation for the space component only.

3. The CE/SE method can be very ssimply described in terms of the geometry of the
discretization. No knowledge of the properties of the solution is necessary. In other
words, unlike most numerical schemes, no special treatment is necessary for
discontinuities, or for different characteristic regions, providing that the governing
eguations are written in strong conservative form. This property radically contributes to
the generality of the scheme and to the codes built on it. The method itself is not trivia to
describe and to understand. Thisis proven also by the fact that it took more than 5 years
from the first publication of the method to its application by researchers not directly
working with the original authors. However, a computer code based on the method can be
structured in arelatively simple way, while maintaining its general character.

4. Fluxes are calculated at the conservation elements boundaries without
interpolation or extrapolation. In particular, no Riemann solver is needed in calculating
interfacial fluxes, asin traditional FV methods. This feature isinsured by the way the
numerical solution is constructed on the SE domain.

5. The gradients of the solution are not calculated through a reconstruction
procedure, as in upwind methods. These gradients are considered as unknown
independent variables, and determined as part of the solution. Also, for hyperbolic
problems, the gradients are thus not influenced by the solution at the same time level,
whichisin full compliance with the physics of the hyperbolic initial value problem. Note

however that both of these characteristics of the method have been relaxed in order to
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simplify the solution procedure. When preserving the first property (gradients considered
as independent unknowns), the method is locally implicit. Therefore, a simplified
procedure is used in practice, which renders the fully explicit character of the method. In
that case however the gradients are calculated not from the conservation condition, but
from the solution, asin traditional methods. Asfor the second characteristic (gradients
not influenced by the solution at the same time level), thereis avariation of the method
that does not comply with it, again for the sake of simplicity.

6. For simulation of isentropic, inviscid flow, the explicit solvers used following the
CE/SE scheme are neutrally stable for all Courant numbers smaller than unity. This
characteristic follows the most recent developments of the method, which include a
Courant insensitive scheme, [ Chang, 2002-3], [Chang and Wang, 2003].

7. For non-isentropic flows, some artificial dissipation is used, but the amount is
completely controlled by adjustable parameters. Thus, artificial dissipation can be made
zero, for a case in which the scheme reduces to a non-dissipative version. This feature
becomes important in thin boundary layers and acoustic waves problems, since excessive
damping can smear the numerical solution.

8. In the case of one-dimensional convection-diffusion problems, the amplification factor
determined by a von Neumann stability analysisis the same as for some classical
schemes, i.e., Leapfrog, Lax, Crank-Nicholson, and DuFort-Frankel. However, the
CE/SE method is completely distinct from these methods.

9. Systems of conservation laws are treated in the same way as single conservation laws.

The discretized equations for single laws can be transformed directly into those for
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systems by replacing scalars with matrices. This property shows the conceptual simplicity
of the method.
10. Non-reflective boundary conditions, which can be complicated when utilizing
classical methods (using characterics), are very simple to program when using the CE/SE
method. Thisfeature is preserved even for problemsinvolving flow discontinuities
(shocks).
11. The CE/SE method does not use any directional splitting in the case of multi-
dimensional problems. Again, one-dimensional and multi-dimensional problems are
treated in the same manner.
12. The method does not require any coordinate mapping. The mesh is built starting from
triangles and tetrahedrons, which can be used in both structured and unstructured grids.
13. The conceptual simplicity of the codes developed by using the CE/SE method makes
them easy to vectorize and parallelize. Thus, the codes can be adapted to advanced
computer systems with little programming effort. In this work, this feature has not been
used.

Note that the method is limited to time-dependent equations. Steady state results,
such as those discussed in this work, can be obtained only after the stabilization of the

unsteady solution starting from initial conditions.

3. 2. One-dimensional problems
First, the method is applied to one-dimensional (1D) problems. The Reynolds
equation is two-dimensional (2D), however the smplified 1D case can be agood

approximation for long bearings. In these cases variations along the bearing axial
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direction are taken to be small compared to property variations in circumferential

direction, and thus considered negligible.

3. 2. 1. Equations
The one dimensional, transient Reynolds equation, written for a Newtonian

compressible fluid in laminar flow, is

3
gph, 9 fphV._ph"dp)_g (3.1)
ot axl 2 12u0x

Using Elrod’ s formulation [Elrod, 1981], Eq. (3.1) can be written in terms of the non-

dimensional density, 6, as

9t ox

y 9 12u 9 X

71,3
oho a(hev_ B’h @]:O. 3.2

Equation (3. 2) isthe one-dimensional form of Eq. (2.40).

A more suitable form of Eq. (3. 2) for the numerical formulation can be obtained
using a new variable u, which isthe product of the fluid film thickness and the non-
dimensional density, i.e.,

u=ho. (3.3)
In terms of u, the Reynolds equation can be written as

a—u+a—f:0, (3.4
ot  9dx

wherethe flux fis

f:au—ba—u, (3.5
0 X

and the coefficientsa and b are



33

V. Bhoah
_V g Phon 3.6
A= e nax (3-6)

Bh*
120

b=g.

Both coefficients a and b are functions of space variable x. If the geometry istime
dependent, h=h(x,t), then coefficients a and b are also time dependent. These
coefficients are considered constants on the surface of a grid conservation element CE-,
CE+ (seeFig. 3. 1), but they change when passing from one element to another, and from

on time step to the next.

-1 12 j 12 j+l
M\ M M n+1
\ \ \
r @ ® ® @ 12
A2 A
e\ e\ e\
y \ ) I\ n
A2 CE- CE+
® o ® @12
B C
e\ e\ e\
Y n-1
AXI2 | AX/I2

Fig. 3. 1 — Uniform space-time mesh

A first order Taylor series for the unknown function u about a generic expansion
point O(x,,t,) is
uEuO+(ux)0(X_Xo>+(ut)o(t_to)’ (3- 7)

where the time derivative can be written using Eqg. (3.4), as



Jf
(), = —(5]0 - (3.9)

The flux, f, can be written as a function of the unknown functionsuand u, , i.e.,
f = f(u,u, ). Preserving the first order accuracy for the approximation, we may write

that,

QU

f
u

I

u, =au,. (3.9

X

at
0 X

Q

Accordingly, Eq. (3. 7) becomes
U= g + (U, ) (X=X ) = (U, )y (t— o) (3. 10)
Using the same procedure, function f is approximated as

o f 3
=20 ut| 21| u =au-hy,. 3.11

Considering, as part of the first order approximation, that in the vicinity of the expansion

point O(x,,t,), u, = const. = (u,),, and substituting Eq. (3. 10) into Eq. (3. 11), yields

f = agty —1y(u, )y +ag(u, )y (X—%5)—ag (U, )y (t—to). (3.12)

3. 2. 2. Uniform grid

Consider auniform grid at the time steps n—1, n, n+1 and auniform grid having
the same step length, but shifted a half space step length and a half time step, as shown in
Fig. 3. 1. Inthisfigure solid points represent the nodal points at half-time steps and the

hollow points represent the nodal points at integer time steps. The method considers that
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there are two unknowns for each nodal point: u and u, . Therefore two eguations are
derived for each nodal point at the new time step.
Thefirst equation is derived by integrating the governing equation, Eqg. (3. 4),

over the conservation element CE-, i.e,,

f ] dulxt) , I F(xt)) gy g (3. 13)
S ot d X ' '

1 n
= 2
J2 t

Performing the time integration of the first term, and the space integration of the second
term (thisis equivalent with applying the divergence theorem to transform the surface
integral into a contour integral) yields,

Xj

I Lu”(x)—un_;(x)de+ I (fj(t)— ¢ l(t)]dtzo. (3. 14)

X . 1=

Functions u and f can be expressed in linear forms as shown in Egs. (3. 10) and

1
(3. 12), respectively. For u 2(x) and f ,(t), the expansion point is B[j —%, n—%j,
72

while for u"(x) and fl.(t) the expansion pointis A(j, n). Thisyieldsthe first equation

for the point A(j, n)

(3. 15)

The second equation is derived by integrating the governing equation over the

conservation element CE+, i.e.,



36

X N

j tj (a”(x’t)+ J f(x’t)]dtdx:o. (3. 16)

x aal ot J X

1
t 2

Again performing the time integration of the first term and the space integration of the

second term yields,

X 1

}Z[U"(x)—u”—i(x)]dwr tJ' [f‘ ()= fj(t)]dt:o_ (3.17)

Writing functions u and f in the linear forms with the expansion points B(j +%, n —%)

1
for u 2(x) and f ,(t), and A(j, n) for u"(x) and f,(t), yieldsthe second equation for
]+

2

the point A(j, n)

B 2
u'.‘(l—ﬁa'.‘jﬂux)r.‘ g+b;‘£—(a’.‘)2 At }:
AX 4 AX

- ) ] (3.18)

nl nl nl nl nl 2
u' f{l—ﬁa. 12]+(ux). 2 —%er, 3%{6\, 12] j;
J+§ J+§ X HE X

It should be noted here, as ageneral rule for the one-dimensional case, that when
writing the discrete equations for the two unknowns at the new time step, n, three
expansion points are considered. These points are: the grid point at the new time step
(where the unknowns are calculated), and the two grid points at the old time step that
flank the grid point at the new time step. Thus, each segment for which the line
integration is performed (as part of the conservation element boundary) uses one and only
one of the three expansion points. Each lineintegral (flux component) is calculated using

the linear approximations starting from the respective unique expansion points. Thisrule
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also insures that for a neighboring CE, (having a common boundary with the discussed
CE) the same expansion point is used for the common segment. Therefore, the
approximate flux calculated through a boundary segment has the same value when it is
calculated using any of the CE’ s that contain the respective segment.

Adding Egs. (3. 15) and (3. 18) yields a new equation where the only unknown is

nl pl 1) At2 nl N 1) At2
O i L el A T e e e s

i 4 i+5 AX i+5 ) 4AX i 4 -5 AX i— ) 4AX
The space derivative at the new time step, (u, )’]1 , does not appear in Eg. (3. 19) because

point A(xj ,t“) isthe centroid of the segment (xf‘ X"

1] , and the unknown function u
2 '
and the flux f are considered linear on this segment.

Another way to obtain Eqg. (3.19) isto integrate the governing equation, Eq. (3. 4),
over the union of the two conservation elements CE- and CE+, and then follow the same
procedure used to determine Egs. (3. 15) and (3. 16). This shows that the union of the two
conservation elementsis also a conservation element. Also, this shows again that the flux
through the surface of separation between the two conservation elements CE- and CE+ is

the same when it is calculated using either of the two CE’s, since the conservation

property is preserved by uniting conservation elements.

For the cal culation of the second unknown at the new time step, (u, ) ]” , either Eq.

(3. 15) or Eq. (3. 18) can be used, after the calculation of the coefficients aj' and b} .
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These coefficients can be determined using Eq. (3. 6) once the switch function (g, )T is

determined from Eq. (2. 38). More specifically,

(3. 20)

i

(@) 1 wheno}=>1
%) %0 when 67 <1

The explicit character of the algorithm becomes self evident.

In the original form, also known asthe “a” scheme, the algorithm has no
significant damping; hence, it has been found that it can become unstable (after alarge
number of steps) even for asmall time increment. In order to avoid this, the method must
have at least some form of artificial dissipation. The authors of the method have

proposed two forms: the a—¢ scheme and the a— e — o — [ scheme. Both schemes
differ from the original method (also called the a form) only in the way the derivatives

(u,);" arecalculated.

Let (uj )J.n be the value of the derivative (u, ) ]” calculated according to the original

(no damping) method. Inthe a—¢ schemethevalues u” ; and u" ; are estimated by a
ar 3

Taylor series using the values of the dependent variables at the previous (old) half time

1 1
step,i.e, u 2 and (u,) 2. Let (u_“ 1} be these estimated values. They are calculated
2 est

(3.21)
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These expressions are in agreement with the linear approximation in time of the function

u. Using these values, anew value for the derivative (u, )" can be calculated. Let (ug)

n
j

be this value. Thus, a second order approximation for the derivative may be written as,

) )
(ug)y =A e s 3.22)

Finaly, inthe a—¢ scheme, the new value of the derivative (u, )’ iscalculated asa

n

weighted average value of the original method value (u§1 )

 and the estimated value (u)’,

i.e.,

(Le) = @ 2e)(uz) +2e(ue); . (3. 23)

X

For € =0 the a—¢& scheme reduces to the original method, while for € =0.5 the
a—¢ scheme does not take into account the values of the derivatives calculated from the
original method (that is, from the conservation equations). In order to insure the stability
of the method, the valuesfor € should be within therange O<e <1. Another necessary
condition for the stability of the numerical solution, asindicated by the authors of the
method, isto insure that the Courant number is less than one for all the grid points and

time steps, i.e,,

[aﬂjn <1, (3. 24)

Ax]

This condition was established for one dimensional advection-diffusion problems by
means of avon Neumann'’s stability analysis. The result is common to all explicit
methods [ Tannehill, Anderson, and Pletcher, 1997]. Because the governing equation, Eq.

(3. 4), ishighly non-linear, a heuristic stability criterion has been used instead.
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Accordingly, asmaller time step than indicated by the condition of Eq. (3. 24) has been
used.

Inthe a—e— 0.~ scheme, two new values for the derivative (u, )" are

L1
]_2

calculated, using the estimated values (u” 1] and also the value u] (calculated asin
est

the a scheme)
(u?ﬁ} —u?
) =22 ZA&;‘ . (3. 25)
Using these two values, a nonlinear weighted average is computed
u)'| (g .n+‘uX " uz)"
) (b)) )]+l )| (ws), | 52

where the exponent o is a positive value, usually an integer. Finadly, the a—e — o — 3

scheme cal cul ates the new value of the derivative (u, ) J.” as aweighted average value
between the original method value (ujl ) J.n , the estimated value from the a—¢ scheme

(u¢)" and the value from the o.— B scheme (u¥)" i.e.,

X7/

(g} = (@-2e)(ug )] +(2e-B)ug )} +Bluy); - (3.27)
Note that for B =0 the scheme reduces to the a—¢ scheme, whilefor € =0 or for
2¢ =3 the scheme hasno ¢ type dissipation.

The two forms of artificial dissipation manifest different behavior: the ¢ type

dissipation acts like general, overall damping, effective mainly in the relatively smooth
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regions, where the gradients are small, while the o — 3 dissipation suppresses mainly the
numerical oscillations that can appear in the vicinity of the high gradient regions.
Consider first the € type dissipation. Equation (3. 22) can aso be written as

A

== = ) 3.28
i AX 2 ( )

This form shows that (u§ )T isin fact the arithmetic average between the left side and

right side numerical derivatives at the point (j,n), and hence is diffusive. Note that the

left and right side derivatives are not calculated using values of function u at grid points
: : o1 1 : . ,

at the time step n, since (1 —E,nj and [J +§,nj are not grid points (see Fig. 3. 1).
Consider the o — dissipation, given by Eq. (3. 26), with o =1. Suppose that the

solution tends to have oscillations (wiggles) with awave length close to the space grid

step. In this case the left and right derivatives will have opposite signs, i.e.,

() (u;) <0 (3. 29)

()} =o, (3.30)
which showsthat the oo — 3 dissipation tends to suppress the oscillations. On the other

hand, assume that a discontinuity is present in the field. Without reducing the generality,
assume that the discontinuity isin the space interval [ Il +%j and that the function u

n

increases through the discontinuity, i.e., (uj+ )T >0 and hasalarge value, while (uj‘ )1 has
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amuch smaller value. If (u; )| <0, then (u?)} =0, which indicates again the tendency to
flatten the oscillations (characterized by the change of sign for the gradients). If

(u; )T >0, then the calculated value for the derivative (uﬁ” )T is apositive value between

(ur )T and 2(u- )T . Thus, the gradient cannot have more than double the value of the

derivative calculated on the side opposite the discontinuity (the left side in this example).
Thisway the gradient is kept at small values, even when discontinuities are present.

For o >1 the same principles apply, only the averaging has a different weighting.

Therefore, when Eq. (3. 29) holds, the derivative (u? )|

J is not zero, but has avaue

between (u; )T and (u; )T . This shows that the nature of the diffusion (through averaging)

remains. Also, when (u; '

; and (u: )T have the same sign but disproportionate values, the

amplification power o increases this disproportionality. In this case (u;V )T has avalue

closer to the derivative on the smaller side than in the oo =1 case.

For the one-dimensional problems considered, assuming that artificial dissipation
must be the smallest value possible, good convergence and “smooth” solutions have been
obtained using relatively small values. e =3 =0.1, oo =1.0. For casesin which no
discontinuities in the pressure distribution are present, the choice of the artificial damping
parameters does not affect in any practical way the results (no significant differences
have been observed aslong as at |east some dissipation is present € > 0.01,3 > 0). For the
cases in which the dependent variables have discontinuities, the above-indicated values
have been found, through numerical experimentation, to be satisfactory in most cases.

Small oscillations of the dependent variables have been observed for different valuesin
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some cases, though the general aspect of the solution has been preserved even for those

situations.

Equations (3. 19) and (3. 27) are used to calculate the unknowns u and u,, at the

time step n for all integer values of j (shown as hollow pointsin Fig. 3. 1) starting from

the values at the time step n—% and non-integer values of j (shown as dark pointsin Fig.

3. 1). At the next time step, n +% , the unknowns are calculated at the solid points of the

figure, starting from the values at the hollow points and time step n. Therefore, two half
time steps are needed in order to return to the initial space grid. Thisis a characteristic of
the CE/SE method. With the price of doubling the computational effort, the unknowns
can be calculated at every half time step for all grid points, both solid and hollow. No
increase of the accuracy of the solution is obtained in this case, but the final results have
better resolution. Also thisis agood way to check that the boundary conditions are
imposed correctly, since otherwise two different solutions can develop, corresponding to

the two sets of grids used.

3. 2. 3. Non-uniform grid

When the grid is not uniform, the equations are different when moving from time

step n—-1to n—% than from time step n—% to n. Thisisthe reason that the algorithm

ismore complex in this case. The algorithm is similar with the one presented for the

uniform grid, but some concepts must be applied in a more general manner.
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Probably the most comprehensible way to present this case isto consider that the

computational domain (segment) is covered by elements, as shown in Fig. 3.2. At the

1
timestepst 2 and t", the boundaries of the elements are represented by grey points.

Next, consider the centroids of these elements, marked with stars (hollow or grey) and

letters A, B, ..., F. The conservation elements are defined by these points. In Fig. 3. 2 two

1
CE’s are shown: CE- is defined by the points B and C at thetime step t 2, and the same

points at thetime step t"; CE+ is defined by the points C and D at the time step {2 , and

the same points at the time step t". Asin the previous case, these two CE’ s will be used
to write the two conservation equations corresponding to the element centered at point C.
Consider now the midpoint (centroid) of the segment AC, marked with ablack dot and
letter B’ inFig. 3. 2. Smilarly, C', D’, E’ can be defined as the midpoints of the
segments BD, CE, and DF, respectively. These points will be the expansion, or
characteristic points, for the elements which are centered at C, D, and E, respectively.
They can coincide with the elements centroids (for example in Fig. 3. 2 point D’ is shown
to be the same as point D), but in the general case they have different locations. In the
uniform grid case, the characteristic points have the same location as the center-points, so
that the distinction between them is not necessary (see Fig. 3. 1). The location of the
characteristic points can be easily calculated for any grid element (segment), except for
the boundary elements. In this case the characteristic points are taken to coincide with the
centroids. For example, in Fig. 3. 2, point A’ isthe same as point A, since the respective

element is on the boundary.
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©  Element boundary

¢ % Element centroid
(alternatively colored)

4t O @ Mid-distance point
CE+ } between two centroids of

the same type (color)

v

Fig. 3. 2— Non-uniform space-time mesh

Similarly with the uniform grid case, for each grid point at the new time step t",
two unknowns must be calculated, i.e., u and u, . Therefore two equations must be
derived. Consider the element centered at point C of Fig. 3. 2. This element has point C’
as the representative point, which means that the two unknown values, u and u, are
calculated in point C'.

Thefirst equation is derived by integrating the governing equation Eq. (3. 4) over

the conservation element CE-, i.e,,

j [ [a“a’t‘t J fa;( t)]dtdx:o (3. 31)

The surface integral can be transformed into a contour integral using the divergence

theorem,
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T(u“(x)—u“i(x)jdm J(1c0- fu(0)an=0 6.2
where
fo(t)=f(xt),_ . and fo(t)=F(xt)_, . (3.33)

Functions u and f are then expressed in linear forms asin Egs. (3. 10) and (3. 12), and the

integrations are performed. The expansion points are B'(XB, , N— %j for the functions

1

u" 2(x) and f,(t), and C'(x., n) for functions u"(x) and f.(t). Therefore, in

Eq. (3. 33), the function u and f are approximated as

u"(x)=ug + (U)o (x= %) (3.34)
un_% (x)= u;,_% +(u, )';% (X—Xg ) (3. 35)
fC (t) = ag’ug’ - bg' (ux )(n: + ag’ (ux )(n:'(xc — X )_ (8.2» )2 (ux )(n: (t _tn) (3 36)

1
n-= n-= -= n-= n-=

11 1 S 1\ 1
) e ) R E I (I R,
2

Theline (segment) integralsin Eq. (3. 32) can be calculated. Since the functions are
linear, each segment integral can be calculated as the product between the value of the
function at the mid-point of the segment and the length of the segment. The equation that
resultsistoo long to be shown. Neverthel ess the character of the equation remains
unchanged compared to Eq. (3. 15). Moreover, parts of the equation can be calculated

separately when writing the code, so that the long form is not actually necessary.
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The second equation is derived by integrating the governing equation over the
conservation el ement CE+. Changing the surface integral into a contour integral using

the divergence theorem yields,

T(”n(x)— u" (X)] dx+ tInl( fo (t)— fe (t))dt =0 (3. 39)
where
folt)=fxt),,- (3.39)

Asin the previous case, functions u and f are then expressed in linear forms using

Egs. (3. 10) and (3. 12), and the integrals are taken. The expansion points are
1 n->
D'(XD,, n—zj for the functions u 2(x) and f,(t), and C'(x., n) for functions u"(x)

and f.(t) (thelast two functions are the same asin the CE- case). Consequently,

u 2(x)=uy2+ (ux)D,;(x— X5 ) (3. 40)

—— —— —— —— —— n-= —

1 SR 1 1 E D
fD(t)E aD’ZuD’Z _bD'z(ux)D'z +aD’2(ux)D'2(XD _XD’)_(aD’ZJ (UX)D,Z[t—tn 1

j. (3. 41)
2
Approximations for functions u"(x) and f.(t) are given by Egs. (3. 34) and (3. 36).

The two discrete conservation equations obtained corresponding to the

n
c’

conservation elements CE- and CE+ form a system with two unknowns: u?. and (u, )
Coefficients a2 and bZ., which appear in Eq. (3. 36), are dependent on the unknown ug.

through the switch function g, so that they cannot be calculated yet. An iterative

procedure can be used, starting from the values of the switch function at the old time step,
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solving the system for ug and (u, )%, and then recalculating the value of g. Thus, asin

the uniform mesh case, the formulation is locally implicit.
The above inconvenience can be easily surpassed imposing the conservation

condition over the surface of the reunion of the combined elements CE- and CE+, i.e,,

au(x,t)+ 0 f(xt)

[ Jdtdx =0 (3. 42)
(CE-)U(CE+) dt d X

Using the divergence theorem yields,

fur (o [u"2 (e fu” 2 [(1 (1)~ Ttk =0 (3. 43

X "2

The time and space functions are approximated using the same linear forms and the same

expansion points as before. Since at thetime step t", the same expansion point C' is used

for both segments BC and CD, the two segments have been combined into segment BD.
nt
However, function u~ 2(x) is approximated differently for the interval BC, where the

expansion point is B'[xB, : n—%j, and for the interval CD, where the expansion point is

D'[xD, , N —%) . Therefore, Eq. (3. 35) isused for BC and Eq. (3. 40) is used for CD.

It is readily observed that the unknowns ug and (u, )2, appear only in thefirst
term of Eq. (3.43). All the other terms are expressed only as functions of the old time

step, t—%, since they are calculated using points B'(XB,, n—%j and D'(XD,, n—%j as

the expansion points. Because function u is approximated using a linear expression, and

point C' isthe centroid (mid-point) of the segment BD, the first term can be written as



49

Ju x)dx = ug (Xg — Xg) (3. 44)

Therefore Eq. (3. 43) contains only one unknown, and is purely explicit. After calculating

the value for u’. from this equation, the switch function g. can be determined at the new

time step. Finally, the gradient at the new time step can be calculated using any of the
two conservation equations written for CE- or CE+. Thus, the a form of the algorithm for
non-uniform grids is compl eted.

The a—¢ andthe a—e— o —B schemes are constructed in a manner similar to

that of the uniform grid case, but with a difference. The distinction appears because in the
general case point C', where the unknowns are calculated, is not the centroid of the
segment B’ D’. Therefore, anew set of pointsisconsidered, B’ and D'’ (and of course
their corresponding points for the other elements aswell), such that C' isthe centroid of
segment B’ D’’. The coordinates of pointsB’’ and D'’ are calculated trans ating points

B’ and D’ with a distance equal to the distance between the centroid of segment B'D’ and

point C'. Therefore,

Xgr o = Xg o + [xc —%) (3. 45)
It can be easily verified that the centroid of segment B”’D’’ ispoint C'.

Similarly with the uniform grid case, Eq. (3. 21), ( 1] must be calculated at
2 et

the new time step using the correspondent values and derivatives from the old time step.

The points where these two values are estimated are B’ and D'’ . For example,
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(3. 46)
n—l At n_i n_}
=Ug 2 +(XB" — Xg _EaB' 2j(ux )B’ 2

1
"2

A similar equation can be written for the evaluation of (u“ 1] = (ug” )ast :
est
Starting from these two estimated values, and using the procedure described by
Egs. (3. 22), (3. 23), and (3. 25) — (3. 27), yieldsthe a—¢ and a—e—a - schemes
respectively for non-uniform grids.
A very important feature of the a—¢ and a—e— o — B schemesisthat, as shown

previously, the calculated value of the unknown u at the new time step still satisfies the
conservation on the combined element CE = (CE —)u (CE +), even though the gradient
u, isnot calculated using this condition. Thisis probably the main reason that the CE/SE
method remains accurate even when artificial dissipation is used. Because the
conservation is satisfied over CE, anew division can be found,

CE =(CE’-)U(CE’+)
such that conservation is satisfied for each of the two new conservation elements CE"—

and CE’ +.

3. 2. 4. Applications involving slider bearings
In order to determine the performance of the method, several numerical examples
were attempted. The results were compared with the results obtained using the Elrod

algorithm, as well as the type differencing method, both presented by Vijayaraghavan and
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Keith (1989). Only the steady state solutions, obtained through asymptotic time
integration, are considered.

Two dlider bearing configurations were analyzed: parabolic and double parabolic.
The geometry of these bearingsis presented in Fig. 3. 3, while the physical conditions are

shownin Table 3. 1.

|
%

I

3

=]
<«

Fig. 3. 3— Parabolic dider bearing configurations

Table3.1

Physical Conditionsfor Slider Bearings

Parameter Vaue Units
Length 7.62:10% | m
Minimum Height 254.10% | m
Maximum Height 5.08107% | m
Veocity 4.57 m/s
Viscosity 0.039 Pas
Bulk Modulus (") 6.910" | N/m?
Cavitation Pressure (gage) | O N/m?
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Two boundary conditions at the inlet were considered: the flooded inlet, with
0, =1.0001, and the starved inlet, with 6, = 0.55. Still, these conditions are not
sufficient. Two parameters are calculated for each interior element of the grid, the main

state function u, and its spatial gradient, u, . Therefore, both of these parameters must be

specified or evaluated at the boundaries.

Since at the inlet the value of the main state function u =h6 isknown, only the
gradient must be evaluated. The condition used is,

(u,); =(uy)s, (3.47)
where the third point in the grid is the same kind as the point on the boundary (they are
both “solid” or “hollow” points) [Chang, €t. a., 1997].

At the exit, both the value of the main state function u and its derivative must be

calculated from the field. The following conditions are used,

- (3. 48)

where M is the number of the element on the exit boundary. Since these conditions are
not evident, consider auniform grid (or at least with the last three elements. M-2, M-1,

and M separated by the same space step), asin Fig. 3. 4.



53

O O ‘

(CE-)M.2 (CE+)M-2 (CE-)M

2@ O

M-3 M-2 M-1 M

Fig. 3. 4 — Conservation elements for the boundary condition at the exit

Consider now the governing equation, Eg. (3. 4), integrated of the surfaces (CE+)y., and

1
(CE-)w. Over one half time step, from t 2 to t", the algorithm goes from hollow points

to solid points. One equation obtained from (CE-)v is not enough to calculate both
unknowns uy, and (u, )y, . However, since the values uy, , and (u, );, _, satisfy the

equation obtained for (CE-)w.2 , they will also satisfy the equation for (CE-)v . The
reason for thisisthat, because Eq. (3. 48) isimposed, it is easily seen that the equations
obtained for the above conservation elements become identical. Therefore, the values
obtained using Eq. (3. 48) arevalid, i.e., satisfy the conservation condition. The same
reasoning can be used when the grid is not uniform, but then element M is added outside
the domain (added as a ghost element) with the same size as element M-1. An important
fact isthat, since at the exit of the slider bearings the flow is cavitated, and the governing
equation is hyperbolic, the value at the exit boundary does not influence the rest of the
computational domain (aslong as the cavitation condition holds).

Asfor theinitial condition, the constant fractional film content (and implicitly a

constant pressure) distribution has been considered,
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Consequently, at the initial time

u’=67h,, (u)s =6J(h,),. (3. 50)

J

In order to shorten the computational time for finer grids when the same case had
aready been solved for a coarser grid, an interpolation using the results obtained for the
coarser grid was used.

Figures 3. 5 and 3. 6 show the pressure distribution and the fractional film content
distribution obtained for the parabolic dider with aflooded inlet compared with the
results obtained from Elrod's algorithm and from the type-differencing algorithm
developed by Vijayaraghavan and Keith, 1989. Figure 3. 5 shows that the pressure
distribution obtained with CE/SE method is situated between the pressures obtained with
the type-differencing method and the pressures obtained with Elrod’' s algorithm. For the
type difference method compressibility effects were included in the full film shear flow
term. It should be noted the results obtained with Elrod’ s algorithm and the type-
difference are the same when compressibility effectsin the full film region are not
included. Because the differences between the CE/SE method, Elrod’ s algorithm and the
type-differencing algorithm, respectively, are relatively small (under 3%), it may be
concluded that the three methods are in good agreement for thistest case. InFig. 3. 6 the
differences between the three methods are even smaller (because there are no practical
differences between Elrod’ s algorithm and type-differences, only one of themis

presented in thisfigure).
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A more difficult case isthat of the same parabolic slider with a starved inlet. The
difficulty of this case residesin the fact that the reformation of the fluid film is more
sensitive to numerical errors than the rupture of the film. Figures 3. 7 and 3. 8 show the
results for the slider bearing with a starved inlet for different uniform grids compared
with those found in the same work. Figure 3. 7 shows that the type-differencing method,
compared with Elrod’ s algorithm, predicts the same cavitation boundaries, although the
pressures are smaller (the maximum pressure is about 6% smaller). When the CE/SE
method is used, the pressures are found to be even smaller (the maximum pressureis
about 26% smaller). Furthermore, in this case the cavitation boundaries, especialy the
fluid film formation front, are quite different. However, probably the most important
distinction between the results obtained with the present method and those obtained with
previous methods resides in the pressure distribution in the vicinity of the fluid film
formation front. As can be seen, the results obtained with the CE/SE method show a
sharp discontinuity in the pressure (or 0) distribution at the fluid film reformation point.
Fig. 5 also shows that there are no significant changes in the results when the grid has
more than 161 points. This number may appear relatively large, but consider also that the
algorithm actually calculates only half of the grid points at each time step. The
differences between the results obtained with different grid steps are less evident for the
fractiona film content 6. Thisisthe reason that Fig. 3. 8 shows data obtained with

CE/SE method using 41, 81 and 1001 grid points.
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As shown by Vijayaraghavan, Keith and Brewe (1990), a conceptual analogy
between the transonic flow and the cavitated bearing exists. Thisanaogy is due to the
mathematical nature of the steady state forms of the governing equations within different
regions. Either flow can be eliptic (full film region for the bearing, subsonic region for
the transonic flow, respectively) or hyperbolic (cavitated region for the bearing,
supersonic region for the transonic flow, respectively). Thus, the sonic line is analogous
to the film rupture, while the shock wave and the film reformation are also similar to each
other.

It iswell known, as shown by Tannehill, Anderson and Pletcher (1997), that the
position of the shock wave (supersonic-subsonic transition) is more difficult to predict
numerically than the sonic line position (subsonic-supersonic transition). Previous
numerical methods used to calculate cavitated bearings could not capture in a proper way
the film reformation because, as for the shock wave, the pressure (and aso the fractional
film content 6) has a discontinuity at that location. Therefore, a numerical algorithm that
can capture this discontinuity without dissipation or dispersion is necessary; the CE/SE is
such an algorithm. This method, in the way it has been applied here, uses equations
derived by integrating Reynolds equation in space and time, equations written in
conservative form. For that reason CE/SE is able to capture discontinuities, while
standard methods that use finite differences cannot, even if they start from the same
equation and even if the space step is extremely small.

For the double parabolic slider bearing with aflooded inlet the results show
similar characteristics at the fluid film reformation point as before, as can be seen in Fig.

3. 9. However, because the pressure gradients are higher (due to the higher slope of the
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geometric configuration) compared to the previous configuration, the fluid film
reformation front is less visible in this case. The same effect seen before, i.e., areduced
maximum pressure after the fluid film reformation, is observed for this configuration as
well. The difference between the second peak pressures calculated with the two different
methods is about 10%. Note that with the type-differencing method, the second
maximum pressure is 12% larger than the first peak pressure. Physically this does not
seem possible to obtain larger pressures with the same geometry repeated in cascade form
(the mass flow is the same in both parabolic stages). For the same case, the code using
the CE/SE method predicted that the second peak pressure is about 0.1% smaller than the
first peak pressure. The difference between the two peak pressures obtained with the
CE/SE method indicates that athere is dissipation in the numerical system, but this

dissipation is small.
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Fig. 3. 9 — Pressure distribution in a double parabolic slider with flooded inlet
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3. 2. 5. Applications for Journal Bearings
A journal bearing geometry, as shown in Fig. 3. 10, was considered in order to
further study the CE/SE method applied to one dimensional fluid film bearing problems.
The non-dimensional form of the governing equation in this case isthe same asin the
previous cases, Egs. (3. 4) and (3. 5), with
1 Bh oh
=—+ g 2N o
4t T~ 48m° dX
ph°
487’
u=he.

a

b=g (3.51)

where

X=— (3.52)

Groove

Fig. 3. 10 — Journal bearing geometry



61

The operating conditions are indicated in Table 3. 2. At the groove, the lubricant inlet is

assumed to be flooded with 6 =1.0001.

Table3. 2

Physical conditionsfor a grooved journal bearing

Parameter Vaue Units
Grooves 1,2 -
B 40 -
Relative eccentricity (e=€e/C) | 0.6 -
Cavitation pressure (gage) 0 N/m?

Periodic boundary conditions are imposed at the two ends of the computational

domain. They were considered using ghost elements at both ends, each ghost element

being paired with the first interior element on the other side of the computational domain.

The values for the unknowns, u and uy, for these ghost elements were set so asto equal
the values calculated at the same time step for the corresponding paired elements.

Figures 3. 11 and 3. 12 show the results obtained for a bearing with asingle

groove positioned at an angle ¢ =100° relative to the minimum thickness location. The

results for the type-differencing method have been obtained by running the original code

written by Vijayaraghavan [1989]. For this problem, the location of the fluid film

reformation boundary, and implicitly the discontinuities in the pressure and fractional

film content distributions, are imposed through a boundary condition (the presence of the
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inlet groove). Therefore the differences between the type-differencing method and the
present method for this case are not very significant. Both the fractional film content
(Fig. 3. 11) and pressure distribution (Fig. 3. 12) follow the same trend and are amost
identical over most of the circumference of the journal bearing. However, the type-
differencing algorithm predicts a maximum pressure that is 12% smaller than the value
predicted by the CE/SE method (this peak pressure difference corresponds to a difference
of only 2.6% for the peak fractional film content 6). This difference has two probable
causes. First, the CE/SE method has very small dissipation, especially when small values
for the artificial dissipation parameters (e, ) are used. Because the dissipation islow,
larger values for the fractional film content (the main variable in the governing equation)
and implicitly for the pressure are to be expected compared to those obtained using the
type-differencing method. Indeed, for the caseillustrated, the values ¢ =0.5 and B=1.0
were used, whereas when the values € = 0.02 and B = 0.1 were used, the difference
between the predicted peak pressures with the two methods increased to 15%. This
consideration is valid only for the cases where no other causes, such as the presence of
sharp discontinuitiesin the field, affect the problem. The second cause is the fact that the
type-differencing code solves atwo dimensional problem (afinite length bearing with
large, but finite, length-diameter ratio), while the code based on the CE/SE method solves

the pure one-dimensional problem.
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The pressure distribution in the same journal bearing without fluid supply is
illustrated in Fig. (3. 13). At theinitial instant in time, the bearing was considered to be
flooded (6 =1.0001). Small valuesfor the artificial dissipation parameters were used

(e=0.02 and B=0.1). The figure shows again that the method can naturally capture the

discontinuity as asharp front (full fluid film reformation).

10

Nondimensional Pressure
(]

0 60 120 180 240 300 360
Angular Coordinate [deg]

Fig. 3. 13— Pressure distribution in ajournal bearing without grooves

The code was run tested for ajournal bearing with two grooves positioned at the
angles ¢, =60° and ¢, = 240° relative to the minimum thickness location. At the
grooves the lubricant inlet is assumed to be flooded with 6 =1.0001. Theresultsare

presented in Figs. (3. 14) and (3. 15). The presence of the second groove at ¢, = 240°
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imposes a low value for the pressure at that location, which in turn, compared with the

previous cases, influences in a negative way the pressure distribution for alarge

circumferential region of the bearing.
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Fig. 3. 14 — Fractional film content in ajournal bearing with two grooves
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Fig. 3. 15— Pressure distribution in ajournal bearing with two grooves

3. 2. 6. Discontinuities at the fluid film reformation

Similar to the reasoning presented in Chapter 2, Egs. (2. 25) — (2. 30), consider a
stationary cavitated region in aone-dimensional bearing asin Fig. (3. 16). The cavitation
region lies between surfaces 1 and 2 (or 3). Surfaces 2 and 3 are each on one side of the
film reformation boundary, and they are infinitely close to each other (the distance
between them is considered to be zero). Surface 1 is a surface inside the cavitated

region.
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Surface 2 rface 3

Surface 1

;

Film rupture Film reformation
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v
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Fig. 3. 16 — One-dimensional cavitated fluid film

The mass conservation principle in the cavitated region is

V V
pcelhlE = pcezhz E . (3- 53)

At the film rupture point there are no discontinuities, i.e. 6, =1.0. Simplifying Eq. (3. 53)

with the factor pCVE yields,

o, - (3.54)

Considering surfaces 1' and 2, Eq. (3. 54) becomes

0,= Ll (3. 55)
h2

Equation (3. 55) is useful when the fractional film content is known at alocation inside
the cavitated region. The fractiona film content 6 hasavalue 6 >1 in thefull film
regions and hasavalue 6 <1 in the cavitated regions. Because surface 2 is on the interior

side of the boundary of the cavitated region, 6, <1, itisrequired that:
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¢ thereformation point must have afilm thickness h, sothat h, >h, or h, >6’h/

e when h,>h or h, >8:h’ thereisadiscontinuity in the fractional film content

distribution at the reformation point (6, = hﬁ = erll—hl <1 immediately before the

2 2

film reformation and 6, =1.0 immediately after the reformation surface)

The continuity equation written for a control volume that contains the reformation
surface and has a very small thickness (Fig. 3. 16, shows the volume between surfaces 2

and 3) is

\Y; V hl(op
0.h, —= h——| — 3. 56
pc 2 22 pc|: 32 12M(3ij ( )

Neglecting the film thickness variation across the control volume h, = h, (because the

distance between surfaces 2 and 3 is considered zero), ssimplifying by canceling the

product p_.h,, and rearranging terms yields a condition similar to Eq. (2. 29),

ap)| _6uv(1-6,) (3.57)
oX ), h2 '

In terms of the non-dimensional variables used for journal bearings,

CZ
pRzum’
— h
h=—, 3.58
c (3.58)
_ X
X=—,
2nR

eguation (3. 57) becomes,

9p)| _12n1-9,) (3. 59)
oX ), h? '
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This equation shows that the presence of afractional film content discontinuity where
0, <1 determines the existence of a positive pressure gradient immediately after the

reformation point

dp
(51 >0. (3. 60)

Note that at the rupture point and throughout the entire cavitation region the pressure
gradient is null.

Applying the momentum conservation equation to the same control volume (the
momentum conservation is not included explicitly in the Reynolds equation) yields

hf ( jdy I[ = —(%] y(y—hz)Tdprfp—p?’)hz (3. 61)

0 2 c

Performing the integrations and considering the expression of the pressure gradient, Eq.

(3.57), yields

V2
Ap=p,—p, = pgo (4-30,-02)= pso (1-96,)(4+9,). (3. 62)

In non-dimensional variables, Eq. (3. 62) is

pcczw' (1_92)(4+62)

Ap =
P u 30

(3.63)

When 60, <1 thelast equation shows that there exists a pressure jump across the
reformation surface Ap > 0. The pressure discontinuity islarger when the fluid film 6,
content is smaller. The location of the reformation front cannot be predicted theoretically
using the considerations shown above.

Using the above considerations, the one-dimensional results with discontinuities

can now be reviewed in adifferent light. Consider first the results shown in Figs. (3. 7)
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and (3. 8). At theinlet the fractional film content isin this case 0,,, =0.55. The location

of the reformation front with no discontinuities, 6, =1, can be calculated using
Eq. (3.55), i.e, for 0,,, =6; =0.55,

h2no discontinuity = einlet hnlet = O55hmax ' (3 64)

This value corresponds to alocation
Xo o
2nod|scLont|nU|ty — 0342 (3 65)

However, the reformation point is at a different location, with higher fluid film thickness,
as determined using both numerical methods. As a consequence, discontinuities must be
present at the reformation front, and they are predicted using the CE/SE method, while
the more classical method failsto do so. Using the predicted location(s) of the
reformation point, the values of the fractional film content after the reformation,

Eq. (3. 55), pressure gradient, Eq. (3. 57), and pressure, Eq. (3. 62), have been checked
against the values obtained from the code, and they agree with each other. Similar
considerations are valid for al the other cases where discontinuities at the reformation
front have been observed, except for the cases where the reformation is dictated by the

presence of asupply system.
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3. 3. Two-dimensional problems

The two-dimensional, transient Reynolds equation, written for a Newtonian fluid,
in Elrod’s formulation is given by Eq. (2. 40). Note that, from the point of view of the
number of dimensions used, the Reynolds equation cannot be more than two-

dimensional.

3. 3. 1. Numerical formulation

A more suitable form of Eq. (2. 40) for the numerical formulation is obtained
using the same variable as for the one-dimensional case, Eq. (3. 3)

u=hoe (3.3
The governing equation can then be written as

du _df dg_, (3. 66)
ot dJx 0z

where the fluxes f and g are given by,

f= au—bg—u,
X
(3.67)
g:cu—dQE
0z
The expressions for the coefficients a, b, c and d used in Eq. (3. 67) are
\Y Bh oh
=519 .55
2 121 d x
2
b=d=g, P, (3. 68)
12u
_, Bhah

C=Qg.~——.
g°12uaz
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In the case of journal bearings with radius R, radia clearance C, and angular

velocity o, the governing equation can be non-dimensionalized using the following

transformations

The coefficients from Eq. (3. 67) arein this case

1 B’h oh
a:_+gc—2__
41 481 9 X
ph’
b=d =
9 4812
Bh on
c= —
9 48n? 92

(3. 69)

(3. 70)

(3.71)

(3.72)

(3.73)

Since there are no conceptual differences between the dimensional and non-dimensional

forms, in the following the more simple form, without bar, will be used.
All coefficients a, b, c and d are functions of space variablesx and z. If the
geometry is time dependent, then the film is expressed as h = h(x, z,t), and these

coefficients are al so time dependent. However, when devel oping the numerical

algorithm, these coefficients are considered to be locally constant, i.e., within the volume

of each elementary conservation element.
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A first order Taylor series for the unknown function u, starting from an expansion
point O(x,,Z,,t,) is
u=u,+ (UX)O(X— X0)+ (UZ)O(Z— Zo)+ (ut )o(t _to)’ (3- 74)

where the time derivative, in conformity with Eq. (3. 66), can be written as

__[9f) (99
(u), = (axl [azl' (3. 75)

Since the flux terms f and g can be considered as functions of the unknown u and its
space derivatives f = f(u,u,,u,), g=g(u,u,,u,) using afirst order approximation, we

may write that

QU
—y
(oP]
—y

n

U
Q c

(3. 76)

U
Q X

Q
N
n
Q)
c
c
N
Il
o
c
N

Accordingly, Eq. (3. 74) becomes
U= Uy + (U ) (X = %)+ (U, )o(2 = 20) = [ag (U, )y + o) JiE — ). (3.77)

In the same way functionsf and g are approximated as

f:a—f u+a—f u+a—]c u, =au—hu
“lou), (au )" auZOZaO *

0g 09 09
= 2= -2 - =cu—dyu,.
o=[58) e[S (S oo

Alternately, considering that in the vicinity of the expansion point O(xo, z,,t,),

(3.78)

u, = const. = (u,),, u, = const. = (u, ), and substituting the expression of u from

Eq. (3. 77) into Eq. (3. 78) yields
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= ath—ly(u), + U )y (x— )+ ay(u, ) (z- %) [ao( )+aoco( )o]( o)’ .79
9=l — 0h(U, )y + G (U, (x— )+ 6 U )(z-2)-[a w),)(t- |
Consider atriangular mesh in the (x, z) plane. One triangle BCD and its three

neighbor elements are shown in Fig. 3. 17. Point A is the centroid of the triangle BCD,

while points E, F and G are the centroids of the neighbor triangles BCH, CDI and BDJ.

Fig. 3. 17 — Triangular mesh element and its neighbors

Similar to the 1-D case, in the 2-D formulation the CE/SE method cal cul ates the

values of the dependent variables u,u,,u, for arepresentative point of the triangular

1
element centered at A for thetimestep t = t2 us ng the corresponding values of the
same variables for the elements centered in E, F and G at thetime step t =t". In order to
calculate the three unknowns at the new time step, a system of three equations will be

derived. One equation can be obtained considering the quadrilateral ABEC. Integrating
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simultaneously the governing equation, Eq. (3. 66), over the surface of this quadrilateral

1
and in time, between time steps t" and t 2 (see Fig. 3. 18), yields

E B
—
AS A
C /
.-
e 2
t)\ Y
d
Z
X

Fig. 3. 18 — Conservation volume in the (x, z,t) space

1
n+=

INETCN

ABEC t" t" ABEC

[%(au—bux)+%(cu—duz)}dcdt:0. (3. 80)

Equation (3. 80) implies flux conservation in the three-dimensional space (x, z,t) )

Performing the time integration for the first term and transforming the surface integration

into a contour integration for the second term (using the divergence theorem) yields,

] [u”;—u”Jdosz §F-ndsdt=0, (3.81)

ABEC t" ABEC

where 1 isthe outward directed unit vector normal to the contour, and
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F=fi+gk (3.82)
is avector in the (x,z) plane characterized by the Cartesian unit vectors (i ,K ). Functions
f and g are given by Eq. (3. 67).

Functions u, f, g are next substituted using the linear approximations, see

Egs. (3. 77) and (3. 79), so that Eq. (3. 81) can be written as

1 n+=
n+= n At - 4
[uABéc —uABECjAABEC +7[ ffF-ndsJ =0, (3.83)

ABEC

1
where u,g2. and u,,.. designate the value of u in the center of the quadrilateral ABEC at

the time steps n +% and n, A,z iIstheareaof the quadrilateral ABEC and the contour

1 1
integration is calculated at thetime t 4 =t" +% . Thevalues u,z2. and upg.. are
evaluated from Eq. (3. 77) using as the Taylor expansion point A(x,z,) at the time step

1
t 2 and E'(xz,z.) at thetime step t", respectively. The expansion points A’ and E’,
which will be considered as representative points for elements BCD and BHC, can be
chosen in any suitable way. The exact position of these points will be selected later.

Equation (3. 77) becomes,

n+% n+% U 2 U 2
uABEC =Uy ( ABEC )_X ( ABEC )a_
(3. 84)
ou ou
u;-]\BEC = UE’ +( Xagec — a ( Zpgec — a

The contour integral from the second term in Eq. (3. 83) can be divided into four

lineintegrals along the sides of the quadrilateral.
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l
§F 4.fids= J.F 4. AE;ds+I|3 : o 0s
ABEC (3. 85)

= N+

+'|.|3n+‘11 ECds+fF 4R, ds.

S

Each of these four line integrals, consistent with the previous approximations, is
calculated considering that each integrand has alinear form. From the mean value
theorem of calculus, the value of each lineintegral isequal to the value of the integrand

at the midpoint of the line segment multiplied by the length of the segment. For the
n+}
segment AB, considering (A’, t ZJ asthe Taylor series expansion point in Eq. (3. 79),

we have,

QI‘H—Z . n+%1
IF 'nABdSZ [f N 9N ZAB]A+B LAB
2

1 1
=[(au—bu )2 +(au, )|"+(% ,j+(auz)|':2(LZZB—zA,j

N (3. 86)
+(a’u, +acu, )2 Zt}(zB - zA)—{(cu —du )|n 2 +(cu, )|”+(X ;X - xA,j
1 n+£
+(cuz)|”AT2(LZZB— zA,j+(acuX +c2u, ), 2 %}(XB —X,)

In Eg. (3. 86) the exterior unit normal to the segment AB of length L,; has been
substituted with its expression,

Ny = nxABT + nZABT = (ZB - ZA) IL_ (XB - XA)J (3.87)

AB

where n, and n, are the x and z components of the unit vector n .
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Similar expressions can be written for the other three line integrals of Eq. (3. 85).
n+£
Note that the Taylor expansions must be performed starting from point [A’, t ZJ for the

L L et
lineintegrals IIE 4.1 5z ds and JT: 4-Nc,ds, whilefor the integrals IF 4 Mg ds
AB CA

BE

1
- n+=

and |F “-ng.ds point (E’, t”) must be used. Because the calculations can be relatively
EC

complicated for a generic grid, the symbolic mathematical code MAPLE was used.
Performing all the calculations and substituting into Eq. (3. 83) yields the first equation

for the considered triangular element

1 1

= n+} n+= n n
aun? +b(u )y 2+ )2 +dul +a(u ) + U =0,  (3.884)
where a,,b,c,,d;, e, f; are coefficients that depend on the geometry (coordinates of
points A A',E,E’,B,C and the center of quadrilateral ABEC) and on the governing

equation coefficients a, b, ¢, d given by Eq. (3. 68), evaluated at points A" and E’ at the
time steps n +% and n, respectively.

Considering the quadrilatera's ACFD and ADGB, two additional equations similar

to Eq. (3. 88-a) are developed

1 1
n+= n+=

1
iy +b,(0, )7 6, ()0 + D e, ()l + ()L =0, (3.88b)

1 1 1
n+= n+

Ay 2 +y(U, ) 2 +C(U,) 2 + g + e u )l + f5(u,)5 =0 (3.880)
InEgs. (3.88Db) and (3.88c), F and G’ are the representative points for the triangular

elements CID and DJB, respectively (see Fig. 3. 17).
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All values at the time step n (previous half time step) are known, so that

Egs. (3. 88 @), (3. 88 b) and (3. 88 c) form a system of three equations with three

1
n+=
2

1 1
unknowns, u, 2,(u,) 2,(u,), 2. Written in this form the method is locally implicit. Note

that the coefficients of the system, being functions of the coefficients a, b, ¢, d given by

1
Eq. (3. 68), depend a'so on the unknown u,, 2 through the switch coefficient g,.. An

iterative method to solve this system is thus necessary.
An aternate approach is to choose the Taylor series expansion point A" as the
center of the hexagon BECFDG of Fig. 3. 17. The other three Taylor series expansion

points E’,F’,G” can be chosen arbitrarily; however, in order to maintain consistency,

they are chosen as the centers of the corresponding hexagons formed around the
neighboring triangular elements. Note that the values of the dependent variables at time

stepn,i.e, u,u,u, B must beknown at these points. Note also that, as with the previous

approximations, the values of the derivatives u,,u, at any given time step are considered

constant on the surface of atriangular element (such as BCD), while the value of the
variable u at the same time step can be calculated using the first order Taylor expansion,
Eq. (3. 77).

Adding Egs. (3. 88 a, b, ¢) yields a new equation that represents the flux
conservation over the hexagon and over one half time step. When point A" isthe center

of the hexagon BECFDG, this equation has a simpler form given by

1
AUy 2 +Aiug +& (U )E + fi(u,)f +dyuf + 6, (U ) + f,(u, )8 (3.89)

daug’ + e3(ux )g + fa(uz)g’ =0,

where
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Am = AABEC + AACFD + AADGB = ABECFDG . (3- 90)

1
This equation has only one unknown, u, 2, and can easily be solved explicitly. It isalso

important to note that all the coefficientsin Eqg. (3. 89) depend only on the geometry
(coordinates of the points) and the values of the dependent variables at the previous half

time step so that no iterative method is needed.

1
After calculating the value u, 2, the values of the other two dependent variables

1
n+

1 net
(u,), 2 and (u,), 2 can be calculated using any two of the equations in the set,

1
Egs. (3. 88 & b, ¢). Because u, 2 isknown at this stage of calculations, the value of g, is

also known, so that all coefficientsin Egs. (3. 88 a, b, ¢) are determined.
In order to insure stability (not only neutral stability), the method must have at
least some form of artificial dissipation. Therefore, just asin the 1-D case, the a—¢

scheme and the a— e — o — 3 scheme are introduced. Both schemes differ from the a

1 1
scheme only in the way the derivatives (u,), 2 and (u,), 2 are calculated. Because the

1
value u, 2 iscomputed from Eq. (3. 89), the flux conservation over the boundary of the

1
n+=

hexagon BECFDG and in timeis till insured. However, because the derivatives (u,),, 2

1

and (u,)., 2 arenot calculated from the system, Eqgs. (3. 88 a, b, c), the flux conservation

isnot insured in this case over each of the quadrilaterals ABEC, ACFD and ADGB.
The a—¢ scheme starts from the principle that central differencing computation

of the derivatives provides numerical dissipation. In this scheme the values of the
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dependent variable u at the new time step n+ % are evaluated at three new points

E”,F”,G”.Let A" bethe center of thetriangle EF'G’ (refer to Fig. 3. 19) and let A’A’
be the vector that displaces points E’,F’,G’ into the three new points E”,F”,G”

respectively, i.e.

AN=EE =FF =GG’ (3.91)

This procedure insures that the center of the triangle E'F’G” coincides with point A’.

~

E"

> F"

Fig. 3. 19 — The (x,z,u) space considered for a—¢ and a—e—o.—B schemes

1 1 1
The values u,; 2 ,u;”Z and ugf2 can easily be computed using the Taylor

expansion, Eq. (3. 77) with the expansion points E’,F’,G’ respectively, and at the time

step n. For instance,

nes n n n At n n n n
Ug- 2= Ug + (XE” - XE')(UX)E’ + (ZE” - ZE')(UZ)E’ __[ '(ux )E’ + CE’(uz)E']' (3- 92)
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1 1
Similar expressions are used for the cal culation of uEfZ and u;.2. Consider aso the

1
value u, 2 calculated from Eq. (3. 89). In the space (x,z,u), four points can be defined:

1 1 1 1
n+= n+= nH+— n+_— .
O[XA,,ZA,,UA,Z], P[XE”,ZE,,UE”ZJ, Q(XF”,ZF”,UF.ZJ and R{xe,,zG,,uG,Z},asshownm

Fig. (3. 19). Consider four planes, each defined by a set of three points: OPQ, OQR, ORP
and PQR. In each of these planes function uislinear both in x and z, so that the values of
its partial space derivatives can easily be calcul ated.

In order to illustrate this simple procedure, consider the plane OPQ. In this plane,

function u has the expression

au ou
U(X, Z)opg = (—) X+ (—) Z+U, (3.93)
a X OPQ a Z OPQ
. . (adu ou , : —
where u, isaconstant, while | — and | — are the spatial partial derivatives
a X OPQ a z OPQ

corresponding to the triangle OPQ, derivatives that are to be determined. Imposing the

conditions
et
u(x,,zy)=u, 2 (pointO),
et
U(Xe-, Zer ) = Ug- 2 (point P), (3. 94)

1
U(XF” ZF”) = U2 (point Q),
and solving the linear system of three equations with three unknowns with Cramer’srule,

the values of the spatial partial derivatives are
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(3.95)
uy  _4,
0Z )0y A
where A, A, and A, are the following determinants:
Xy Z, Uy? 2z, 1 Xy Uy? 1
A=lx zee 1, A=lu? z 1,A,=[x un? 1 (3. 96)
X % up? z. 1 Xer U2 ]

Similar expressions can easily be deduced for the partial derivatives expressed in
the other three planes OQR, ORP and PQR. Finally, define the “central” derivatives at
point A" asthe average values of the derivatives obtained for the three triangles OPQ,

OQRand ORP, i.e.,

1
3

Ju
d X

Ju
0z

R
R

au] [
— +
d X ooR

au
0z

ol

o
a X ORP

o
a z ORP

(3.97)

Because, as previously shown, point A" isthe center of the triangle E'F’'G”, the values

obtained with Eq. (3. 97) are the same as the values obtained for the plane PQR. Thus,

X /A

1 1
(u°) 2 and (u§ )A, 2 can beinterpreted as central-difference estimates of the space

derivatives at point A". Note also that the computation of these derivativesis entirely

explicit.

The a—¢ scheme considers a weighted average between the values of the

derivatives calculated with the a scheme and the values obtained with Egs. (3. 97), i.e,,



1 et 1 S
(u:_g )A’ 2= (UE)A’ 2+2¢ (UE)A' 2 - (UE)A’ 21
- - (3.98)

ae et a s c et a s
(uz )A’ . (uz )A’ 2 +2¢ (uz)A' ? _(uz )A’ 2.

Therefore the a—¢ schemeis completely explicit (the values calculated with the a
scheme are not needed).

The a—e—o0 - scheme considers first the absolute values of the gradients of

function u calculated in the three planes OPQ, OQR and ORP, i.e.,

eOPQ = \/ (ux )éPQ + (uz)(ZDPQ (3.99)

where (U, )op, and (U, )os, arecalculated with Egs. (3. 95). Similarly,

eOQR = \/(ux )(23QR + (uz )(ZDQR J

(3. 100)
eORP = \/(ux )CZDRP + (uz )éRP )

Two new nonlinear weighted average values for the space derivatives can be

computed

(uw )”% (eOQReORP )a (ux )OPQ + (OORPOOPQ )a (Ux )OQR + (OOPQGOQR)(X (ux )ORp

" (feOQReORP )a + (eORPeOPQ)a + (GOPQGOQR)Q ) , (3. 101)
(uw )“*% _ (eOQReORP ) (uz )OPQ + (GORPGOPQ )a (Uz )OQR + (eOPQeOQR) (uz )ORP
o (GOQReORP )a + (eORPeOPQ )a + (eOPQeOQR )a

where o is aparameter, usually with the value 1 or 2. Finaly, the derivatives computed

with the a—e—o.— B scheme are weighted averages between the values (u? ), 2, (u3)..2
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n+
N

1 1
calculated from the system, Egs. (3. 88 a-c), (uC), 2, (u¢), 2 obtained with Egs. (3. 97)

z

and (uw)r:%, (uw)z\f% calculated with Egs. (3. 101), i.e.

z

e R ST P [ R
L - o- Z (3.102)

e =2 - e o - (o |

Asinthe 1-D cases, the numerical dissipation introduced by the e termis
effective in damping out numerical instabilities that occur in the smooth regions of the
solution, whilethe a.—f term is effective in damping out the wiggles that can occur in
the vicinity of the solution discontinuities. Stability requires, besides the CFL condition,
that the a—e— o — B scheme must also satisfy the following conditions

0<e<],
B3>0, (3. 103)
o

The a—¢ scheme can be considered as a particular case of the a—e—o —f3
method for B =0 or a =0, while the a scheme can be obtained when the supplementary
condition € =0 is satisfied. The most computationally efficient scheme, as previously
shown, is obtained for € = 0.5 becausein this case the method is purely (globally and

locally) explicit; therefore only this case has been used to obtain the results shown in the

next section.
Considering that at one half time step the values u,u,,u, have been calculated for

point A", the values of the same dependent variables can be determined at the same half

time step at any other point inside the hexagon BECFDG using the smplified Taylor
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expansion, Eq. (3. 77), (without the time dependent term) and considering that u, and u,

are constant over the surface of the hexagon.
Figure 3.20 shows a simple, uniform, grid. Over one haf time step, the values of

the dependent variables u,u,,u, are calculated for one set of triangular elements

(centers), like those marked with solid pointsin the figure. Over the next half time step
the other set of triangular elements are used - marked with hollow circles. Over the next
time step the first set of elements are considered again, and so forth. In conclusion two

half time steps are necessary to return to original set of elements.

o o o
O O O

o o o
O O O

o o o
O O O

Fig. 3. 20 — Uniform triangular mesh

An aternative method of estimating u, and u, at the new time step has been proposed

recently by Liu and Chen [2001]. This method requires, at each half time step, the
calculation of new values for variable u for all triangular elements. In a manner similar to

the development of the a—e— o —[3 method, consider in the three-dimensional space

1 1 1
(x,z,u) four points defined as O(XA,,ZA,,UA, 2], Pl[xE,,zE,,uE,ZJ, Ql(xF,,zF,,uF,ZJ and
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1
Ri[xe,, Z, ué?j . Three planes can be considered, each defined by a set of three points:

OP1Q1, OQ:R; and OR;Q;. Considering that function u is linear in both x and z directions
over the domains defined by these planes, the partial derivatives can easily be calculated

over the three domains (triangles OP;Q;, OQ;R; and OR;Q1) using equations similar to
Eqs. (3. 96) and (3. 97). Let (U )opo, (U Jon, » (Uodogr, (U Jogr, 81 (U Jors (U )oms, DE
these values, respectively. The partial derivatives at the new time step can now be
estimated using equations similar to Egs. (3. 99)-(3. 101). No e-type artificial dissipation
isintroduced.

No significant differences between the results obtained using any of the above

artificial dissipation schemes have been observed.
In conclusion, the unknowns at the new half time step n +% are calculated as

functions of the old half-time step n using explicit expressions, Egs. (3. 89), and (3. 102).

At this stage, the grid is shifted. For example, when at time step n the variables are

known at solid nodes (see Fig. 3. 20), at the half-time step n +% the unknowns are

calculated at the hollow nodes (Fig. 3. 20). It takes another half-time step, n+% —>n+1,

for the grid to return to the solid nodes. This peculiarity explains the half-time division.
Also, the fact that the derivatives are not calculated directly from the conservation laws
(which was the price paid for making the scheme fully explicit) does not diminish the
value of the method: the conservation laws are still satisfied within the larger, hexagonal

elements. The method is simultaneously accurate (the conservation is satisfied both in
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space and time for the hexagonal elements) and explicit (computationally efficient). It is

these characteristics that provide the strength of the CE/SE method.

3. 3. 2. Applicationsfor circular bearings

In order to determine the performance of the method, several numerical examples
are considered. The results are compared with the results obtained from other numerical
methods, as well as with experimental data. Only the steady state solution, obtained by
time integration until the state parameters stabilize, is presented.

A standard journal bearing with one inlet groove isfirst considered. The geometry
and the fluid characteristics are presented in Table 3. 3.

The boundary conditions are directly related to the configuration considered. At
the axial ends of the bearing, the pressure is set, equal to the atmospheric pressure, which
also equals the cavitation pressure. The main unknown function, u, is related to the
variable 0, which isthe density in the full film region, and the fractional film content in
the cavitated region, respectively. The boundary conditions at the axial ends must detect
whether or not the considered elements on the boundary are within the cavitated region or
the full film region. In the full filmregion, for p=p,, = p,

0=1, (3. 104)
which means that

u=he=h. (3.105)

In the cavitated region the only condition is
0<1, (3. 106)

so that the value of u is not known a priori, and it must be calculated from the field.



Table3. 3.

Physical conditionsfor circular journal bearing

Parameter Value Units
Length 26.010° |m
Diameter 45.010° | m
Clearance 15.010° | m
Relative eccentricity 0.8 -

Lub. supply position 120 deg
Supply pressure (gage) 5.45810° | Pa
Velocity 3952 rot/min
Viscosity 0.00325 Pas
Bulk Modulus (') 1.21.10° | Pa
Cavitation Pressure (gage) 0 N/m?

89

The boundary conditions must be imposed such that the conservation conditions

are still satisfied for the e ements on the boundaries. The conservation condition is not
enough to determine the values of the unknowns (variable u and its spatial derivatives),

since on the boundary the number of the unknowns islarger than the number of

conservation conditions. For example, in Fig. 3. 17, suppose the element centered on A is

on the boundary, and the element centered on F is a ghost element, situated outside the

computational domain. In this case, the conservation conditions lead to the calculation of

the unknowns at point A (or more precisely at point A’), using the procedure described
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above. There are not enough conditions however to calculate the unknowns at point F.
Only one condition can be imposed, i.e., the conservation on the volume formed by
surface ACFD and over ahalf time step, while the number of unknowns is three (u, ux
and u,). Even when the value of u is known, asin the cases for which Eq. (3. 105) can be
imposed, there still are not enough conditions to uniquely determine the spatial
derivatives. Therefore, the boundary conditions can be imposed in a number of ways
[Chang, Zhang, Y u, and Jorgenson, 2000]. One very simple methodology has been used,
which is described in following.

First, the computational domain is extended with arow of cells, see Fig. 3. 21.
These cells are selected so that they have identical dimensions to the neighboring cells,
and positioned anti-symmetrically relative to the boundary. For example, in
Fig. 3. 21, the quadrilateral ACFD is actually a parallelogram because the elements
centered on point A and on point F (the ghost element), respectively, have the same size
and are positioned anti-symmetrically relative to the center of the segment CD. The
centroid F' of the ghost element cannot be defined because no hexagonal conservation
element can be formed around it. However, point F' is selected such that it is positioned
anti-symmetrically with point A’ relative to the center of the segment CD. The

conservation condition over the volume ACFD and in time is satisfied considering that

1 1 1
0 =0 () = ), ()" = 0, (3. 107)
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BN

Boundary

Ghost elements

Fig. 3. 21 — Ghost elements for the boundary conditions

Indeed, the flux that crosses the boundary AC between two consecutive time steps
isequal with the flux that crosses the boundary FD between two consecutive time steps,
but with changed sign because the normal vectors i on the two surfaces have opposite

directions. Similarly, the fluxes crossing surfaces DA and CF between time steps n and

n +% are also equal and have opposite signs. Also the fluxes crossing surfaces ACFD at
between time stepsnand n +% are equal and have opposite signs. Therefore, the entire

flux entering the conservation volume ACFD between time stepsnand n +% also leaves

the same volume, without being reflected back into the computational domain. This
shows that the boundary conditions (3. 107) are correctly imposed. The conditions given
by Eq. (3. 107) are very simple to implement in the computer code, which is another
advantage of the CE/SE method compared with other numerical methods. Note that, for

the best geometric accuracy, the centroids of the elements which are similar with element
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A should be on the actual boundary. In other words, the actual boundary should pass

through the most southern row of hollow points, not the way it is shown in Fig. 3. 21.
Symmetry boundary conditions can be imposed at the center-plane of symmetric

bearings, and thus only half of the full computational domain is analysed. In this case the

ghost elements are chosen symmetric relative to the boundary, and the conditions are

1 1 1
u"2 =", ()2 = (), ()2 = (u,)," =0. (3. 108)

Figures 3. 22 and 3. 23 show a comparison between the pressure distributions and
the fluid film content 6 obtained with CE/SE method and with the type difference method

of Vijayaraghavan and Keith [1989]. Two transverse sections through the bearing at

z=0and z= % are presented for each method. Note that the bearing z coordinate ranges

between thevalues —L/2<z<L/2 sothat z=0 isthe symmetry plane. The
differences between the two methods are relatively small; the maximum pressure
predicted using type differencing is 6.7% smaller than the maximum pressure calculated
with the present method, while the total load is only 1.3% smaller. The difference
between the attitude angles cal culated with the two methods is 0.4°. Two cavitated
regions, 6 <1, arevisible. The larger oneislocated immediately before the lubricant
supply position, and it will be given more detail shortly. The smaller cavitated region is
located around 162° from the origin of the circumferential coordinate. Figure 3. 23 shows

that for this second cavitated region, both methods predict 6 =1 at the symmetry plane,

z=0,and 6<lat z= % , which indicates that the cavitation is more pronounced toward

the ends of the bearing that at the center.
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In Fig. 3. 23, for the larger cavitated region, the type differencing method seems
to be able to better handle the large discontinuity for the fractional film content than the
CE/SE method. However, the discontinuity was not actually calculated in the type
differencing results. Rather, two boundaries (the two sides of the lubricant supply pocket)
are shown next to the other, so that the sharp discontinuity in the fractional film content
distribution is only due to the representation. On the other hand, the computational
domain used by CE/SE code is continuous (periodic boundary conditions are used at one
circumferential position), so that the fractional film content discontinuity appears
naturally in the field. This approach was possible only because this method is able to
cope with large discontinuities without introducing significant numerical smearing and/or
oscillations. The code developed using this method is thus more general and can be
applied to bearings where the computational domain cannot be split at the lubricant
location (when the supply pocket is inside the bearing, without reaching the bearing

margins).



Pressure distribution
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Fig. 3. 22 — Pressure distribution for a circular journal bearing with one inlet groove
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Fluid Film Content
1.2 T T T T T
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Fig. 3. 23 — Fractiona film content distribution for a circular journa bearing with
oneinlet

3. 3. 3. Applications for wave bearings

The geometry of awave bearing is more complex compared to the geometry of a
standard journal bearing, [Dimofte, 1995]. The geometry is obtained by super-imposing a
wave distribution on the fixed surface of ajourna bearing. For example, considering that
the shaft is rotating and the bearing sleeve is fixed, the sleeve is manufactured or
deformed using exterior forces such that the interior surface is not circular, but it has a
wavy shape. Figure 3. 24a shows a circular sleeve, and Fig. 3. 24b shows awave bearing
sleeve with three waves. The amplitude of the waves is greatly exaggerated in order to be

visible. The circular sleeve shown has two rows of supply orifices. This configuration is
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used in gas bearings, which will be discussed in the following chapter. Considering that
there are n,, waves over the circumference of the bearing sleeve, the amplitude of the
waveis g€,C , where gy, is the non-dimensional wave amplitude and C isthe radial
clearance of the bearing, and the wave starts at an angle 6,, relative to the circumferential
coordinate 0, the wave shape can be written as

h,=¢,Ccodn, (Xx-x,)| (3.109)
This distribution is added to the normal film thickness distribution of ajournal bearing to

get the final distribution

g =1+ecos(X - X, )+¢,Ccodn, (X— X, )] (3.110)

Fig. 3. 24a— Circular bearing sleeve
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Fig. 3. 24b — Wave bearing sleeve

An example of the non-dimensional film thickness, g , distribution for a

three-wave bearing as a function of the circumferential coordinate is shownin Fig. 3. 25.
The physical conditions of the wave bearing considered in calculations are presented in

Table 3. 4.
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Fig. 3. 25 — Fluid film thickness distribution in a 3-wave bearing

Figure 3. 26 shows the pressure distribution obtained using the present method
compared with the pressure calculated by Dimofte [1995], using afinite difference
method to solve the steady form of the Reynolds equation with Giimbel (or half-
Sommerfeld) boundary conditions. The results show similar variations, however the peak
pressures differ. The total load predicted by the present method is 2039 N, 13.7% higher
than the load predicted by Dimofte. The difference between the predicted load directions

using the two codes is less than 1.6°. These results have been obtained using a value

B’=1.2105-10°Pa. The pressure distribution for a smaller value of the bulk modulus,

B’ =1.029-10"Pa, is presented in Fig. 3. 27. In this case, even though both peak
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pressures predicted by the present method and Dimofte are almost the same, the total load
compared with the previous case does not change significantly. The load directions
however have alarger difference (5.5°). In brief, the film compressibility effects reduce

the pressure peaks in the bearing and also produce a change in the phase of the pressure

distribution.
Table 3. 4.

Physical conditionsfor a wave bearing
Parameter Value Units
Length 26.0-10° m
Diameter 45.0-10° m
Clearance 15.0-10°® m
Number of supply pockets | 3 -

Lub. supply positions 86, 206, 326 deg
Supply pockets width 4.0 mm
Supply pressure (gage) 5.458-10° Pa
Velocity 3952 rot/min
Viscosity 0.00325 Pas
Density 902.0 Kg/m®
Bulk Modulus B’ (B’) 1.2105.10° (40.0) | Pa
1.029-107 (3.4)
Cavitation Pressure (gage) | O N/m?
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Note that, although the bulk modulus value for the oil used by Dimofte is not
known, the first case (B’ =1.2105-10°Pa) probably is amore realistic value. Note as well

that the code based on the present method uses a film thickness distribution calculated by
Dimofte considering the elastic deformations of the shaft and bushing; this can also be a

source of error.

Pressure distribution
25 T T

— CE/SE for z=0 (center)
2L —— CE/SE for z=zmax/4
‘‘‘‘‘‘‘‘ CE/SE for z=zmax/2
-— CE/SE for z=zmax*3/4
—-—- z=0 - Dr. Dimofte

p [non-dimensional]

150 200 250 300 350
Circumferential position [deg]

Fig. 3. 26 — Pressure distribution in awave bearing B’ =3.4
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Pressure distribution
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Fig. 3. 27 — Pressure distribution in awave bearing B’ = 40.0

Consider now the case of a misaligned wave bearing. The misalignment of journal
bearings can be defined using two parameters: the angle o. between the centerline and the
direction of the misalignment at the bearing center and the degree of misalignment dn,
that represents the proportion of the actual misalignment from the maximum possible.
The misalignment is restricted by the condition that at the axial ends of the bearing the
film thickness reaches the value of zero. An aligned circular journal bearing is
represented in Fig. 3. 28a, and a misaligned bearing in Fig. 3. 28b. In both figures the
bearing radial clearanceis greatly exaggerated in order to be visible. The physical
conditions of the bearing are presented in Table 3. 5. Because of the misalignment, the

fluid film thickness is a function of both the circumferential and axial coordinates, so that



for each value of the circumferential coordinate there exists a domain of thickness

variation, represented in dark color in Fig. 3. 29.

Fig. 3. 28a— Aligned journal bearing

Fig. 3. 28b — Misaligned journal bearing
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Table3.5

Physical Conditionsfor a Misaligned Wave Bearing

Parameter Vaue Units
Length 45.0-10° m
Diameter 45.0-10° m
Clearance 15.0-10° m
Angle of misalignment 90 deg
Degree of misalignment 0.5 -
Number of supply pockets | 1 -

Lub. supply position 100 deg
Supply pocket width 4.0 mm
Supply pressure (gage) 5.458-10° Pa
Velocity 3952 rot/min
Viscosity 0.00325 Pas
Density 902.0 Kg/m®
Bulk Modulus B’ (B’) 1.2105-10° (40.0) | Pa
Cavitation Pressure (gage) | 0 N/m?
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Fig. 3. 29 — Fluid film thickness domain in a misaligned 3-wave bearing

The pressure distribution in the bearing is presented in Figs. 3. 30aand 3. 314,
while the fractional fluid film content is presented in Fig. 3. 32a. The same bearing with
the same physical conditions and without misalignment shows different values for the
pressure distribution and fractional film content, as seen in Figs. 3. 30b, 3. 31b, and
3. 32b. The cavitation and the full film regions for the misaligned and the aligned 3-wave
bearing are presented respectively in Figs. 3. 33aand 3. 33b. Theload is 20,988 N for the
aligned bearing and 36,100 N for the misaligned bearing, which shows that sometimes

misalignment can have a positive impact on bearing performance. This effect is due to
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the expanded full film region that permits the development of higher pressuresinside the

misaligned bearing.
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Fig. 3. 30a— Pressure distribution in a misaligned 3-wave bearing
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Pressure distribution
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Fig. 3. 31a— Pressure distribution in amisaligned 3-wave bearing at different
axial sections
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Fluid Film Content
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Fig. 3. 32a— Fractional film content distribution in a misaligned 3-wave bearing at
different axial sections
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Fig. 3.30b — Pressure distribution in an aligned 3-wave bearing
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Pressure distribution
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Fig. 3. 31b — Pressure distribution in an aligned 3-wave bearing at different axial sections
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Chapter Four

Application of the CE/SE Method to Pressurized Gas Bearings

4. 1. Introduction

Gas lubrication was preceded by occasional experimental work in the mid 19"
century. This area of tribology experienced strong development in what has come to be
known as the “Golden Era” of gas lubrication. This era started in the last years of World
War 1, and ended in the first part of the 70’s[Pan, 1990]. In this period many
fundamental studies were published, e.g., [Fuller, 1956], [Lund, 1964, 1967], [Castelli
and Pirvics, 1968], [Constantinescu, 1969]. More recently, significant achievements were
made in the prediction of dynamic behavior, [Miller and Green, 1998], gas film modeling
including rarefaction effects, [Wu and Bogy, 2001], numerical methods applicable to
more complex geometries, [Bonneau, Huitric, and Tournerie, 1993], [Fariaand San
Andrés, 2000], etc.

Compressible viscous flow in pressurized thin fluid films, with application in
hybrid gas bearings, can encounter large pressure gradients due to the feeding system or
to the large peripheral velocities of the bearing. For these conditions, many of the
computational methods based on standard finite difference methods or classic finite

volume methods have been found to be inadequate because of convergence problems or
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because they induce oscillations into the solution. Thus, a method that is conceptually
simple, second order accurate for the entire domain and able to naturally deal with large
gradients and/or discontinuities in the solutions without introducing numerical

oscillations or smearing, is welcomed.

4. 2. Equations
The two-dimensional, transient, Reynolds equation, written for a Newtonian
compressible fluid in laminar flow is,

3 3
@4_1 ﬂ_ﬂﬂ +i _ﬂ% =0 (4 ]_)
ot odx\ 2 12udx) dz\ 12nadz

The flow is considered polytropic, i.e.,

P

— =const., 4.2
p

where the polytropic exponent can take various values. For example k =1 for isothermal

flow, k =vy=1.405 for adiabatic flow, or can have other values for general polytropic

flows.

A more suitable form of the Reynolds equation for numerical formulation is
obtained using a new variable u that is the product of the non-dimensional film thickness
and the non-dimensional density, i.e,,

u=hp (4.3)
In terms of u, in non-dimensional variables, the Reynolds equation can be written as

a—lf+a—f+a—_:0, (4.4
ot odX 0z

where the flux termsf and g are,
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uv ku® S

f :7_W(Uxh_uhx)’ (4 5)
kK F_uh |
9= ‘W(Uzh ~uh,),

All partial derivatives considered in Egs. (4. 4) and (4. 5) are carried out relative
to non-dimensional variables t,X,z, where X,z are given by Eq. (3. 69), and

t‘:t&(gJ2 (4. 6)

n R

Note that the definition of the non-dimensional timeis still valid when the bearing has no
rotation, i.e., when o= 0. This methodology, while less intuitive, must be used in this
case because the pressurized bearings can also work in the hydrostatic (no relative
velocity) regime. In the following, in order to simplify the expressions, the non-
dimensional notation (upper bars) will be dropped, and all variables will be implicitly

considered in non-dimensional form.

4. 3. Numerical formulation

The formulation is similar to the two-dimensional case described in section 3.3.1.
First, consider atriangular mesh that covers the (x, z) spatial domain. One triangle BCD
and its three neighboring elements are shown in Fig. 3. 18. Again, point A islocated at
the centroid of the triangle BCD, while points E, F and G are the centroids of the

neighboring triangles BCH, CDI and BDJ, respectively. The CE/SE method calculates

1
the values of the dependent variables u,u,,u, for point A at thetimestep t=t 2 using

the corresponding values of the same variables for the points E, F and G at the time step
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t=t". Inorder to calculate the three unknowns at the new time step, a system of three
equations will be derived.

Consider the quadrilateral ABEC. Simultaneously integration of EqQ. (4. 4) over

1
the surface of this quadrilateral and in time, between time steps t" and t 2 (see Fig. 3.
19), yields
i j W g j i {—+—}d o= @7
ABEC t" t" ABEC
Performing the time integration for the first term and transforming the surface integration

of the second term (using divergence theorem) into a contour integration produces
L o
J'J‘ [u 2—u”]d<5+ J' §F-ﬁdsdt:0, (4.8)
ABEC t" ABEC
where 1 isthe unit vector normal to the contour, oriented outwards, and the two-
dimensional function, F, is calculated using Eq. (3. 82). Theflux functionsf and g arein
this case given by Eq. (4. 5). Equation (4. 8) implies conservation of flux in the three-

dimensional space (x,zt). Functions u, f, g are next written with linear approximations

using first order Taylor expansions, i.e.,

U= U+ (U )y (X = %)+ (U, )y (2= 2)+ (U ), (t = 1,), (4.9)
f=f,+ ?9_11; 0(u—u0)+ aa—Jx 0[ux— o]+ ( j u, —(u,),]=acu+bou, +c., (4. 10)

0= 00+ 29 | (U=t} 29| u,~(w) b+ 28| o, ~(),J=apu+bou, +e. (@11)
— 390 auo 0 aUXOX X/0 auzoz z/0 z - -

Substituting Eqg. (4. 9) into Egs. (4. 10) and (4. 11) yields linear expressions for f
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and g asfunctions of (x,zt). InEgs. (4. 10) and (4. 11), the coefficients
a-,b-,c-,a5,b;,c, areconsidered constant when integrating Eq. (4. 8), and are known

asfunctions of uy,(u,),.(u,),. They are calculated using the following expressions,

Vo k*h L kk=1)h,)
ar :E_ 48:52 (ux)o g 1+Thk_loug! (4 12)
khe™
bF = bG = —anuo f (4 13)
Vv ku®
F :Euo _WZ(I)‘]SH[(UX)O ho _uo(hx)o]_aFUO _bF (ux)01 (4.14)
k2h2™X ~ k(k—l)(hz)
= 48;2 (u,),us 1+Thk_l°u§, (4. 15)
ku'g [ h ]
CGZ—W (u,)ohe =g (h, )y |- agu, — b (u, ), (4. 16)

In Eg. (4. 9), the time derivative can be cal culated as function of the space derivatives
using Eqg. (4. 3), i.e,

(ut )o :_(fx)o_(gz)o =—a (ux)o_aG(uz)O' (4.17)
n+£
Equations (4. 9) — (4. 11) are then substituted into Eq. (4. 8). Point (XA, yZp ot 2] IS
n+}
used as the Taylor expansion point for the expressionsof u 2, f and g on contour

segments AB and CA, while point (xE,, zE,,t”) is used as the Taylor expansion point for

the expressions of u", f and g on contour segments BE and EC. Thus, afirst equation

with three unknowns, the values u,u, ,u, at the new half time step (XA,, zA,,tn+2] , IS
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obtained. The coordinates of points A" and E are selected similarly to the previously
discussed case. Therefore, point A’ isthe centroid of the hexagonal surface BECFDG,
while point E” isthe centroid of the hexagonal element built around the element centered

on point E. The equation is linear and has the general form,

1

1 1
auy 2 + ()2 + 6 u) 2 +dul +au )l + (U, +,=0. (4189
Two similar equations are obtained using the same procedure for the conservation

elements ACFD and ADGB. These equations have the general form

1 1
n+= n+=

1
iy +b,(0, )7 4 6, (U)? + UL +e U+ £, (U, +9, =0 (4. 18b)

1 1
24 Cs(uz )A’E +dyug + es(ux )g + fs(uz )?; +0,=0. (4. 18c)

1
n+= n+

AUy * +b; (U, )

Note that, compared to the cavitated bearing expressions, Egs. (3. 88 a—c), the
system obtained here also includesthe freeterms g, i =1, 2, 3.

The linearized system formed by Egs (4. 18a), (4. 18b), and (4. 18c) can be solved

using an iterative method; note that the coefficients a,,b,c,i =1,2,3 are functions of the

1
n+=

1 1
unknowns u, 2,(u, ), 2,(u,), 2. Asindicated, the expansion points are selected as shown
above, i.e., point A’ isthe center of the hexagon BECFDG, and points E’,F’,G” arethe

centers of the corresponding hexagons formed around the neighboring triangular
elements. Adding Egs. (4. 18a), (4. 18b), and (4. 18c) yields a new equation that
represents the flux conservation over the hexagon and over the half time step (hexagonal

prism in the three dimensional (x,z,t) space). When point A’ isthe centroid of the

hexagon BECFDG, this equation has a ssmpler form given by
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1
a2 + Q2 (U, + 0, )+ 0up e, )+ ) @19
d3ug’ + es(ux )g’ + f3(uz)(ns' + gwm = 01

where agm is

Am = AABEC + AACFD + AADGB = ABECFDG . (4- 20)

1
Equation (4. 19) has only one unknown, u, 2, and can easily be solved explicitly.
It is also important to note that all the coefficientsin Eq. (4. 19) depend only on the
geometry (coordinates of the points) and the values of the dependent variables at the

previous half time step so that an iterative method is not needed. After calculating the

value u:,% , the values of the other two dependent variables (ux)r:% and (uz)r:% can be
calculated using any two of the expressions Egs. (4. 18a), (4. 18b), and (4. 18c). Thisis
also called the a scheme.

The scheme can be ssimplified and simultaneously stabilized by calculating the
space derivatives in a different way. The scheme thus obtained iscalled the a—e — o — 3
scheme. In this scheme, the derivatives are calculated as weighted averages between the
derivatives calculated from the governing equations, as shown above (the a scheme), the
derivatives calculated using 2-D central difference finite difference formulae (with
weight parameter €) and the derivatives using 2-D side finite differencing (with weight
parameter ). Parameter o is the power index used in the computation of the non-linear
weighted average that employs 2-D one sided finite differencing. It isimportant to note
that, for a certain value of the weighting parameter € (e = 0.5), the a—e—o.— scheme
eliminates the necessity of calculating the space derivatives from the governing

equations, thus the method becomes purely explicit. More detail s regarding the
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computation of the spatial derivatives have been described in section 3. 3. 1.

The feeding system, formed by ns orifices, where ns equals the number of feeding
holes, with the general geometry shown in Fig. 4. 1, can be modeled using a generally
accepted formula [Lund, 1964 and 1967] that links the mass flow ratio to the feeding
system geometry and the pressures at the ends of the feeding system considering both

effects of the orifice restrictor and the inherent restrictor, i.e.,

Tcrorif ’ A psp s

Q= Qu» (4. 21)

where the non-dimensional mass flow Q isafraction C, of theideal massflow,

Lﬂ Y
2 vt e
V{ +1] for &S{L]Y ,
v p. (y+1
y-1 A

2
ﬂ[ﬂ]y 1_(ﬂ] RIS
Y_l Ps Ps Y+1 Ps

When no restricting orifice is present, i.e., an inherent restrictor, see Fig. 4. 2, Eq. (4. 21)

(4.22)

O
3
I
@)
O

becomes

Qn =2nry/p,p, Q (4.23)

The restriction characteristic of the feeding system is given by the property that,

for a given supply system geometry and supply pressure,

p=p(h)= p,, (4. 24)
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This property is essentia in order for the bearing to have rigidity, i.e., the resulting
pressure force inside the bearing is afunction of the shaft position.

An important feature is given by the fact that the supply holes are relatively small,
i.e., too small to be discretized and therefore their surface may be eliminated from the
computational domain. For example, a characteristic size of the diameter of the supply
holesis 1 mm, for a bearing having the circumference of 100 mm. Consequently, the
shape of a supply hole is approximated with the shape of a conservation element, and the
pressure is calculated not from the conservation equation, EqQ. (4. 4), but using the flow
rates through the supply holes given by Eqg. (4. 21) or Eq. (4. 23). Thus, on each feeding
pocket contour, the mass flow rates calculated from the bearing equations and from the
feeding system, respectively, must be equal

(Qui haring = Qi )i » 1 =12+, 1. (4. 25)
Equation (4. 25) represents anonlinear set of ns equations, where the pressuresin the
bearing at the feeding holes are the unknowns p, ,i =1,2,---,ns. This system is solved
iteratively using Newton’s method. The Jacobian of the system is calculated numerically
using first order finite difference approximations.

Another way to introduce the feeding system is to include the feeding flow rates

(Qui ) eang 1Nt0 the governing (Reynolds) equation. In this case, for the mesh elements

covering the supply holes, the governing equation, Eq. (4. 4), includes a source term
[Wilde and San Andrés, 2003]. While this approach eliminates the need of solving the
system given by Egs. (4. 25), since the pressures p; are calculated as part of the pressure
distribution inside the bearing, it does not improve the convergence of the solution.

Indeed, the values of the pressure inside the bearing at the position of the supply holes
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have the tendency to oscillate. This tendency is acute especially when the supply flows

Q,, arenot sensitive enough to the change of the pressures pi. One example of such case

appears when at least some supply holes are choked, i.e., the flow in the supply holes
becomes supersonic, and therefore the mass flow rate is not affected by any change of the
pressure inside the bearing,

¥

52
Q,=C, y{ij "~ const. for P (LJ " (4. 26)
7+1 p. \v+1

The convergence can be better controlled by using an approach involving the
system of equations (4. 25) since this system is solved outside the Reynolds equation
solver. For example, the Jacobian of Eq. (4. 25) can be approximated with a diagonal
matriX. Thisisequivalent to considering only the influence of pressure p; on the flow rate

Q. » and not on other flow rates Q,,,, j # i . Note that this approximation does not

influence in any way the accuracy of the converged pressure distribution p,,i =1,---,ns.

This approach was coupled with a variable factor under-relaxation scheme. The method
yielded good results in terms of convergence speed and computational effort.

A practical example of the supply system distribution for gas bearingsis shown in
Figs. 3. 24aand 3. 24b. In these examples, 24 equally spaced supply holes are located
within two rows. The two rows are placed symmetrically relative to the bearing center-
plane. Outside the bearing sleeve the pressure is equal to the supply pressure ps, while
inside the bearing the pressure is calculated by solving the Reynolds equation, Eq. (4. 4),

coupled with the conditions given by Egs. (4. 25).
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4. 4. Applications
A computer code has been devel oped based on the described method, using the

a—e—o— schemewith € =0.5. This code has been tested for some simple cases
where experimental data were available, considering isothermal flow (k=1).

The first case considered was the circular gas bearing without any feeding system. The

results are shown in Figs. 4.3a and 4.3b, where the same bearing with an aspect ratio

BuOR’

2

2—'% = 2.0 isexamined for two bearing numbers A = and for two eccentricities.

0

There are no significant differences between the experimental and cal culated pressure
distributions, at least at the middle plane where experimental results are available. The
relative differences between the experimental and cal culated non-dimensional loads

(= Load are 3.5% and 4.0%; both of these results represent improvements over the

"~ p,2LR

theoretical results of Cooper [1961] as shown by Constantinescu (1969).

The second case considered is the wave journal bearing without any feeding
system. The fluid film thickness in an aligned wave bearing has the expression given by
Eq. (3. 110). The results are compared with afinite difference based code built by
Dimofte (1995). Different bearing positions have been tested and the results (cal culated
load magnitude and position) are presented in Table 4. 1. The results show very good

agreement between the two methods.
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Table 4. 1 — Comparison between calculated data with CE/SE method and with

finite difference method

Load angle
o, L oad Load FD Load angle
CE/SE
Eccentricity | (deg) CE/SE (N) | (N) FD (deg)
(deg)
0.502 40 177 177 40.49 40.18
0.460 32 170 170 39.09 38.8
0.433 24 166 165 36.37 36.11
0.416 16 163 162 32.94 32.69
0.404 8 158 158 29.30 29.06
0.400 0 154 154 25.61 25.38
0.404 -8 151 151 22.08 21.86
0.416 -16 149 148 18.95 18.75

The load and load attitude angle shown in Table 4. 1 are also presented in

Fig. 4. 4 in order to better compare the two sets of results. Again, very good agreement

between the results of the two methods is observed.
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Fig. 4. 4 —Load vs. attitude angle comparison between the present (CE/SE) and finite

difference (FD) methods for a gas wave bearing

The third case considered is the pressurized gas bearing without rotation and with
zero eccentricity. Details of the bearing geometry and working conditions are presented
in Table 4. 2. Figures 4. 5a and 4. 5b show the calculated and experimental pressure
distributions for two values of the radial clearance. These cases correspond to the
subsonic flow regime (obtained when C =12.7um), and the choked flow regime
(obtained whenC = 31.75um) in the feeding system. Two longitudinal planes situated at
the jet position (Fig. 4. 5a) and at half distance between jets (Fig. 4. 5b) are shown;
pressure peaks are visible at the jet positions; aso a nearly constant pressure is obtained
between the supply planes. The predicted pressure peaks at the position of jet are higher
than the experimental values (this difference is more visible for the subsonic inlet flow,

however it is present in both cases). Thisis due to the difficulty of measuring the local
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pressure at the feeding orifice position. The value for the correction factor Cp is 0.8 for

the subsonic inlet flow, and 0.85 for the choked flow.

Table 4. 2 — Pressurized gas bearing geometry and wor king conditions

Bearing length 117.5 mm
Bearing diameter 60.4 mm
Supply planes 2

Supply plane position | 12.7 mm

Holes/supply plane 14

Orifice diameter 0.16 mm
Pocket diameter 0.9 mm
Supply pressure 5.514x10° Pa

Injection angle 90’
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Fig. 4. 5a— Comparison between the calculated and experimental
pressure distributions at jet position
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Fig. 4. 5b — Comparison between the cal culated and experimental
pressure distributions at mid-jet position
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Finally, the code was tested for different configurations, where experimental or
computed data were not available.

Figure 4. 6 shows the pressure distribution (sections at the jet and at the mid-jet
positions) obtained for five supply planes for the same bearing as in the previous case

C=12.7um. It isvisible that, although the external pressureisthe samefor all supply

holes, the pressure that develops in the pockets (inside the bearing) is not the same for all
supply planes. The pressure distribution between two consecutive feeding planes has an
almost linear form. Furthermore, at the central supply plane, the peak pressures are not as
visible as the peak pressures at the other supply planes; this suggests that the central
supply plane does not make an important contribution to the general pressure distribution

inside the bearing.
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Fig. 4. 6 — Pressure distribution for a circular bearing without eccentricity,

with five supply planes

Figure 4. 7 presents the pressure distribution for the same bearing geometry asin

the previous two cases, but for a running condition (20,000 RPM), at arelative

eccentricity € =0.5. The pressure distribution is very complex. It may be seen that for

some feeding holes the flow isinverted, i.e., it is directed from the bearing towards the

feeding system, because the pressure in the bearing is higher than the supply pressure.
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Fig. 4. 7 — Pressure distribution for a circular bearing with eccentricity,
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Chapter Five

Inertial Effectsin GasBearings

5. 1. Introduction.

As shown in the previous chapter, the computation of the flow in gas bearingsis
generally accomplished by solving Reynolds equation for compressible flows, and
considering the flow as either isothermal or polytropic, or calculating the temperature
distribution by using the conservation of energy equation. However, at very high
velocities, some of the hypotheses upon which the Reynolds equation have been derived
may no longer be valid. Phenomenathat do not occur at smaller velocities, such as flow
discontinuities, increase the importance of inertial effects, while the characteristic time of
heat diffusion can become large compared to the characteristic time of the flow.

This chapter concentrates on the evaluation of inertial effects on steady flow at
very high speedsin gas bearings. Some of these effects have been studied in the past. For
example, Constantinescu [1995], developed an approximate set of equations that govern
the flow in thin fluid films including inertial effects. Szeri et. al., [Dai, Dong, and Szeri,
1992], [Szeri and Al-Sharif, 1995], [Kim and Szeri, 1997], investigated the influence of
inertial effects on bearing performance of long oil bearings, with and without cavitation.

They showed that for long oil bearings the lubricant inertia has a negligible effect on the
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load capacity, and the stability characteristics are slightly influenced by the inertial
effects. These conclusions are also substantiated by Constantinescu and Galetuse [1982].
However, You and Lu [1988] indicated that the cavitation boundaries, and consequently
the load capacity, can be significantly influenced by the lubricant inertia. Also, Sestieri
and Piva[1982] found an important increase in load capacity for non-cavitated bearings
when the inertia effects were included. Belforte, Raparelli and Victorov [1999]
investigated the dynamic characteristics of gas bearings, including inertial terms, through
direct timeintegration. They concluded that the effects of these terms are negligible when
the modified Reynolds number, Re , is smaller than unity. An analysis of the inertia
effectsin fluid film lubrication can be found in Szeri [1998]. Arghir and Fréne, [2001],
used a finite volume method to solve the bulk-flow model equations [Childs, 1993].
Shyu, Talmage and Carpino, [2000], showed the limitations of the Reynolds equation and
the bulk-flow model. Later, Shyu and Jeng, [2002], proposed a new model, which they
called the efficient general fluid-film lubrication model, using the L egendre collocation
method [Canuto et. al., 1988] in the cross-film direction, and afinite difference method in
the other two directions.

In order to predict the occurrence of discontinuitiesin the flow, shock-capturing
techniques are the most widely used. These methods, opposed to shock fitting techniques,
compute the discontinuities as part of the solution for the governing equations, which
must be written in conservation form. However, most of the methods have the
disadvantage that they can distort the solution when strong shocks are encountered, or
even fail in these cases. The authors know of no published results containing flow

discontinuities (shock waves) for hydrodynamic gas bearings.
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Inertial effects were not included in the application of the space-time conservation
element and solution element (CE/SE) method has been successfully applied to calculate
the flow in one-dimensional and two-dimensional flowsin cavitated oil bearings (Chapter
Three), aswell asin hybrid (aerodynamic and pressurized) gas bearings (Chapter Four),.
Therefore, an objective of the current chapter isto extend the method to include inertial

effects for the case of high-speed gas bearings.

5. 2. Governing equations

In order to include the inertial effects, a method by Constantinescu, [1969] and
[1995] is used. Consider the continuity and momentum equations written for
compressible flows in thin films [ Constantinescu, 1995]. Using the continuity equation to
rewrite the inertial terms from the momentum equations in conservative form, these

eguations can be expressed as,

9p, 9lpu) , alpv), Apw) _
ot dx oy 0z

a(pu) , Alpu*) , Apw) . 3(puw) _@+1( auj,

ot 0 X oy 0z oX dy

(5.1)

pw) , Apww)  Alpw) dlpw’) _ ap 3 [ aw)
ot 0 X oy 0z 0z 0Y

In Egs. (5. 1), u, v, w are the gas velocity componentsin x, y, and z directions,
respectively. Let the x velocity component be the sum of alinear and parabolic profile,
i.e,

v Y)Y e
u_V(l hj+ > y(h—y). (5.2)
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This distribution assumes that the inertia forces do not alter the shape of the velocity
profile, i.e., the laminar profile. It is easily seen that the linear component is the Couette

distribution, with one surface (y = h) being fixed, and the other surface (y = 0) having a

trandation motion with the velocity V, where V = R for journal bearings. The parabolic
component is symmetric, with the volumetric flow rate per unit of length in the z
direction given by,

h

HmN:I%;ym—yMy:Uh. (5.3)

0
This equation shows that the velocity U (x, ) isin fact the average parabolic velocity in
the x direction. The total velocity in x direction (after adding the Couette component),
averaged on the film thickness, is,

U,=U +%. (5.4)

The z velocity component is assumed to have only a parabolic profile,

W:%y(h—y). (5.5)

The system of equations Eq. (5. 1), can be integrated across the film, i.e., from
y=0to y=h(x,zt), assuming that p, p, and . do not vary with y, and utilizing the
assumed velocity profiles given by Egs. (5. 2) and (5. 5). Thisyields,

d(ph), 9 (X j 9 _
o +ax{ph L) |+ 2 forw)=o, (5. 69)

2 Ph(U +¥j + 2 ph(§U2+UV+5v2j + 2 phW(gu +1vj __pdR_ 1A,
ot 2)| dx 5 3 0z 5 2 ox h

(5. 6b)
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i(phw)+i phW(EU +5v] +i(§phwzj=—h@—12—uw. (5. 6C)
ot 0 X 5 2 0z\5 0z h

For turbulent flows the velocity profile is usually considered flat, as in the bulk-
flow analysis, [Childs, 1993]. Thisyields a set of equations with the same structure as
given by Egs. (5. 6a-c), but with dightly different numerical coefficients. Consequently,
the results obtained are close to the laminar flow results, except for the variables strongly
influenced by the velocity profile, as the shear stress at the wall. Since thiswork only
deals with the pressure and average velocity distributions, the laminar flow assumptionis
not critical in this phase. In addition, using the laminar velocity profile allows
comparison with the non-inertial computations. Also, in the literature the system of
equations, Egs. (5. 6a-c), is usualy, [Constantinescu, 1995], [Szeri, 1998], written in
terms of velocity U, given by Eq. (5. 4) instead of U. There are absolutely no conceptual
differences between the two forms, but here the use of U has been preferred because only
this component in the total velocity in x direction carries the information regarding
inertial effects. Indeed, assuming that the left hand sides of the momentum equations, i.e.,
Egs. (5. 6b) and (5. 6¢) are zero (negligible), which is equivalent to considering that the

inertial effects are negligible, the momentum equations become,

2
u=_no9dp (5. 72)
121 d x
2
__hdp (5. 7b)
1210z

These values correspond to the Poiseuille flow, and are used in the Reynolds equation.

When including the inertial effects, Egs. (5. 7a) and (5. 7b) are no longer valid.
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Keeping the conservative form, and using non-dimensional variables, the system

described by Egs. (5. 6a-C) can be written as,

0Q OJF BG:

~+—+—=H, (5.8)
ot dX 0z

where the unknown vector Q has the components,

Ql = ﬁﬁ,
Q, =ph(U +1) (5.9)
Q= EHW

The flux vector in the x-direction has the components,

F1:Q2’

102 8
|:2_1.2Q 04Q,+1-Q; (5. 10)

1

Q,
F,=Q,|12=2 02|
Q( Q J

1
The flux vector in the z-direction has the components,

G, =Q;,
G, =F,, (5.11)

2
G, =123

1

Instead of the energy equation, the polytropic equation is utilized
k k
pzﬁz[ﬂ] :ﬁk:(&j . (5.12)

This enables the source terms to be written as,
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H, =0,
sz_cAhi_(%j _%(%_1} (5.13)
ox\ h h|Q
k
HS:—cAhi(%j G Qs
azlh) “h Q

In the following, the non-dimensional notation (upper bar) is dropped for convenience.

The constants C, , C; are

R 5 149
PR op,C

Unlike the case of the classic Reynolds equation, the steady form of the governing
equation isinfluenced not only by one parameter, the bearing number, but instead by two
parameters. Ca and Cg. These two parameters can be written in terms of the bearing

number A and modified Reynolds number Re* as

Ch=—o Cy=—ns (5. 14b)

5. 3. Numerical formulation

The numerical formulation isin many ways similar to the procedures described in
sections 3.3.1. and 5.3. There are some notabl e differences however. The first difference
isrelated to the fact that in this case (with the inclusion of the inertial effects) the
governing equations are a system of equations, instead of only a single equation, and the
unknowns are vectorial variables, instead of scalar variables. Therefore, in the numerical
procedure, variable u from the previous casesis now replaced by vector Q, and fluxes f
and g are replaced by three dimensional fluxes F and G. Also, the spatial derivatives, Q,

Q. Fx, F etc,, arein this case vectorial variables, instead of scalar variables, as before.
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While the appearance of the formulation is virtually identical, the meaning of the
notationsis now different, i. e., the unknowns are multidimensional.

The second difference isrelated to the fact that thisis the first case considered in
this thesis when a source term, vector H, is present. However, a source term is present in
the axial-symmetric formulations which have not been discussed here. The sourcetermis
evaluated using only information from the previous time step. For stiff problems, it
would be necessary to evaluate the source term using an iterative procedure, i.e., an
implicit formulation. Thisis not the situation for the case studied. In addition, only the
transient solution could be different using the two procedures, while the steady state
solution is the same.

Aswith the development of previous cases, consider atriangular grid that covers

the computational domain x=[0,1], z=[- L/(4nR), L/(4nR)]. The domain can be divided
in half in the case of symmetric bearings z=[0,L/(4nR)]. Asshownin Fig. 3.18,

consider atriangular element BCD and its three neighbors BHC, CID, and DJB. Let A
be the centroid of element BCD, and E, F and G be the respective centers of the neighbor
elements. Also let A’ (not shown in the figure) be the centroid of the hexagon BECFDG,
and E', F’ and G’ be the centers of the hexagons formed around the neighbor elements
(not shown in the figure). In order to solve the governing equation, Eg. (5. 8), using the
CE/SE numerical scheme, the following steps have been followed:

(a) The governing equation is integrated over the surface of the hexagon BECFDG and in

time between two consecutive time steps t” and t™, i.e.,

tn+1

I] tj thdXdZthnj: i (a—F+a—doddt— [[ [Hdtdxdz (5.15)

BECFDG t" t" BECFDG BECFDG t"
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(b) The volumeintegralsin Eg. (5. 15) are changed into surface integrals, assuming linear

dependence with time for functionsF, G, and H, i.e.,

n+1/2
” Q™ — dxdz+At ” (aF BGJ dxdz = At ”H””/zdxdz (5. 16)

BECFDG BECFDG a X a z BECFDG
(c) The second integral in the left hand side of Eq. (5. 16) is changed into a contour

integral using Green’s theorem. Thus, Eq. (5. 17) becomes

J'J’ n+1 dXdZ+ At §F fAds= At IJ. H n+1/2 dxdz (5 17)

BECFDG BECFDG BECFDG
(d) The unknown vector Q, the flux functions F and G, and the source term H are written
inlinear formintermsof x, z, and t using Taylor series expansions. For example, the

unknown vector Q is approximated as,
(990} (x— )29 (2- 20429 ) (-
0 -(52] b+ 52| -z (52 )

:[%_Qxi]o(x—xo){i)—%l(z—zo){(Hi)o (aai] (aai”(t—to)-

where (i =1,2,3), and the expansion point (x,,z,,t,) ischosen in asuitable way, as

(5. 18)

shown later. Also for illustration, component i of the flux function F is approximated as

F z(%)O(X—XOH(%]O(Z—zo)+(%jo(t—to), (5.19

where the partial derivatives can be written in terms of the partia derivatives of the
unknown Q, or they can be evaluated numerically using afinite difference scheme. For

example, in terms of the Q gradient components,

)
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Equations (5. 20), and those similar to them, provide relatively ssmple analytical forms
for the gradient components of the fluxes (written in terms of the Q gradient
components), but they may neglect some terms related to the film thickness gradients, as
in the case of the source term, H. In these cases, this approximation is equivalent to the
assumption that the film thickness is constant on the surface of each conservation
element. In practice, no differences have been found between using the approximations
given by Egs. (5. 20) and the numerical evaluation of these gradient components.

The integrals that appear in Eq. (5. 17) are evaluated dividing the contour integral

into a sum of six segment integrations, and dividing the surface integrals at time steps t"

n+1/2

ort into asum of three surface integrals over the areas ABEC, ACFD, and ADGB.

Note that the integral J' J' Q™dxdz is not divided, rather it is approximated as,

BECFDG

”led)(dz = Q¥ " Specroc (5.21)

BECFDG
This approximation isin accordance to the linear approximation of the unknown Q,
considering that point A’, the centroid of the hexagon BECFDG, coincides with the
expansion point.

(e) The remaining expansion points are selected as follows

n+1/2

- For dl integrals that contain segments BE or EC at thetime t" or t™<, the expansion

pointisE’ for all evaluates and the corresponding timeis t".
- Similarly, when segments CF or FD are part of either surface or contour integrations,
pointisF’ isused as the expansion point, and when segments DG or GB are part of the

surface or contour integrations, point isG’ is used as the expansion point.
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() The discrete equation obtained is entirely explicit, so that the unknown vector at the

n+1

new time step Q™ can bereadily evaluated for al hexagon centroids. The space

derivatives at the new time step can then be evaluated using the procedure described in
the previous cases.

The boundary conditions consist of periodic conditionsfor all variables at one
circumferential position, the symmetry condition for all variables at the axial center
plane, and imposed pressure, that is equal to atmospheric pressure, at the edge of the
bearing. At the bearing edge, the velocities U and W, and also the spatial derivatives, are
calculated from the field, satisfying the conservation condition, non-reflective boundary
conditions [Chang et. a, 1997]. In essence, the computational domain is extended to
include arow of ghost elements equal to their pair (neighboring) elements. The

unknowns at the ghost elements (Q,,Q, and the spatial derivatives) can, for example, be

considered to be equal to the values from their neighboring pair elements. Thisinsures
that the fluxes which cross each interior element situated near the boundary leave the
computational domain through the boundary of the ghost elements, and thus are not

reflected.

5. 4. Applications

A computer code has been devel oped based on the described method. This code
has been tested for some simple isothermal flow cases where experimental data or
theoretical data were available. Also, the results obtained with this code for low

velocities, where inertia effects are small, have been compared with the results obtained
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with the code that solves the classic Reynolds equation, presented in Chapter Four, [Cioc,
Keith, Dimofte and Fleming, 2003].
Thefirst case considered is the circular journa bearing. The results are shown in

Figs. 5. 1 and 5. 2, where the same bearing with an aspect ratio L/2R=2 is examined

for two bearing numbers, A, and for two relative eccentricities, €.
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Fig. 5. 1 — Comparison between numerical and experimental results for the pressure
distribution in agas journal bearing

A=045¢,, =041(,, =0.1496,6,, =65° e, =040, =0.1540,6, =69

comp comp

As may be observed, there are no significant differences between the experimental and
calculated pressure distributions at the middle-plane where experimental dataare
available [Constantinescu, 1969], [Cooper, 1961]. The relative differences between the

experimental (denoted with subscript exp) and calculated (subscript comp) non-
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dimensional loads { are 3% and 4%, and are in very good agreement with the results
obtained using the code discussed in the previous chapter, that was developed for cases

without including inertia effects.
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Fig. 5. 2 — Comparison between numerical and experimental results for the pressure
distribution in agasjournal bearing
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The second validation case considered is a plane slider with A = 6uVI2_ =1, where

Pohy

Visthe velocity of the lower surface and h; isthe fluid film thickness at the entrance.
The slope of the slider issmall, € = 0.01 because the results are compared to results of

the small perturbations theory of Constantinescu, [1995]. The one-dimensional gage
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pressure distributions along the slider, for different values of the parameter
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Fig. 5. 3— Comparison between numerical and small perturbation theory
[Constantinescu, 1995] results for a plane dlider,

A= 10, oM =

2 V
poh; \EA/ Po/Po

For small values of the parameter, o’'M = 0.25, the flow is amost non-inertial,
and the theoretical results agree very well with the numerical values. As oM increases,
the peak pressure increases and moves towards the slider exit because the inertial effects
become more important. Indeed, keeping the value of the bearing number constant,

Vv 1

2/po/Po Cn

A =C,/C, =1 and changing the value of the “Mach” number M = IS
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equivalent to changing the weight of the inertial effects, but not the relative proportion
between the pressure gradient and viscous forces in the momentum equations. Therefore,
when oM increases, both coefficients Ca and Cg decrease at the samerate, so that the
right hand sides of the momentum equations, Egs. (5. 6b, c), decrease at the same rate,
and the left hand sides (which include only theinertial effects) become relatively more
important. The numerical and theoretical results continue to agree very well to
o’M =0.8. For higher values, o’'M > 0.9, thereis an increased difference between the
two sets of results. At o'M =0.95 for example, the peak gage pressure differs by about
7.5%, but the position of the peak pressure remainsin very good agreement. It is
surmised that these differences are due mostly to the limitations of the small
perturbations theory, which cancels some terms in the governing equations. These terms
can become important when the inertial effectsincrease. For choked flows, o’'M >1, the
results agree again very well, since this case is treated separately by the small
perturbations theory as alimiting case. For choked flows the pressure is discontinuous at
the bearing exit, as seen in Fig. 5. 3, and is not influenced by the value of the parameter
o’M . Based on the results of this analysis, it may be concluded that the capability of the
CE/SE method to accommodate a discontinuity on the boundary is outstanding.

In order to show the impact of theinertial effects on the pressure distribution at
very high speeds in journal bearings, a series of cases were run starting from a fixed

bearing geometry, i.e., L =2R=35mm, C =40---100um,

n=2,094---41,890s ™" = (20---400)-10°rev/min .
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Fig. 5. 4 — Comparison between the non-dimensional loads vs. shaft speed with and
without inertial effects for three radial clearances € =0.8

Load
P, 2LR

Figure 5. 4 shows the non-dimensional load distribution, { = , asfunction

of the bearing speed at constant eccentricity ratio € = 0.8 for three values of the bearing
clearance, with and without inertial effects. It may be observed that the inertial effects
become more important when the speed isincreased, while for low speeds the differences
become negligible. This conclusion was expected. Also, Fig. 5. 4 reveals that the
difference between the two methods is more significant for larger radial clearances. At
the same time, predictions of the attitude angle (the angle between the direction of the
load and the centerline axis) using the two methods does not yield much difference, as

shownin Fig. 5. 5.
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Fig. 5. 5— Comparison between the attitude angles vs. shaft speed with and without
inertial effectsfor three radial clearances, € =0.8

A better sense of the differences between the two cases (with and without inertial
effects), is offered by Fig. 5. 6, which presents the relative error in the load evaluation
between the two methods. The error is minimal (under 1.3%) for low speeds and low
clearances, and it increases both with speed and the value of the radial clearance. For

C =100um the error is higher than 4% for a shaft speed of 20,000 rev/min
(Re* =139, A= 0.0699), and it increases up to almost 25% at 400,000 rev/min

(Re* =279, A= 1.398). This observation indicates that the increase of the bearing

clearance leads to an increase of theinertia effects, which can become fairly important.
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Fig. 5. 6 — Comparison between the relative difference of the loads with and without
inertial effects vs. shaft speed for three radial clearances; € =0.8

Figure 5. 7 shows a comparison between the loads cal culated with the two
methods for afixed clearance of 100um and shaft speed 350,000 rev/min
(Re* =24.4,A = 1.223). The absol ute difference between the loads increases with an

increase of the bearing eccentricity ratio. However, the relative difference does not
change much, having values of about 23% over most of the range of eccentricities

considered.
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Fig. 5. 7 — Comparison between the loads with and without inertial effectsvs.
eccentricity ratio; A =1.223 and Re’ = 24.4,C =100um,
n = 350,000rev/min = 36,652s™

It iswell known that the steady state solution of the Reynolds equationisa
function of one parameter only, which is the bearing number, A. Thisis not the case
when the inertial effects are included. Figure 5. 8 shows the same load values asin
Fig. 5. 4, but this time presented in terms of the bearing number. It may be observed that
all results calculated with the classic Reynolds equation are located on the same curve.
When considering the inertial effects however, three different curves are obtained,
correspondent to the three values of the clearance considered. Again it is seen that an

increase of the clearance produces larger disparities from the non-inertial case.
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Fig. 5. 8 — Comparison between the non-dimensional loads vs. bearing number

with and without inertial effects for threeradia clearances; £ =0.8

The governing equations, Egs. (5. 6a-C), have certain similarities in structure with
the Euler equations, which describe the flow of inviscid, compressible fluids. Thisisthe
reason that the occurrence of flow discontinuities is expected when the velocity is very
high, which corresponds to shock waves in compressible supersonic flow. The average
velocity in the Poiseuille flow, Eq. (5. 7a) shows that high values for the pressure driven
circumferential velocity U are obtained when the pressure gradient in the x direction is
important (high shaft speed and high eccentricity ratio), and also the fluid film thickness
islarge. Figure 5. 9 shows a comparison between the pressure distributions obtained

without (Fig. 5. 9a) and with (Fig. 5. 9b) the inertial effectsincluded. The shaft speed is
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n = 350,000rev/min = 36,652s™, the clearance C =100um, and the eccentricity ratio
€ =0.8, which correspond to the bearing and modified Reynolds numbers of A =1.223

and Re’ = 24.4. Four cross sections through the pressure distributions are presented: at
the symmetry plane and at three other equidistant axial locations. Also, the pressure
distributions in the vicinity of the region of deceleration of the flow after the minimum
film thickness are presented in more detail in Figs. 5. 9c and 5. 9d. The differences
between the two flows are evident. Compared with the classic Reynolds equation, the
inclusion of the inertial effects leads not only to a higher maximum pressure and a lower
minimum pressure, but also to the occurrence of a discontinuity. It appears that the flow
is accelerated too strongly in the negative pressure gradient region, and then it adaptsto
the periodic boundary conditions through a discontinuity. The surface plot of the pressure
distribution including inertial effectsis shown in Fig. 5. 10. The sharp discontinuity in the

distribution of velocity U isvisiblein Fig. 5. 11.
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Fig. 5. 9 — Comparison between the pressure distributions with and without inertial
effects vs. circumferential position for four axial positions;
A=1223, Re =24.4,C =100um, £=0.8, n=350,000rev/min = 36,652s™
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Fig. 5. 11 — Circumferential velocity distribution vs. circumferential coordinate;
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Flow discontinuities have been observed for the same bearing speed and clearance

at eccentricities larger than € =0.3. For alower value of the clearance, C = 60um and
€ =0.8, aflow discontinuity was detected starting at the speed

1= 350,000rev/min = 36,6525 (Re" =8.79, A =3.40). When the clearance is even
smaller, C =40um, no discontinuities were detected for speeds up to the maximum

value considered (400,000 rev/min).



Chapter Six

Conclusions

Thiswork isthe first application of arelatively new numerical method, the space-
time conservation element — solution element [Chang €t. a., 1991] to flowsin thin films.
Therefore, thiswork is situated at the confluence between CFD and tribology, and is part
of along term ongoing research effort at the Department of Mechanical Engineering from
the University of Toledo in this particular field.

The thesis has been structured into five main parts. After abrief introduction and
motivation, in the second chapter the concept of fluid film bearings was presented,
together with the formulation of the governing equations and correspondent boundary
conditions. Gaseous cavitation and Elrod’ s formulation were also shown there, since they
are used as a starting point (model) for the numerical formulation. The possibility of a
flow discontinuity at the fluid film reformation front was presented and proven
anayticaly.

Chapter Three started with a general presentation of the space-time conservation
element / solution element method. Its main features, as shown in the literature by its
original authors, were highlighted. The one-dimensional formulation of the method, as

applied to cavitated fluid film bearings, was then presented in detail, both for uniform and
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non-uniform grids. The results were compared with the results obtained using both

Elrod s and type-differencing algorithms. The comparison shows that the CE/SE
method, when contrasted to the previous numerical algorithms, has the ability to naturally
predict the discontinuities that can appear at the film reformation boundary. The
differences between the results obtained with the CE/SE method and with previous
methods are significant when the position of the full film reformation point is not
imposed through the boundary conditions.

The two-dimensional formulation applied to cavitated bearings was also described
in detail in Chapter Three, followed by some representative results obtained for aligned
and misaligned, both for journal and wave bearings. The results were compared with the
results obtained using other numerical algorithms. The comparison showed that the
CE/SE method, when contrasted to previous numerical algorithms, can successfully
predict the pressure distribution within bearings, including cases with discontinuitiesin
the lubricant film, without any special treatment. However, the computational time was
higher than for the steady solvers, which can produce the results in seconds on modern
personal computers, but it was comparable with other transient solvers (this statement is
based on the comparison with atransient, type difference, code, which also uses the
Elrod's formulation). The conclusion is that the method is a strong candidate to solve
applications that require more precise results, such as accurate, robust computation of the
cavitation boundaries, as well as to solve transient problems.

Chapter Four was dedicated to gas bearings. After a short introduction to describe
some of the special features of gas bearings as contrasted to liquid bearings, the

numerical formulation was presented, with emphasis on the differences relative to the
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previous cases. The applications concentrated on the pressurized, or hybrid, bearings.
Special consideration was given to the modeling of the supply system through the
boundary conditions. Numerical results obtained for both non-pressurized and
pressurized bearings were shown and compared to existing experimental and computed
data. The results demonstrated the ability of the method to accurately predict the pressure
distributions in such flows. However, using the standard Reynolds equation, no
discontinuities were obtained. Therefore, compared with previous methods the CE/SE
scheme does not bring any significant advantages in this particular case.

Chapter Five presented the application of a model to include theinertial forcesin
the governing equation of the flow in gas bearings. The Reynolds equation requires the
solution of asingle differential equation. The inclusion of the inertial effects, in the two
dimensional space, adds two more equations that need to be solved simultaneously with
the continuity equation. This fact added more complexity to the problem, including the
possibility of the occurrence of flow discontinuities. The analytical and numerical
formulations of the problem for this case were presented, followed by a comparison
between the results obtained with and without inertial effects for a given geometry. The
occurrence of flow discontinuities was also shown. Results demonstrated that the
inclusion of inertial effects for the computation of the flow in gas bearings becomes
necessary when the bearing speed is very high and/or the film clearance is large.
Inclusion of inertial effects resulted in an increase of the predicted overall load capacity
of the bearing, especially for high values of the clearance; the difference reached as much
as 25% for the configuration studied. The bearing attitude angle was found to be less

sengitive to thisinfluence. At high speeds and relatively high clearances, flow
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discontinuities can occur, similar to shock waves in supersonic flows. Also for this case
the space-time conservation element and solution element method is capable of capturing
these discontinuities without any special treatment, and without introducing distortion
and/or excessive dissipation into the solution.

Parts of this work have been published, [Cioc and Keith, 2002 and 2003], [Cioc,
Dimofte, Keith, and Fleming, 2003], [Cioc, Dimofte, and Keith, 2003]. Another paper
related to the inertial effects has been submitted and approved for publication in the
STLE Tribology Transactions.

Three directions for which this work can be continued are briefly described as
follows.

1) Improvements of the modeling of the supply system. The modeling used in this
work, which iswidely used today, considers the supply system flow one-dimensional,
with the flow rate characterized by the pressure ratio across the supply hole and by one
parameter, the discharge coefficient, Cp. This coefficient is calculated using a semi-
empirical formula. No consideration is given to the relative motion between the shaft and
bearing, and for a given geometry, the discharge coefficient is assumed constant for all
flow rates. Some formulations that are aimed at correcting the value of Cp with the flow
rate are sometimes used, but still the approach is empirical and yields mixed results.
Efforts have been made to improve the modeling of the supply system [Braun and
Dzodzo, 1997], but the problem is far from being satisfactorily solved, so that the
solution it is both accurate and practically obtainable. The CE/SE method is a good
candidate to be used to calculate this flow, especially since flow discontinuities can

occur, asin the case of choked (supersonic) regimes.
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2) Improvements of the modeling of the inertial flows. The methodology used isa
good start towards a more accurate modeling that includes heat transfer and turbulence
effects. These improvements can be made without fundamentally changing the general
structure of the simplified model that has been used in this thesis.

3) Improvements related to the formulation of the numerical modeling. The CE/SE
method is continuously evolving and adapting to the problems encountered in
applications. One of the problems which has been recently addressed [Chang, 2003] is
related to the excessive diffusivity of the scheme for low values of the Courant number.
This problem is common to explicit numerical schemes. Excessive dissipation cannot be
avoided when the velocity of the transmission of information (in the governing equation)
changes between different regions of the computational domain, or when the grid
contains elements with relatively large size disparities. Further research work is needed in
order to incorporate some of these newer methodologies in the modeling of flowsin thin

fluid films.
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